电控柴油机故障智能诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机的日趋严峻、排放法规的日趋严格,使得电控高压共轨系统的应用逐渐广泛,为柴油机和车辆的性能优化提供了发挥空间。但同时其又是复杂的机电一体化控制系统,知识范围涵盖了电子学、控制系统、流体力学、燃烧理论等众多方面,使得故障发生后,普通维修人员由于知识面不足,无法或不能满足维修要求。
     课题开发了GD-1电控高压共轨柴油机的智能诊断系统,包括电喷系统非排放相关故障在线自诊断、排放相关故障在线自诊断(OBD)以及诊断工具指导性维修建议等内容,构建了完整的电控柴油机故障维修体系,无需或很少需要人工干预,可以自动在线诊断出几乎所有电喷系统故障、以及一些机械系统故障,有效的降低了售后服务市场对于维修人员的知识水平要求,提高了维修效率,顺应了电喷发动机行业潮流,主要研究内容包括:
     1自主开发了硬件在环仿真设备(HIL),通过对国外先进电喷系统的深入测试,结合对SAE J2012法规的要求,构建了课题研究的基本框架,更为重要的是,课题在此框架基础上,扩充了众多更加适应于国内市场应用特色的诊断功能,由此解决了课题“做什么?”的问题。
     2分析了诊断学领域的众多主流诊断方法,结合故障在线诊断功能的实时、准确、鲁棒性要求,课题提出了基于信号特征和证据融合的专家系统诊断理论,解决了课题“怎么做?”的问题。
     3提出了二级诊断的规范,也即各传感器信号在用于电喷控制功能计算前,都要经过第一级诊断和第二级诊断步骤,第一级诊断用于对传感器信号的物理特征进行判断,可以诊断出几乎所有的、由于信号线路故障引起的传感器信息错误;第二级诊断借助车辆或发动机行驶过程中固有的逻辑与经验,用于对传感器信号的逻辑可信度进行判断,可以诊断出大部分的、由于传感器损坏而导致的信号错误。两级诊断规范的采纳,保证了燃油喷射计算所用到的各传感器信息的准确性。
     4针对故障在线诊断策略的标定过程,提出了以统计分析为主的标定规范,且统计样本的选取采用了分层不重复抽样的措施,将标定过程转化为抽取电喷组件样本对关键参数进行统计求值的过程。该标定规范的提出,有效地避免了标定人员由于经验的不足而导致的标定错误。
     5提出了预先报警、以养代修的诊断思路,降低维修成本、提高运行安全性。包含下述两方面特点:
     在发动机(或车辆)启动前就能够预先对相关故障进行报警,避免了车辆带故障运行可能导致的驾驶危险性;电喷系统故障发生早期就能够进行报警,避免了故障严重恶化后导致的系统彻底损坏。
     6课题首次在国内构建了完整的OBD诊断框架和细节。提出基于知识的初选以及ESC排放试验的方法,用于确定OBD相关故障项目;明确指出OBD故障包含电控燃油喷射系统、进气管理系统以及排放后处理系统等组件故障;针对电控燃油喷射组件,课题OBD项目包含CPU、TPU、硬件监视狗以及喷油驱动模块故障、喷油器驱动回路诊断、轨压信号漂移诊断等内容,其中喷油器驱动回路故障部位的精确定位以及待机工况下的诊断为课题为满足国内应用特色而专门开发;针对进气管理系统,课题OBD项目包含增压压力信号诊断、进气质量流量信号诊断以及增压后进气管脱落诊断等内容,其中增压压力信号漂移诊断和增压后管路脱落诊断均为国外先进系统所不具备功能,是课题为满足国内应用特色而专门开发;针对排放后处理系统,课题OBD项目包含尿素溶液状态监控、加热电路驱动回路监控、排温状态监控、尿素供给泵驱动回路监控、尿素喷射阀驱动回路监控等内容,考虑到国内部分区域尿素品质较差的现状,容易导致尿素喷射阀卡滞等故障,扩充了国外系统所不具备的尿素喷射阀卡滞故障诊断功能。
     7在电喷系统发生故障后,诊断系统采取失效保护策略替代正常情况下的相关功能,失效保护策略的设计原则为,兼顾故障后的继续驾驶性、驾驶安全性并避免排放进一步恶化,并起到了督促驾驶员尽快检修的目的。
     8为了降低对维修人员知识水平的要求及维修过程复杂性,课题开发了针对售后服务市场的故障诊断工具,在硬件选择、软件功能编制上均着眼于售后市场应用特点,不仅可以完成常规的读取、清除、记录故障代码,运行状态、冻结桢记录等诊断功能,还开发了指导性维修建议功能(GSS),从故障现象入手、结合故障代码,指导维修人员合理采用智能测试功能,结合分层及分模块化的诊断思路,减少了维修时间、成本,提高了维修效率。
     9经过硬件在环、发动机台架和装车道路试验,课题进行了详细的故障在线诊断功能验证,结果显示,课题开发的故障自诊断系统可以较好的完成在线诊断任务,且诊断工具也能满足售后服务市场的使用需求。
Increasingly severity of energy crisis and stringency of exhaust gaslegislation, make electronic controlled common rail system being usedwidely, which gives a chance for performance optimizing of diesel engineand vehicle propelled by such an engine. But as common rail system is a verycomplicated control system, referenced to electronics, control theory,hydrodynamics and combustion theory, it is very difficult for normal serviceman to repair it with high efficiency as scarcity of relative knowledge.
