考虑土—桩—结构相互作用的PHC管桩地震响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PHC管桩即高强混凝土预应力管桩,由于其空心截面在刚度和抗剪强度等方面明显弱于等尺寸的实体桩型,导致其抗震能力也同样偏弱。而我国又是个多地震的国家,且高烈度地区范围很广,这制约着PHC管桩的推广应用。因此,对PHC管桩地震响应的研究,特别是对其在高烈度地区适用性的研究就显得十分必要。针对这个课题,本文开展了考虑土-桩-上部结构相互作用的PHC管桩地震响应研究工作。
     (一)、采用以振动台模型试验为主,有限元数值计算为辅,两者互相验证的技术路线,主要工作如下:
     1、在查阅大量国内外文献的基础上,对考虑土-桩-上部结构相互作用的桩基地震响应的理论研究、计算方法及试验进展等研究现状进行了一定的总结和分析。
     2、设计实现了PHC管桩-土-上部结构相互作用体系的振动台试验。选定了层状剪变形土箱作为乘土容器;地基土共有粘土、粉土、砂土三层;桩体模型有单桩、三桩、六桩三种,且六桩模型上部结构两次增加不同配重;输入地震波有El Centro波、Taft波和人工波三种,且每种地震波有五种大小不同的加速度峰值强度。另外,每个模型还进行了土体液化试验。
     3、运用大型计算软件ABAQUS建立了PHC管桩-土-上部结构相互作用体系的三维有限元计算模型,并进行动力计算分析。
     (二)、对振动台模型试验数据进行了综合整理与分析,并和有限元计算结果进行对比和验证。主要得到以下结论:
     1、单桩以及三桩模型应变均为桩顶最大,并沿桩体向下快速衰减,到距桩顶约6倍桩径处,单桩应变衰减了约80%-90%,三桩应变衰减了55%-75%,再向下继续逐步衰减直到桩底。
     2、六桩模型在弱震作用下应变在桩顶最大,沿桩体向下较快衰减,到桩顶向下约6倍桩径处,应变衰减了35%-50%,再向下逐步衰减直至桩底,沿桩体存在2-3处应变局部增大的突变点,随着震动强度的增大,各突变点应变快速增大,逐步超过桩顶,特别是桩顶向下约11倍桩径处增大最突出,到强震工况,该处应变成为最大。
     3、随着模型桩数增多,动力响应逐步减弱,桩体应变及弯矩逐步降低,应变与弯矩沿桩体分布更加线性,最大值与最小值之差逐步减小。三桩、六桩模型桩体最大拉应变峰值分别比单桩模型下降10%-50%和40%-80%,最大弯矩峰值分别下降30%-55%和70%-80%,桩-土界面最大压力分别下降约20%-70%和30%-80%,上部结构横向最大位移分别下降约6%-25%和15%~-40%。
     4、单桩、三桩、六桩模型各桩体两侧应变峰值分布规律并不对称,特别是六桩模型桩体两侧应变分布规律差异巨大。
     5、随着振动持续,土体自振频率降低,阻尼增大;随着震级增加,土-桩-结构间的相互作用影响加强,土体的非线性性质增强,但桩间土非线性性质弱于桩侧土,桩侧土体非线性性质又弱于远桩土体;多桩体系的震动破坏现象远弱于少桩体系。
     6、上部结构重量逐步增大对结构体系功力响应、桩体应变和弯矩大小及分布规律以及结构横向位移大小等的影响不是单向的,而是有着复杂的相互作用。
     7、土体饱和状态下,震动造成砂土层液化,液化土体非线性性质增强,传递振动的能力减弱,有一定的减震和隔震作用;土体液化后,桩体应变和弯矩峰值总体普遍增大,沿桩体分布更线性;在液化土层,桩土界而接触压力大幅度降低;部分弱震工况,结构横向位移稍有减小,强震工况,结构横向位移普遍增大。
     8、通过振动台模型试验结果与有限元计算结果的对比分析,验证了计算模型的合理性和振动台试验结果的可靠性。
     9、初步确定PHC管桩在8度设防高烈度地区是可行的,值得进一步研究。
PHC pipe pile (Prestressed high-strength concrete pipe pile) due to its hollow sections in terms of stiffness and shear strength was significantly weaker than the same size entity pile, and its seismic capacity is also weak. China is earthquake country, there are wide high seismicity regions, and it restricts the popularization and application of PHC piles. Therefore, the study of the earthquake response of PHC pile, especially its applicability in high seismicity region is essential. In this paper, the study of earthquake response of PHC pile considering Soil-Pile-Structure interaction is presented. A. In this paper, study works include a shake table model test mainly and finite element analysis supplemented is presented.
