填埋场土工防渗系统变形机理及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土工防渗系统是填埋场底部、边坡或封场覆盖中用于隔离渗滤液,填埋气体等物质的一种重要屏障,同时也是填埋场长期、有效运营的重要保证。分析防渗系统中土工合成材料的物理力学性质,研究土工防渗系统的变形破坏机理,探讨衬垫系统的安全稳定特性及其趋势预测已经成为国际环境岩土工程界的高度关注的问题。为此,本文采用试验和机理研究相结合的方法,依托相关学科研究成果,以填埋场现场地质资料为基础,以理论分析与数值分析计算为主导,探讨了土工防渗系统在填埋场运营过程中的变形破坏机理,构建了定量描述土工防渗系统变形破坏的力学模型,并运用有限元方法对建立的耦合模型进行数值求解,深入分析了土工防渗系统在不同环境载荷条件下的力学响应,为填埋场土工防渗系统的设计及安全性评价提供了可靠的理论依据及技术支持。取得的主要研究成果包括以下几个方面:
     (1)分析了填埋场土工防渗技术特点,得出防渗系统的破坏主要是拉剪破坏,验证了开展填埋场土工防渗系统变形破坏机理及稳定性研究符合国际国内环保方针政策。
     (2)分析了不同结构形式防渗系统的特征,得出复合衬垫系统优于双层衬垫系统,双层衬垫系统优于单层衬垫系统;给出了填埋场土工防渗系统变形破坏机理。包括:土工合成材料防渗机理,渗滤液在填埋场中运移机理,固体废弃物在填埋场中沉降变形机理,土工膜衬垫填埋场边坡稳定性机理,降雨入渗作用机理。
     (3)通过土工膜窄长条拉伸试验,得出了两种纹理形态(顺纹、逆纹)的拉伸-位移曲线。HDPE土工膜拉力与拉伸变形量初始阶段呈现线性变化,随着拉力的逐渐增加转为塑性变化,HDPE土工膜无明显屈服极限。将顺纹拉伸与逆纹拉伸对比知,逆纹最大拉伸量为顺纹最大拉伸量3~7倍;逆纹与顺纹最大破坏拉力基本相当。通过室内模拟填埋场土工防渗结构压力试验,得出了防渗结构中应变-时间的关系曲线。对曲线分析发现,压力作用下土工膜的应变极为微小,土工膜应变与时间呈线性关系。
     (4)给出了土工膜衬垫填埋场概念模型,建立了描述填埋场土工防渗衬垫系统变形破坏的流固耦合数学模型,并对比分析了土工膜厚度计算理论模型公式,提出了土工膜应考虑为索单元且设置接触单元的有限元法对模型进行离散求解。
     (5)通过建立填埋场防渗系统数学模型,模拟了不同工况条件下防渗结构的力学响应,其中包括:降雨作用下填埋场防渗系统渗流场特征,常载荷作用下防渗系统变形规律,线性变化载荷作用下防渗系统变形规律,渗滤液水分抽排过程中防渗系统变形规律,土工膜衬垫填埋场边坡稳定性。
     a)常荷载、线性变化荷载作用下填埋场场底土工防渗系统的变形研究结果表明:填埋场各结构层中垃圾堆体在荷载作用下的变形最为明显。纵向变形随着水平距离呈现非线性变化,随着深度的增加纵向位移逐渐减小;横向变形随着水平距离和深度的改变均呈现波动变化,填埋场坡顶,坡角处为应力薄弱处;
     b)通过对降雨持续作用影响分析得出,降雨入渗使填埋场结构层渗流条件发生变化,填埋场各结构层含水量逐渐增加,导致材料的容重逐渐增大,坡角处孔隙水压骤增而出现峰值;
     c)通过模拟填埋场渗滤液水分抽排过程中防渗系统的变形规律分析得出,随着水头的降低,流体压力逐渐降低,垃圾层,粘土层,土壤层的孔隙压力下降,固体骨架有效应力增大,从而造成填埋场防渗系统位移的增加;
     d)通过对土工膜衬垫填埋场边坡稳定性的数值模拟及参数灵敏度分析得出,边坡角度和界面摩擦角对土工膜衬垫填埋场边坡稳定性影响较大;边坡角度增大,稳定性降低;界面摩擦角增大,稳定性提高;在考虑了边坡渗流作用和地震影响时,安全系数降低。
Anti-seepage system is used to isolate the leachate and landfill gas as an important barrier which is located at the bottom and slope in landfill. It is also an important guarantee of landfill for long-term and effective operation. Analyzing physical and mechanical properties of geosynthetics, studying the deformation and failure mechanism of anti-seepage system and exploring the stability of liner system in landfill has become a new topic in environment science field, which has attracted broad attention of scientific researchers. With the combination of experimental and theoretical method and relying on existing research achievements, deformation failure mechanism of anti-seepage system in landfill during its service has been discussed, and mechanical model of deformation failure has been built, and then a finite element method is used to solve the coupling model which has been established. Meanwhile, a thorough analysis of mechanical response of anti-seepage system under various environment loads is given. The results can offer technical support for the design, and it can also provide theoretical basis to the defense of stability of landfill. The main research results are as follows:
     (1)The current applications, testing process and theoretical study of geosynthetics have been summarized on investigating a large number of landfill data.The anti-seepage system is mainly shear failure on analyzing its technical characteristics.It is in accordance with the international and domestic environmental policy in studying deformation mechanism and numerical simulation of anti-seepage system in landfill.