     This project created intelligence diagnosis system for GD-1electroniccontrolled common rail engine, including on board detection of non-relativeemission faults, on board diagnosis (OBD) of emission relative faults anddiagnostic tool with Guidance Service suggestion (GSS) function. Without orwith little help from service man, intelligence diagnosis system can detectalmost all of electronic controlled component faults and some machine faults,which reduce the knowledge requirements of normal service man and giveadvantages to aftermarket services. So, intelligence diagnosis system is thelatest trend of fault detection domain of electronic controlled common railengine. Following are the main aspects of this project:
     1Hardware in loop equipment are developed, through which, diagnosisfunctions of foreign advanced electronic controlled fuel injection systemhave been tested deeply, at the same time, with the help of SAE J2012legislation, main frame of GD-1diagnosis system has been constructed. Moreimportant, a lot of diagnosis functions which are more comply with chineseaftermarket characteristics are added to this frame, so, the question of ‘Whatto do?’ of this project has been found out.
     2A lot of theories of diagnosis domain have been studied, consideringthe real time, exactness and robustness requirements of on board diagnosissystem, this project created a diagnosis theory named as experts system basedon signal character and muti-data fusing method, through which, the questionof ‘How to do?’ of this project has been found out.
     3Two level diagnosis criterion has been created, which means that allsensor signals are under the monitor of first and second level diagnosismodules. First level diagnosis module is used to check the physical character of sensor input signal, which can detect almost all of the circuit faults of thatsensor. Second level diagnosis module is used to detect the sensor signalpausibilty using some running logic of engine or vehicle, these kinds of faultsare often caused by function failures of sensor. Two level diagnosis criterionmake the diagnosis conclusion more credible.
     4For the calibration of diagnosis strategy, statistic analysis calibrationcriterion are created, during which, method of stratified sampling withoutrepeating is adopted in order to reduce average error of sampling. So,calibration can be changed to sampling and calculation for main parameters.It can effectively avoid the mistakes during calibration process caused byscarcity of experience for some fresh calibration engineer.
     5Fault forecast theory has been created, which can make maintenanceto replace most of repairs, and also can reduce repair costs, enhance the drivesafety. Fault forecast theory include following two characteristics:
     Faults of some components could be detected before the running ofvehicle or engine, which avoid the danger if running with these faults;
     Faults of some components could be detected during early phase, whichavoid the whole damage after the deterioration of these faults.
     6OBD frame and details of electronic controlled diesel engine arecreated for the firist time in inland, and lots of them are more comlpy withchinese after markets than those advanced foreign system, they are:
     In order to affirm and choose OBD items with little test costs, method ofraw choice based on experts’ knowledge and ESC emission test cycle areused, it is conclusion that, faults of fuel injection system, inlet airmanagement system and emission after treatment system are belong to OBDitems.
     For the fuel injection system, OBD faults could present in CPU, TPU,watch dog, injection driven module, driven circuits of injector, rail pressuresensor, and etc. For example, this project can judge accurate positions ofinjector driven circuits and can complete it at station mode;
     For inlet air management system, OBD faults could present in boostpressure signal, inlet air mass flow signal, and break out at inlet pipe aftersupercharger. Boost pressure signal drift and inlet pipe break out detectionfunctions are more comlpy with chinese after markets;
     For emission after treatment system, OBD faults could present in ureaquality, heating driven circuit, exaust temperature sensor, dosing valve and its driven circuit. Considering urea quality of some area is not good enoughin China, which can cause the dosing valve sticking, so, new function todetect this kind of valve stuck fault is created in this project.
     7After failure of electronic components, special strategies are triggeredto make sure of drive safety and continuity, when this faults is emissionrelated, these strategies can give attention to avoid exhaust level deteriorationat the same time.