     1. On the basis of access to a large number of domestic and foreign literatures, theoretical study and calculation methods and test progress of the earthquake response of pile research considering soil-pile-structure interaction is summaried and analysis.
     2. A PHC Pile-Soil-Structure Interaction shake table test is design and implementation. A layer shear deformation soil box container is selected used. There are three layers foundation soil:clay and silt and sand. There are three pile models:single pile and three piles and six piles, and the six piles model superstructure twice increase different counterweight. There are three input seismic waves:El Centro wave and Taft wave and artificial wave, and there are five different sizes of peak acceleration for each seismic wave. In addition, liquefaction test also carried out for each model.
     3. Use of large-scale finite element software ABAQUS, PHC Pile-Soil-Structure Interaction three-dimensional computational model is established, dynamic calculation and analysis is carried out. B. Shaking table model test data is comprehensive collection and analysis, and compared with finite element results, some important conclusions are obtained:
     1. To single-pile model and three-pile model, the maximum strain occurr in the top of pile, and down fast decay along the pile, at about6times pile diameter from the top of pile, strain of single pile reduced by80%-90%, strain of three piles reduced by55%-75%, and continue down gradually decay until the bottom of the pile.
     2. To six-pile model, the maximum strain occurr in the top of pile in weak earthquakes, and down fast decay along the pile, at about6times pile diameter from top of pile, strain reduced by35%-50%, and continue down gradually decay until the bottom of the pile. There are2-3strain mutation point along the pile, with the increase in vibration intensity, strain of each mutant point increases rapidly, exceed the strain in top of pile gradually. Especially the strain of point about11times pile diameter from top of pile increases the most prominent, and become the largest strain point when the conditions of strong earthquakes.
     3. With increase in the number of pile, model dynamic response gradually weakened, the strain and bending moment of the pile reduce gradually, distribution of strain and bending moment more linear along the pile, the maximum and minimum differential is gradually reduced. It is shown that compared to the single-pile model, the maximum tensile strains of the three-pile model and six-pile model drop by10%-50%and40%-80%respectively, whereas the maximum bending moment drop by30%-55%and70%-80%respectively, the soil-pile interface pressure reduces by20%-70%and30%-80%respectively, superstructure lateral displacement reduces by6%-25%and15%-40%respectively.
     4. To the single-pile and three-pile and six-pile models, the peak strain distribution on both sides of every pile is asymmetry. Especially to six-pile model, the strain distribution on both sides of pile is huge difference.
     5. With the vibration continued, model system natural frequency decreases, damping increases. With the increase in vibration intensity, soil-pile-structure interaction effects increase, nonlinearity effects of soil enhancement. The nonlinearity effects of soil between piles is weaker than soil beside pile, the nonlinearity effects of soil beside pile are weaker than soil far from pile. The damage behaviors for systems with more piles are less severe than those with fewer piles.
     6. The affect of superstructure weight gradually increased to structural system is complex interactions; include the dynamic response of structural system, the size and distribution of pile strain and bending moment, the upper structure displacement.
     7.With the saturation of the soil, vibration caused by the liquefaction of the sand layer, the nonlinearity effects of liquefied soil enhancement, transmitted vibration diminished capacity, and the liquefied soil lead to a certain amount of shock absorption and isolation. After soil liquefaction, strain and bending moment of the piles overall generally increases, the distribution are more linear along the pile. In liquefied soil, pile-soil interface contact pressure significantly reduced. In a amount of weak shock conditions, the lateral displacement of structure is slightly smaller, but in the rest conditions, the lateral displacement of structure generally increases.
     8. The results of the shaking table model test and finite element analysis is compared, and the reasonable of calculation and the reliability of shaking table test is verified.