     (2)Composite liner system is superior to double-liner system, and double-liner system is superior to single-layer liner system by analyzing the different structural forms of anti-seepage system. Meanwhile, the deformation and failure mechanism of anti-seepage system is given, including impervious mechanism of geosynthetics, leachate migration mechanism, and solid waste deformation mechanism, stability mechanism of slope padded by geomembrane and rainfall infiltration mechanism in landfill.
     (3)The tensile-displacement curves were obtained (cis texture, reverse texture) through tensile test of geomembrane. There is a linear relationship between the tension and tensile deformation in initial stage, but then turned to plastic variation with the tension increased gradually. HDPE geomembrane has no obvious yield limit. The maximum extensional capacity of reverse texture is 3 to 7 times larger than the cis one through the comparison of cis texture with reverse one.Strain-time curve of anti-seepage structure was obtained through simulating the pressure test in laboratory. The curve showed that geomembrane strain is very minimal under pressure effect and there is a linear relationship between geomembrane strain and time.
     (4) Conceptual model of landfill was given. Fluid-solid coupling mathematical model that describe the deformation failure of liner system (including saturated-unsaturated percolation model of porous media and stress field mathematical model) was established. The thickness formulas of geomembrane were given, and geomembrane was considered as cable element in finite element analyzes.
     (5)A mathematics model of the seepage field for municipal landfill liner system was established and mechanical response of anti-seepage system in different working conditions has been simulated, such as seepage field features of liner system under rainfall condition, deformation laws under constant and linear variation loads, the deformation of anti-seepage system considering fluid-solid coupling and numerical analysis on stability of landfill slope padded by Geomembrane.
     a) Considering constant and liner variation loads, the deformation laws of anti-seepage system at the bottom of landfill were obtained. Longitudinal deformation decrease with the depth increase and it is nonlinear variation along with the horizontal distance. Lateral deformation is fluctuation change with the horizontal distance and depth change.
     b) Considering rain infiltration and selecting a typical section of landfill cover slope, numerical simulation showed that the storage capacity of each structural layer was gradually increased, which lead to the unit weight increased. Pore water pressure can be easily increased with increase of seepage flow at the foot of slope.
     c) Deformation law was obtained by simulated water pumping in anti-seepage system. The results showed that the water head decreased, the pore pressure is progressively lowered, which makes virtual stress increase. Therefore, the displacement of anti-seepage system increases.
     d) Some beneficial laws are obtained by analyzing the various parameters of the model of landfill slope padded by geomembrane. The slope angel and the interface friction angel influence greatly of the stability of the slope padded by geomembrane. The increasing of the slope angel, the length,the seepage forces and the seismic coefficient will lead to the safety factor of the landfill decrease, the increasing of the interface friction angel will lead to the safety factor increase, the variation of the friction angel of cover soil have little influence on the safety factor; the safety factor is decreased considering permeability factor and seismic action.
引文
[1]李颖,郭爱军.城市生活垃圾卫生填埋场设计指南[M].北京:中国环境科学出版社.2005. 16,107-119
    [2]赵由才,龙燕,张华.生活垃圾卫生填埋技术[M].北京:化学工业出版社.2004. 1-3
    [3]吴玉成.治理地下水有机污染物抽出处理技术影响因素分析[J].水文地质工程地质. 1998(1), 27-29
    [4]孟了,熊向陨,马箭.我国垃圾渗滤液处理现状及存在的问题[J].给水排水. 2003,29(10),26-30
    [5] European Environmental Agency (2004) EEA Signals 2004, lo-cated at [http://reports.eea.eu.int/signals-2004/en/ENSignals2004web.pdf] accessed October 2003.