     8In order to keep the integrality of diagnosis system of electroniccontrolled diesel engine, diagnostic tool was developed to be used ataftermarket, the software and hardware of it are chosen specially for servicecharacteristic.
     The diagnostic tool can not only read, clear and record diagnostictrouble codes, monitor running parameters, but also can detect faultsintelligently, which pay more attention to machine components. GSSfunction is integrated to diagnostic tool, which can guide maintain man toadopt intelligence diagnosis process appropriately to reduce service time.
     9After lots of tests on hardware in loop, engine rig and vehicle, thispaper made detailed validation of on board diagnosis system, which showsthat, it can detect faults effectively, and diagnostic tool can also do great helpto service at aftermarket.
引文
[1]奚国伟,冯明志,从24th CIMAC国际会议看世界内燃机技术发展趋势,柴油机,2005
    [2]胡华,范亦工,汽车排放法规和内燃机发展的新趋势,汽车工艺与材料,2005,(1):p26~28
    [3]范金宇,李晶芳,黄加亮,直喷式柴油机颗粒排放控制研究,交通环保,2005,(3):p50~52
    [4]田中泰,长田耕治,柴油机用180Mpa共轨系统,国外内燃机,2005,(2):p23~26
    [5]席跃进,刘建华,车用内燃机环保节能技术的新进展,北京汽车,2004,(3):p17~19
    [6]陆家祥,王钧效,王桂华,电控柴油机高压共轨系统分析,车用发动机,2000,128(4):p26~30
    [7] Karl-Heinz Hoffmann,方先明,共轨式喷油系统—柴油机喷油技术的新篇章,内燃机燃油喷射与控制,1998,(3):p5~16
    [8] Zhou Xingli,On Board Self-Diagnostic Strategies Research for Electronic Control Diesel-OilInjection System,First author,The14th Asia Pacific Automotive Engineering Conference,2007,8
    [9] Maiorana G,Sebastino G R,Ugaglia C,Fiat公司共轨发动机,国外内燃机,1999,(1):p49~54
    [10]范金宇,李晶芳,黄加亮,直喷式柴油机颗粒排放控制研究,交通环保,2005,(3):p50~52
    [11]钱一人,汽车发动机的车载故障诊断,汽车技术,1999,10
    [12]仰德标,明廷锋,柴油机故障诊断研究综述,武汉造船,2000,2
    [13]张中民,张英堂等,柴油机燃油系统故障诊断的研究,1998,3
    [14]邬志国,张云龙,袁大宏,电控发动机ECU故障自诊断简析,汽车技术,2001,5
    [15]尚宇辉等,车用柴油机电控燃油喷射系统的研究现状和发展趋势,柴油机,1999,4
    [16]周兴利,于世涛等,电子油门故障自诊断策略及标定方法研究,车用发动机,2006,4,No,2
    [17]周兴利,杨海等,电控柴油机智能诊断系统研发,车用发动机,2006, No,6
    [18]周兴利,敖国强等,电控柴油机进气系统故障智能诊断研究,华东地区内燃机学会第十二届联合学术,2007,8
    [19]虞金霞,高压共轨燃油喷射系统仿真计算与研究,博士学位论文,2001,3
    [20]常久鹏,新型高压共轨柴油机电控系统ECU的开发与研制学位论文,上海,上海交通大学,2001
    [21]谭文春,电控柴油机高压共轨系统32位控制器的研究学位论文,上海,上海交通大学,2005
    [22]唐航波,高压共轨柴油机ECU硬件在环仿真系统研究学位论文,上海,上海交通大学,2005
    [23]李彬轩,柴油机电控单元硬件在环仿真系统的设计及其相关研究学位论文,浙江大学动力机械及工程学院,2001,5
    [24]于子跃,王丽娟,李照美等,汽车发动机故障诊断专家系统,河南农业大学学报,1999,9
    [25]陈国金等,发动机故障特征量提取方法的研究,内燃机学报,2002,3
    [26]孙春林,范作民,发动机故障诊断的主成分算法,航空学报,1998,3
    [27]吕红兵,罗智中,汽车发动机故障诊断模糊专家系统研究,内燃机工程,1999,4
    [28]于子跃,王丽娟,李照美等,汽车发动机故障诊断专家系统,河南农业大学学报,1999,9
    [29]李宝年,耿苏黎,柴油发动机的故障诊断研究,林业机械与木工设备,1996,6
    [30]王江萍,屈梁生,沈玉娣,柴油机故障诊断技术的现状与展望,机械科学与技术,1997,9
    [31] Anselm Schwarte and Rolf Isermann, Model-Based Fault Detection of Diesel Intake withCommon Production Sensors, SAE2002World Congress, Detroit, Michigan,March4-7,2002
    [32] Kimmich, F., A. Schwarte and R. Isermann (2001), Model based fault detection for Dieselengines.. Aachen
    [33] Colloquium, Automobile and Engine Technology, Aachen, Germany
    [34] Isermann, R., A. Schwarte and F. Kimmich (2004). Model based fault detection of a Dieselengine with turbo charger–a case study–. IFAC Symposium Automotive Systems, Salerno, Italy.