     9. The results of this preliminary investigation further indicate the feasibility of exploiting PHC piles in8degree high seismicity regions. It is also suggested that more research efforts are required for extensive application of PHC piles in such areas.
引文
[1]S. K. Prasad, I.Towhata,G.P.Chandradhara,etal. Shaking Table Tests in Earthquake Geotechnical Engineering [J]. Current Science,2004,87(10):1398-1404.
    [2]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [3]王天颂.土-桩-结构相互作用问题的若干分析方法[J].世界地震工程,1985,(3):25-30.
    [4]Penzien J., Scheffy C., and Parmelee R. Seismic Analysis of Bridges on Long Piles [J].J. Eng. Mechanics,1964,90(3):223-254.
    [5]Matlock H., Foo S., Tsai C., and Lam I. SPASM8-A Dynamic Beam-Column Program for Seismic Pile Analysis with Support Motion[M], Fugro, Inc.1978.
    [6]Nogami T., and Konagi K. Dynamic Response of Vertically Loaded Nonlinear Pile Foundations[J]. J. Geotech. Eng.,ASCE,1987,113(2):147-160.
    [7]Nogami T., and Konagi K. Time Domain Response of Dynamically Loaded Single Pile[J].J. Eng. Mechanics, ASCE,1988,114(9):1512-1525.
    [8]Nogami T., Konagi K., and Otani J. Nonlinear Pile Foundation Model for Time Domain Dynamic Response Analysis [A]. Proc.11th World Conf. Earthquake Eng. [C]. Tokyo-Kyoto, Japan.1988,Vol. Ⅲ:593-598.
    [9]Nogami T. Soil-Pile Interaction Model for Earthquake Response Analysis of Offshore Pile Foundations[A].2nd Int. Conf. on Recent Advances Geotech. Eng. and Soil Dyn. [C]. St. Louis, 1991,Vol.3:2133-2137.
    [10]Nogami T., Otani J., and Konagi K. Nonlinear Time Domain Numerical-Model for Pile Group Under Transient Dynamic Forces[A].Proc.2nd Int. Conf. on Recent Advances in Geotech. Eng. and Soil Dyn. [C]. St. Louis,1991,Vol.3:881-888.
    [11]Nogami T., Otani J., Konagai K., and Chen H. Nonlinear Soil-Pile Interaction Model for Dynamic Lateral Motion[J]. J. Geotech. Eng., ASCE,1992,118(1):89-96.
    [12]El Naggar M., and Novak M. Nonlinear Model for Dynamic Axial Pile Response[J]. J. Geotech. Eng., ASCE,1994,120(2):308-329.
    [13]El Naggar M., and Novak M. Effect of Foundation Nonlinearity on Modal Properties of Offshore Towers[J]. J. Geotech. Eng., ASCE,1995,121(9):660-668.
    [14]El Naggar M., and Novak M. Nonlinear Lateral Interaction in Pile Dynamics[J].Soil Dyn. Earthquake Eng.,1995,14(3):141-157.
    [15]El Naggar M., and Novak M.Nonlinear Analysis for Dynamic Lateral Pile Response[J].Soil Dyn. Earthquake Eng.,1996,15(4):233-244.
    [16]Boulanger R. W., Curras C. J., Kutter B. L., Wilson D. W., and Abghari A.Seismic Soil-Pile-Structure Interaction Experiments and Analyses[J].J. of Geotech. and Geoenvironmental Eng., ASCE, 1999,125(9):750-759.
    [17]陈熙之,解明雨,孙焕纯.桩-土-结构-水体系相互作用的弹塑性地震反应分析[J].计算结构力学及其应用,1985,2(1):31-37.
    [18]袁万城.大跨度桥梁空间非线性地震反应分析[D].上海:同济大学博士学位论文,1990.
    [19]袁万城,叶爱君,范立础.斜拉桥桩-土结构相互作用地震反应分析及其简化[A].结构与介质相互作用理论及其应用[C].南京:河海大学出版社,1993:614-618.
    [20]范立础,袁万城,胡世德.上海南浦大桥纵向地震反应分析[J].土木工程学报,1992,25(3):2-8.