    [6]汪群慧.固体废物处理及资源化[M],北京:化学工业出版社,2003,175-196
    [7] European Topic Centre on Waste and Material Flows (2004a). Waste and material flows 2004, located at [http://waste.eionet.eu.int/Publications/Working%20documents/background%20report] ac-cessed October 2004
    [8]杨一清.高密度聚乙烯(HDPE)膜在垃圾填埋场基底防渗层中的应用[J].环境卫生工程, 2001(3): 116-119
    [9] Small W.E (1971).Third pollution: The National Problem of Solid Waste Disposal. N.Y: Praeger
    [10]曾国强等.温度作用下填埋垃圾气体运移规律的研究[J].辽宁工程技术大学学报, 2004,3(1),47-48
    [11]薛强等,垃圾渗滤液渗漏污染的风险预测研究[J].应用基础与工程科学学报,2006,14(1),199-201
    [12] H I Ling, A pamuk, M Dechasaku lsom, et al. Interactions betweenPVC geomembranes and compacted clays [J].Journal of Geotechnical and Geo environmental Engineering, 2001,11:950-954.
    [13] T D Stark, Alan R Poeppel Landfill liner interface strengths from torsional-ring-shear tests[J].Journal of Geotechnical Engineering, 1994, 3:597-615
    [14] H T Eid, T D Stark Shear behavior of unreinforced geosythetic clay liner[J].Geosynthetic Int, 1997, 6:645-659
    [15] H I Ling, C Burke, Y Mohri, et al Shear strength parameters of soil-geosynthetic interfaces under low confining pressure using a tilting table [J].Geosynthetic Int, 2002,4:373-380.
    [16] P C Lopes, M L lopes, M P Lopes Shear behavior of geosynthetic in the inclined plane test [J].Geosynthetic Int, 2001,4:327-342.
    [17]Mizyal Izgin, Yildiz Wasti Geomembrane-sand interface frictional properties as determined by inclined board and shear box tests [J].Geotextiles and Geomembranes, 1998, 207-219
    [18] Patrick J Fox, M G Rowland, John R Scheithe. Internal shear strethgth of three geosynthetic clay liners[J] Journal of Geotechnical and Geoenvironmental Engineering, 1998,10:933-944
    [19] Eric J Triplett, Patrick J Fox. Shear strength of HDPE Geomembrane, Geosyntehetic clay liner interfaces [J] Journal of Geotechnical and Geoenvironmental Engineering, 2001,6:543-552
    [20]周志刚,郑健龙,张起森等. Netlon土工格栅与土界面性能的研究[J].长沙交通学院学报. 1998.03:34-39
    [21]胡黎明,濮家骝.土与结构物接触面物理力学特性试验研究[J].岩土工程学报, 2001,23(4): 431-434
    [22]吴景海,陈环,土玲娟等.土工合成材料与土界面作用特性的研究[J].岩土工程学报. 2001,23(1), 89-93
    [23]施有志,马时冬.土工格栅的界面特性试验[J].岩土工程学报,2003, 02: 297-299
    [24]马时冬.土工格栅与土的界面摩擦特性试验研究[J].长江科学院院报,2004,21(1):11-14
    [25]丁建明,张波.土工合成材料与粘土接触面直剪试验研究[J].华中科技大学学报, 2005,22(2):59-62
    [26]施有志土工合成材料界面直剪摩擦试验研究[J].中外公路,2006,26(3): 255-258
    [27]张嘎,张建民.土工织物接触面力学特性的试验研究[J].岩土力学,2006,27(1): 51-55
    [28] Giroud J P.,Beech J F.(1989), Stability of soil layers on geosynthetic lining systems[A].Geosynthetics‘89 Conference Proceedings[C].California,35-46.
    [29] Giroud, J. P., Bonaparte, R., Beech, J. F., and Gross, B. A., "Design of Soil Layer-Geosynthetic Systems Overlying Voids," Geotextiles and Geomembranes, 1990, {9}:11-50
    [30] Koerner, R. M., and Hwu, B. L., Stability and Tension Considerations Regarding Cover Soils on Geomembrane Lined Slopes. Geotextiles and Geomembranes, 1991, 10:335-355
    [31] Cancelli, A and Rimoldi, P.Design Criteria for Geosynthetic Drainage Systems in Waste Disposal. Proc. of Sardinia’89, 2nd Intl. Landfill Symposium, porto Conte, Sassari, Italy,1989
    [32] Thiel, R.S. and Stewart, M.G.Geosynthetic Landfill Cover Design Methodology and Construction Experience in the Pacific Northwest.Proc. Geosynthetics’93, IFAI, St. Paul, MN, USA, 1993:1131-1144.