    [35] M. Sachenbacher, P. Struss, R. Weber: Advances in Design and Implementation of OBDFunctions for Diesel Injection Systems based on a Qualitative Approach to Diagnosis, SAE2000World,Congress, Detroit, USA,2000.
    [36] Füssel, D.(2003). Fault diagnosis with tree-structured neurofuzzy systems. Fortschr.-Ber.VDI Reihe8, Nr.957. VDIVerlag, Düsseldorf
    [37] Nelles, O., Nonlinear System Identification with Local Linear Neuro-Fuzzy Models, ShakerVerlag, Aachen1999.
    [38] Nielsen, L. and M. Nyberg (1998). Model-based diagnosis for the air intake system ofSI-engines. SAE World Congress, Detroit, Michigan, USA.
    [39]王赟松,褚福磊等,基于信息融合技术的发动机故障诊断的研究,内燃机学报,2003,5
    [40]王鸿飞,基于D-S证据理论的柴油机故障诊断,内燃机学报,2000,1
    [41]严志军,朱新河,基于信息融合技术的柴油机磨损模式识别方法,大连海事大学学报,2002,2
    [42]李宏坤,马孝江,基于多征兆信息融合理论的柴油机故障诊断,农业机械学报,2004,1
    [43]沈寿林,郑海起,基于信息融合的发动机全系统故障诊断研究,车用发动机,2003,4
    [44]黄良文.统计学原理[M].北京:中国统计出版社.2002:p120~160
    [45]郭英,高建国.统计学[M].北京:中国财政经济出版社.2001:p230~300
    [46]魏春源等,汽车电气与电子,北京理工大学出版社.2004.7:p90~135
    [47] Magin Lapuerta,Octavio Armas,Effect of the Injection Parameters of a Common RailInjection System on Diesel Combustion Through Thermodynamic Diagnosis,SAE PaperNo,1999-01-0194
    [48] M.Badami,P,Nuccio and G,Trucco,Influence of Injection Pressure on the Performance ofa DIDiesel Engine with a Common Rail Fuel Injection System,SEA Paper No,1999-01-0193
    [49] R.J.Woermann and H.J.Theuerkauf,A Real-Time Model of a Common Rail Diesel Engine,SAE Paper No,1999-01-0862
    [50]冒晓建,GD-1高压共轨喷油系统电子控制的研究与电控供油泵的开发学位论文,上海,上海交通大学,2002:p84~90
    [51]肖文雍,高压共轨电控柴油机控制策略研究与优化学位论文,上海,上海交通大学,2007,9:p106~108
    [52] C.Arcoumanis and M.Gavalses etc. Evaluation of Pump Design Parameters in Diesel FuelInjection Systems. SAE Paper950078
    [53] Simon K. Chen.一种先进的电控液压燃油喷射系统模型.内燃机燃油[喷射与控制,1996,1,2
    [54] Keild Tanabe etc.用计算机模拟分析共轨系统的喷射特性.国外内燃机,2000,5
    [55]洛阳拖拉机研究所译.内燃机燃油喷射与调节,1977
    [56]苏尔皇.液压流体力学.国防工业出版社,1979
    [57]盛敬超.液压流体力学.机械工业出版社,1980
    [58]张也影.流体力学.高等教育出版社,1985
    [59]高宗英等,柴油机喷油系统变声速变密度模拟计算的研究.内燃机学报,1986,2
    [60]柴油机设计手册编辑委员会.柴油机设计手册(中册).中国农业机械出版社,1984
    [61]船舶柴油机设计手册编辑委员会.柴油机设计手册(六).国防工业出版社,1983
    [62]周启明,基于OBDⅡ的电控汽车计算机辅助诊断系统,M西安公路交通大学,2000,6
    [63] Magdi Khair, Jacques Lemaire, Stefan Fischer,“Integration of Exhaust Gas Recirculation,Selective Catalytic Reduction, Diesel Particulate Filters, and Fuel-Borne Catalyst for NOx/PMReduction”, SAE paper2000-01-1933.