    [21]胡世德,范立础.江阴长江公路大桥纵向地震反应分析[J].同济大学学报,1994,22(4):433-438.
    [22]严士超,杜一平.电视塔-桩-土相互作用地震反应分析[J].土木工程学报,1991,24(3):71-79.
    [23]朱晞,王大庆.桩基桥墩考虑土-结构相互作用抗震计算方法的研究[J].铁道学报,1992(4):81-90.
    [24]郑海荣.桩-土-上部结构(桥墩)-流体相互作用体系的地震反应分析[J].桥梁建设,1992(4):67-74.
    [25]魏琴,寿楠椿,周建春等.三门峡黄河公路大桥抗震分析[J].桥梁建设,1994(3):22-29
    [26]蒯行程,沈蒲生,陈军.一种用于桩基础动力相互作用分析的桩单元复刚度矩阵[J].土木工程学报,1998,31(5):48-55.
    [27]蒯行成,沈蒲生.层状介质中群桩水平动力阻抗的简化计算方法[J].振动工程学报,1998,11(3):258-264.
    [28]蒯行成,沈蒲生.层状介质中群桩竖向和摇摆动力阻抗的简化计算方法[J].土木工程学报,1999,32(5):62-70.
    [29]孙利民,刘东,潘龙等.桩-土相互作用集中质量模型的土弹簧刚度计算方法[A].第十四届全国桥梁学术会议论文集[C].上海:同济大学出版社,2000:691-698.
    [30]孙利民,张晨南,潘龙等.桥梁桩土相互作用的集中质量模型及参数确定[J].同济大学学报,2002,30(4):409-415.
    [31]Lysmer J., Udaka T., Tsai C. and Seed H. B. FLUSH-A Computer Program For Approximate 3-D Analysis of Soil-Structure Interaction Problems[A]. Rep. No. UCB/EERC-75/30, Earthquake Eng. Research Ctr. [C]. Univ. of California,1972.
    [32]Hetenyi.Beams on Elastic Foundations[M]. University of Michigan Press,1946.
    [33]Matlock H., and Reese L. Generalized Solutions for Laterally Loaded Piles[J].J. Soil Mechanics and Foundation Div., ASCE,1960,86(5):63-91.
    [34]Davisson M., and Gill H. Laterally Loaded Piles in a Layered System[J]. J. Soil Mechanics and Foundation Div., ASCE,1963,89(3):63-94.
    [35]Blaney G., Kausel E., and Roesset J. Dynamic Stiffness of Piles[A]. Proc.2nd Int. Conf. on Numerical Methods in Geomechanics[C], Blacksburg.1976,Vol.2:1001-1012.
    [36]Desai C., and Appel G.3-D Analysis of Laterally Loaded Structures[A]. Proc.2nd Int. Conf. on Numerical Methods in Geomechanics[C], ASCE, Blacksburg,1976:405-418.
    [37]Angelides D., and Roesset J. Nonlinear Lateral Dynamic Stiffness of Piles[J]. J. of Geotech. Eng., ASCE,1981,107(11):1443-1460
    [38]Wolf J., and Von Arx G.Impedance Functions of a Group of Vertical Piles[A]. Proc. ASCE Conf. Earthquake Eng[C]. Soil Dyn., Pasadena,1978,Vol.2:1024-1041.
    [39]Cai Y. X., Gould P. L., and Desai C. S. Evaluation of Seismic Response of Pile-Supported Structures with 3-D Nonlinear Approach[A]. Proc.3rd Int. Conf. on Recent Advances in Geotech. Eng. and Soil Dyn[C]. St. Louis, Missouri.1995,Vol. I, Paper No.5.45:413-416.
    [40]Miura F., and Ishihara T. Dynamic Response of Pile Foundation Taking into Account 3-Dimensional Interaction with Superstructure and Ground[A].Proc.1 lth World Conf. Earthquake Eng.[C]. Acapulco,No.481,1996.
    [41]Wu G., and Finn W. Dynamic Elastic Analysis of Pile Foundations Using Finite Element Method in the Frequency Domain[J].Can. Geotech.,1997,34(1):34-43.