    [33] Soong, T.-Y. and Koerner, R.M.Seepage Induced Slope Instability. Your. of Geotextiles and Geomembranes, 1996. 14: 425-445.
    [34] Schnabel P. B., Lysmer J. and Seed H.B. SHAKE: A Computer Program for Earthquake Response Analysis of Horizontally Layered sites. Report No EERC 72-12, Earthquake Engineering Research Center,University of California, Berkeley, CA, USA. 1972
    [35] Seed, H.B. and Idriss, LM.Ground Motions and Soil Liquefaction During Earthquakes. Monographs No. 5, Earthquake Engineering Research Center, University of California, Berkeley, CA, USA, 1982:134
    [36] Jayantha Kodikara.Analysis oftension development in geomembranes placed on landfill slopes[J].Geotexiles and Geomembranes. 2000,18(1),47-6l
    [37]张鹏,王建华,陈锦剑.垃圾填埋场边坡上土工膜的拉力与位移分析[J].岩土力学.2004(05),789-792
    [38]高丽亚.垃圾填埋场沿底部衬垫界面失稳破坏及土工膜拉力研究[D].上海:同济大学. 2007
    [39]邓学晶,孔宪京,邹德高.复杂荷载作用下填埋场HDPE土工膜受拉计算[J].岩土工程学报,2007, 29(3),447-451.
    [40]薛强,刘磊,,梁冰等.垃圾填埋场沉降变形条件下气-水-固耦合动力学模型研究[J].岩石力学与工程学报. 2007,26(z1),3473-3477
    [41]林伟岸,朱斌,陈云敏,詹良通.考虑界面软化特性的垃圾填埋场斜坡上土工膜内力分析[J].岩土力学. 2008(08),2063-2069
    [42]田庆余.粘土固化注浆防渗帷幕在固体废物填埋场中的阻滞性能研究[D].长沙:中南大学,2004.
    [43]张益,陶华.垃圾处理处置技术及工程实例[M].北京:化学工业出版社. 2002,158-195
    [44] M. P. Rollings, P.E., and Raymond S. Rollings, JR., P.E.Geotechnical Materials in Construction, McGraw-Hill, 1996, 450, 457-459.
    [45] U.S. Environmental Protection Agency:How to Meet Requirements for Hazardous Waste Landfill Design, Construction and Closure. Pollution Technology Review No.185, 1990, 29.
    [46]王钊等.国外土工合成材料应用手册[M].香港:现代知识出版社.2002..
    [47]《土工合成材料应用手册》编写委员会.土工合成材料应用手册[M].北京:中国建筑工业出版社.1994,112-115,134-136
    [48]孙培德,楼菊青.环境系统模型及数值模拟[M].北京:中国环境科学出版社.2005,258-261
    [49] Hari D.Sharma,Sangeeta P.Lewis. Waste Containment Systems, Waste Stabilization and Landfills, Design and Evaluation. John Eiley& Sons,INC.1994:68-584
    [50] Hoe I.Ling, Dov Leshchinsky, Yoshiyuki Mohrl, Toshinori Kawabata. Estimation of Municipal Solid Waste Landfill Settlement[J].Geotechnical and Geoenvironmental Enginnering,1998,124(1):21~28
    [51]钱学德,郭志平.城市固体废弃物(MSW)的工程性质[J].岩土工程学报, 1998(5): 1-6
    [52]胡敏云,陈云敏.城市生活垃圾填埋场沉降分析与计算[J].土木工程学报,2001, 34(6):89-92
    [53] Sowers. Settlement of waste disposal fills. Proceedings of 8th ICSMFG, Moscow,1973:207-210
    [54]张振营,陈云敏.城市垃圾填埋场沉降模型的研究[J].浙江大学学报,2004,38(9):1162-1165
    [55]戚国庆.降雨诱发滑坡机理及其评价方法研究[D].成都:成都理工大学, 2004
    [56]李广信.高等土力学[M].北京:清华大学出版社, 2004, 7
    [57] Peggs I D, Schmucker B, Carey P. Assessment of maximum allowable strains in polyethylene and polypropylene geomembranes[C]. Proceedings of the Sessions of the Geo-Frontiers 2005 Congress, Austin, Texas, USA, 2005.
    [58] Bozorg-Haddad A, Iskander M. Compressive creep behavior of HDPE using time temperature superposition[C].Proceedings of session of GeoCongress 2008, New Orleans, Louisiana, 2008:915-922.