    [42]Wu G., and Finn W. Dynamic Nonlinear Analysis of Pile Foundations Using Finite Element Method in the Time Domain[J]. Can. Geotech.,1997,34(1):44-52.
    [43]Lysmer J., Udaka T., Tsai C. and Seed H. B. FLUSH-A Computer Program For Approximate 3-D Analysis of Soil-Structure Interaction Problems[M].Rep. No. UCB/EERC-75/30, Earthquake Eng. Research Ctr., Univ. of California,1972.
    [44]范敏,解明雨,邬瑞锋.土-桩-结构相互作用体系的非线性地震反应分析[J].地震工程与工程振动,1985,5(3):6-12.
    [45]廖振鹏,黄孔亮,杨柏坡,袁一凡.暂态波透射边界[M].中国科学A辑,1984(6):556-564.
    [46]Scott R., Liu H., and Ting J. Dynamic Pile Tests by Centrifuge Modeling[A].Proc.6th World Conf. Earthquake Eng.[C]. New Delhi,1977,Vol.2:1670-1674.
    [47]Scott R., Tsai C., Steussy D., and Ting J. Full-Scale Dynamic Lateral Pile Tests[A].12th Offshore Technology Conference[C].OTC 4203, Houston,1982,Vol.1:435-450.
    [48]Finn W. D., and Gohl B.Centrifuge Model Studies of Piles Under Simulated Earthquake Lateral Loading[A]. in Dynamic Response of Pile Foundations-Experiment, Analysis, and Observation[C]. Geotech. Spec. Pub.11, ASCE,1987,21-38.
    [49]Mcvay M., Zhang L., Molnit T., and Lai P.Centrifuge Testing of Large Laterally Loaded Pile Groups in Sands[J]. J. Geotech. and Geoenvironmental Eng., ASCE,1998,124(10):1016-1026.
    [50]Bruno D., and Randolph M. F. Dynamic and Static Load Testing of Model Piles Driven into Dense Sand[J]. J. of Geotech. and Geoenvironmental Eng., ASCE,1999,125(10):988-998.
    [51]Kubo K. Vibration Test of a Structure Supported by Pile Foundation[A]. Proc.4th World Conf. Earthquake Eng.[C]. Santiago,1969,A6:1-12.
    [52]Yao S. Dynamic and Static Test of Model Piles or Pile Groups[A]. Proc.7th World Conf. Earthquake Eng.[C]. Istanbul,1980,Vol.3:459-466.
    [53]Mizuno H., Iiba M. Shaking Table Testing Of Seismic Building-Pile-Soil Interaction[A]. Proc.8th World Conf. Earthquake Eng.[C]. San Francisco,1984,Vol.3:649-656.
    [54]Gohl W. B., Finn W. D. Seismic Response of Single Piles in Shake table Studies[A]. Proc.5th Canada Conf. Earthquake Eng.[C]. Ottawa,1987:435-444.
    [55]Sato H., Kouda M., and Yamashita T. Study on Nonlinear Dynamic Analysis Method of Pile Subjected to Ground Motion-Part 2:Comparison Between Theory and Experiment[A]. Proc.11th World Conf. Earthquake Eng.[C]. Acapulco, No.1289,1996.
    [56]Meymand P. J. Shaking Table Scale Model Tests of Nonlinear Soil-Pile-Superstructure Interaction in Soft Clay[D].Ph.D. Dissertation, Univ. of California Berkeley,1998.
    [57]Nomura S., Shamoto Y., and Tokimatsu K. Soil-Pile-Structure Interaction During Liquefaction[A]. Proc.2nd Int. Conf. on Recent Advances in Geotech. Eng. and Soil Dyn.[C]. St. Louis,1991,Vol.1: 743-750.
    [58]Kagawa T., Minowa C., Mizuno H., and Abe A.Shaking-Table Tests on Piles in Liquefying Sand[A]. Proc.5th U.S. Natl. Conf. Earthquake Eng.[C].Chicago,1994,Vol.4:107-116.
    [59]Tamura S., Suzuki Y., Tsuchiya T., Fujii S., and Kagawa T. Dynamic Response and Failure Mechanisms of a Pile Foundation during Soil Liquefaction by Shaking Table Test with a Large-Scale Laminar Shear Box[A]. Proc.12th World Conf. Earthquake Eng.[C]. New Zealand, No.0903,2000.
    [60]Yasuda S., Ishihara K., Morimoto I., Orense R., Ikeda M., and Tamura S. Large-Scale Shaking Table Tests on Pile Foundations in Liquefied Ground[A].Proc.12th World Conf. Earthquake Eng.[C]. New Zealand, No.1474,2000.
    [61]Orense R., Ishihara K., Yasuda S., Morimoto I., and Takagi M.Soil Spring Constants during Lateral Flow of Liquefied Ground[A].Proc.12th World Conf. Earthquake Eng.[C]. New Zealand, No.2099,2000.
    [62]刘惠珊,乔太平.可液化土中桩基工作性能及其实用计算方法的探讨[A].地基与工业建筑抗震[C].北京:地震出版社,1984:76-85.
    [63]刘惠珊,陈克景.液化土中的桩基试验[J].工程抗震,1991(2):19-23.
    [64]徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报,1993(4):1-7.
    [65]韦晓.桩-土-结构动力相互作用振动台试验与理论研究[D].上海:同济大学博士学位论文,1999.
    [66]韦晓,范立础,王君杰.考虑桩-土-桥梁结构相互作用振动台试验研究[J].土木工程学报,2002,35(4):91-97.
    [67]陈跃庆.结构-地基动力相互作用体系振动台试验研究[D].上海:通济大学博士学位论文,2001.
    [68]陈跃庆,黄炜,吕西林.结构-地基动力相互作用体系的振动台模型试验设计[J].结构功臣师,1999增刊:243-248.
    [69]陈跃庆,吕西林,黄炜.结构-地基相互作用振动台试验中土体边界条件的模拟方法[J].结构工 程师,2000(3):25-30.
    [70]陈跃庆,吕西林,李培振.分层土-基础-高层框架结构相互作用体系振动台模型试验研究[J].地震工程与工程振动,2001,21(3):104-112.
    [71]吕西林,陈跃庆.高层建筑结构-地基动力相互作用效果的振动台试验对比研究[J].地震工程与工程震动,2002,22(2):42-48.
    [72]吕西林,陈跃庆,陈波,等.结构-地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动.2000,20(4):20-29.
    [73]陈跃庆,吕西林,侯建国,李培振.不同土性地基中地震波传递的振动台模型试验研究[J].武汉大学学报(工学版),2005,38(2):2005-2009.
    [74]陈跃庆,吕西林,李培振等.不同土性的地基-结构动力相互作用振动台模型试验对比研究[J].土木工程学报,2006,39(5):57-64.
    [75]王文剑.土-结构相互作用对TMD振动控制影响的振动台模型试验研究[D].北海:同济大学硕士学论文,2001.
    [76]楼梦麟,王文剑,马恒春等.土-桩-结构相互作用体系的振动台模型试验[J].同济大学学报,2001,29(7):763-768.
    [77]伍小平.砂土-桩-结构相互作用振动台试验研究[D].上海:同济大学博士学位论文,2002.
    [78]凌贤长,王东升.液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展[J].地震工程与工程振动,2002,V01.22(4):53-59.
    [79]凌贤长,王东升,王志强等.液化场地桩-土-桥梁结构动力相互作用打响振动台模型试验研究[J].土木工程学报,2004,37(11):67-73.
    [80]凌贤长唐亮于恩庆.可液化场地地震振动孔隙水压力增长研究的大型振动台试验及其数值模拟[J].岩石力学与工程学报,2006,25(增2):3998-4003.
    [81]武思宇,宋二祥,刘华北,等.刚性桩复合地基的振动台试验研究[J].岩土工程学报,2005,27(11):1334-1337.
    [82]武思宇,宋二祥,刘华北,等.刚性桩复合地基抗震性能的振动台试验研究[J].岩土力学,2007,28(1):77-82.
    [83]冯士伦,王建华,郭金童.液化土层中桩基抗震性能振动台试验研究[J].土木工程学报,2005,V01.38(7):92-95.
    [84]冯士伦,王建华,郭金童.液化土层中桩基抗震性能研究[J].岩石力学与工程学报[J].2005,24(8):1402-1406.