    [59] Bergado D T, Ramana G V, Sia H I, et al. Evaluation of interfaceshear strength of composite liner system and stability analysis for a landfill lining system in Thailand[J]. Geotextiles and Geomembranes, 2006, 24:371-393.
    [60] Crouse P E, Jacobs B S, Corser P G, et al. Field performance of geomembrane and GCL at two mine sites[C]. Denver, Colorado, USA, Proceedings of Sessions of Geo-Denver 2000 , 2000: 94-105.
    [61] Brachman R W I, Gudina S. Geomembrane strains from coarse gravel and wrinkles in a GM/GCL composite liner [J]. Geotextiles and Geomembranes, 2008, 26:488-497.
    [62] Brachman R W I, Gudina S. Gravel contacts and geomembrane strains for a GM/CCL composite liner [J]. Geotextiles and Geomembranes, 2008, 26:448-459.
    [63] Chiwan Hsieh, Ming-Wen Hsieh. Load plate rigidity and scale effects on the frictional behavior of sand/geomembrane interfaces [J]. Geotextiles and Geomembranes, 2003, 21: 25-47
    [64] Triplett E J, Fox P J. Shear strength of HDPE geomembrane/geosynthetic clay liner interfaces [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(6): 543-552.
    [65] Yildiz Wasti. Geomembnare-geotextile interface shear properties as determined by inclined board and direct shear box tests [J]. Geotextiles and Geomembrnaes, 2001, 19: 45-57
    [66]施建勇,朱俊高,彭功勋.垃圾土变形特性及防渗膜受力的试验研究[J].有色冶金设计与研究, 2007,28(23):144-146.
    [67] Forman A D, Anderson J E. Design and performance of evapotranspiration caps[J]. Practice periodical of hazardous, toxic, and radioactive waste management. ASCE,2005, 9(4):255-268.
    [68]仵彦卿.多孔介质污染物迁移动力学[M].上海:上海交通大学出版社.2007,20-76
    [69]薛强,刘磊,梁冰,赵颖,王永波.垃圾填埋场沉降变形条件下气-水-固耦合动力学模型研究[J].岩石力学与工程学报, 2007,26(z1): 3473-3476
    [70] J.Bear,李竞生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑工业出版社.1983.47-166
    [71] Fredlund,D.G ,Rahardjo.H.Soil陈仲颐等译非饱和土土力学[M].北京:中国建筑工业出版社,1997,78-145,208-254, 270-280
    [72] Van Genuchten, M.Th. A closed-form equation for predicting thehydraulic conductivity of unsaturated soils [J]. Soil Sci Soc Am J. 1980,44:892-898
    [73] Biot. M.A. General theory of three-dimensional consolidation. J appl Phys,1941,12: 155-164.
    [74]李培超等.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,A辑, 2004,18(4): 419-426.
    [75]孔祥言等.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展, A辑, 2005,20(2):269-275
    [76]孔祥言.高等渗流力学[M] .合肥:中国科学技术大学出版社.1999.31-42
    [77]薛强,梁冰,刘晓丽.土壤水环境中有机污染物运移的数值模拟研究[J].水利学报, 2003,6:48-55
    [78]薛强,梁冰,冯夏庭.石油污染物在地下环境系统中运移的多相流数值模型[J].化工学报, 2005,56(5):920-924
    [79]薛强,梁冰,刘建军,刘磊.石油污染组分在包气带土壤中运移的数值仿真模型及应用[J].系统仿真学报, 2005,17(1):2589-2592
    [80]龚晓南.高等土力学[M].浙江,浙江大学出版社, 1998: 91-94
    [81]薛强,冯夏庭,刘建军.填埋气体运移过程的多场耦合模型及仿真分析[J].系统仿真学报, 2005,17(1):20-24
    [82]廖红建,王铁行等编著.岩土工程数值分析[M].北京:机械工业出版社,2006:90-145
    [83]袁俊平,殷宗泽.考虑裂隙非饱和膨胀土边坡入渗模型与数值模拟[J].岩土力学, 2004,25(10):1581-1586.
    [84]谢云,李刚,陈正汉,张伟,魏学温,刘述林.复杂条件下膨胀土边坡渗流和稳定性分析[J].后勤工程学院学报, 2006,02:6-11
    [85]邱路阳,刘毓氚,李大勇.高填方残积土路堤降雨滑塌机理与治理对策[J].岩土力学, 2007,28(10):2161-2166.
    [86] U.S.EPA. Desing, Operation, Closure of Municipal Solid Waste Landfills, EPA/625/R-94/008, 1994