    [85]王建华,冯士伦.桩土相互作用的振动台试验研究[J].岩土工程学报,2004,26(5):
    [86]孟上九,刘汉龙,袁晓铭,等.可液化地基上建筑物不均匀震陷机制的振动台试验研究[J].岩石力学与工程学报,2005,V01.24(11):1978-1985.
    [87]黄春霞,张鸿儒,隋志龙,等.饱和砂土地基液化特性振动台试验研究[J].岩土工程学报,2006,V01.28(12):2098-2103.
    [88]任红梅.液化场地机-上-高层结构相互作用体系的振动台试验及计算分析[D].上海:同济大学博士学位论文,2009.
    [89]李培振,任红梅,吕西林,等.液化地基自由场振动台模型试验研究[J].地震工程与工程振动,2008,V01.28(2):171-178.
    [90]李培振,刘艳梅,崔胜龙等.可液化土-高层结构振动台试验的土性参数识别[J].岩石力学与工程学报,2011,30(增1):3234-3244.
    [91]李勇泉,工义重,傅旭东,等.大型渡槽桩上相互作用振动台试验研究[J].土木建筑与环境工程,2010,32(3):58-68.
    [92]陈国兴,庄海洋,杜修力等.液化场地土-地铁车站结构大型振动台模型试验研究[J].地震工程与工程震动,2007,27(3):163-170.
    [93]陈国兴,庄海洋,杜修力等.土-地铁车站结构大型振动台模型试验研究[J].地震工程与工程震动,2007,27(2):171-176.
    [94]陈国兴,庄海洋,利绍革等.土-地铁隧道动力相互作用的大型振动台模型试验:试验方案设计[J].地震工程与工程震动,2006,26(6):178-183.
    [95]陈国兴,左熹,庄海洋.地铁车站结构大型振动台试验与数值模拟的比较研究[J].地震工程与工程振动,2008,28(1):157-164.
    [96]钱德玲,赵元一,王东坡.桩—土—结构体系动力相互作用的试验研究[J].上海交通大学学报,2005,39(11):1856-1861
    [97]王东坡,钱德玲.支盘桩-土上部机构动力相互作用体系的振动台模型试验设计[J].合肥工业大学学报(自然科学版),2008,31(5):776-781.
    [98]周伟,钱德玲.上—基础—高层框架结构振动台试验及有限元分析[J].合肥工业大学学报(自然科学版),2010,33(10):1540-1543.
    [99]钱德玲,夏京,卢文胜等.支盘桩-土-高层建筑结构振动台试验的研究[J].岩石力学与工程学报,2009,28(10):2024-2030.
    [100]王凯,钱德玲.液化场地的桩-土-上部结构振动台模型试验的研究[J].合肥工业大学学报(自然科学版),2011,34(11):1687-1691.
    [101]姜忻良,徐炳伟,焦莹.大型土-桩-复杂结构振动台模型试验研究[J].土木工程学报,2010,43(10):98-105.
    [102]徐炳伟,姜忻良.大型复杂结构-桩-上振动台模型试验上箱设计[J].天津大学学报,2010,43(10):912-918.
    [103]姜忻良,徐炳伟.复杂结构—桩—土振动台模型试验数据分析[J].地震工程与工程震动,2009,29(6):170-175.
    [104]徐炳伟.大型复杂结构-桩-土振动台模型试验研究[D].天津:天津大学博士学位论文,2009.
    [105]吴薪柳,姜忻良.结构-桩-土振动台试验桩上地震反应规律分析[J].工程力学,2011,28(1):201-210.
    [106]伍小平,孙利民,胡世德等.振动台试验用层状剪切变形土箱的研制[J].同济大学学报,2002,30(7):781-785.
    [107]凌贤长,王臣,王成.液化场地桩-土-桥梁结构动力相互作用振动台试验模型相似设计方法[J].岩石力学与工程学报,2004,23(3):450-456.
    [108]迟世春,林少书.结构动力模型试验相似理论及其验证[J].世界地震工程,2004,20(4):11-20.
    [109]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005:252.
    [110]林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000,40(1):1-8.