    [64] EPA web site:On-Board Diagnostics (OBD) in I/M,http://www.epa.gov/otaq/regs/im/obd/obd-im,htm
    [65] Analyses of the OBD II Data Collected from the Wisconsin I/M Lanes,EPA420-R-00-014September,2000
    [66] Paul Baltusis,On Board Vehicle Diagnostics,2004Convergence Transportation ElectronicsAssociation
    [67] California's OBD-II regulation, section1968,1,title13,california code ofregulation,resolution93-40,1993
    [68] Robert Bosch GmbH: Automotive Handbook,4th edition, Society of AutomotiveEngineers,Warrendale,PA,1997
    [69] M.Nyberg,A.Perkovic:Model-Based Diagnosis of Leaks in the Air-Intake System of anSI-Engine,SAE Paper (980514),1998
    [70] Schwarte, A., Kimmich, F., Isermann, R.,Modellgestützte pr ventive Diagnosemethoden(Fehlerfrüherkennung) für Dieselmotoren, FVVAbschlussbericht, Heft708,Forschungsvereinigung Verbrennungskraftmaschinen e.V., Frankfurt am Main,2001.
    [71] ISO-15031,道路车辆-汽车与外部排放相关诊断设备间的通讯
    [72] SAE-J2012,Defined Trouble Code Definition
    [73] Cornelis Havenith, etc.,“Development of a Urea DeNOx Catalyst Concept for EuropeanUltra-Low Emission Heavy-Duty Diesel Engines”, SAE paper952652.
    [74] William R. Miller, etc.,“The Development of Urea-SCR Technology for US Heavy DutyTrucks, SAE paper2000-01-0190.
    [75] James P. Warren,“Diesel Aftertreatment Systems:2004–2007, A Cost Assessment”, SAEpaper2001-01-1948.
    [76] CARB web site:OBD II Regulations and Rulemaking,http://arbis.arb.ca.gov/msprog/obdprog/obdregs,htm
    [77]卓斌,刘启华,车用汽油机燃料与电子控制,机械工业出版社,1999
    [78]胡华,范亦工,汽车排放法规和内燃机油发展的新趋势,汽车工艺与材料,2005
    [79]董尧清,柴油机共轨式电控喷射系统的进展,国外内燃机,2000,(5)
    [80]胡林峰,柴油喷射系统的发展现状及潜力,现代车用动力,2004,(4)
    [81]杨天新,田洪彪,客车发动机在中国的现状和发展趋势,柴油机设计与制造,2005,(2)
    [82]董尧清,柴油机共轨式电控喷射系统的进展,国外内燃机,2000,(5)
    [83]冯静,车载控制器标定监测系统的研究学位论文,上海,上海交通大学,2003
    [84]冯静,王俊席,卓斌,Development of A New Calibration Tool for In-Vehicle ElectronicControl Units Based On KWP2000.内燃机学报,2003,(3):p265~271
    [85]汽车电子开发和测试综合工具平台,北京九州恒润科技有限公司,2004
    [86] Roberto Bucher, Silvano Balemi, Rapid controller prototyping with Matlab/Simulink andLinux, Control Engineering Practice,2006
    [87] Pinho Luis Miguel, Vasques Francisco, Reliable Real-Time Communication in CANNetworks, IEEE Transactions on Computers, vol.52, No.12,2003
    [88]张跃涛,王绍光,张云龙,发动机自动化性能试验和标定系统,清华大学学报,2001:p94-96
    [89]李兵,嵌入式系统及其在车桥校直检测系统中的应用[学位论文],合肥,合肥工业大学,2004.4
    [90] Beham M, Etzel M, Yu DL. Development of a new automatic calibration method for controlof variable valve timing. IMechE Journal of Automobile Engineering218(D7),2004, p707-718.
    [91] CAN-Driver Vector, Documentation, Volker Ebner, Version1.186.8.98.
    [92] CANape User Manual Version3.5. Vector Informatik GmbH, Germany,2001
    [93]冯静,王俊席,卓斌,基于CCP协议的电控发动机标定系统CAN通信模块的研发,内燃机工程,2003,(5):p33~38
    [94]邬宽明,CAN总线原理和应用系统设计,北京航空航天大学出版社,2001
    [95] Zhou Xingli,On Board Diagnosis of Drive Circuit of Electronic Controlled Injector,Proceedings of the Institution of Mechanical Engineers, Part D, Journal of AutomobileEngineering,accepted date:14Dec2007
    [96] MOTOROLA.MC68336/68376User’s Manual, http//www.motorola.com/emiconductor/automotive.pdf.2000.
    [97] CAN Specification version2.0. Philips Semiconductors, Germany,1991
    [98] H. Kleinknecht, CCP CAN Calibration Protocol, ASAP Standard, Version2.1, VectorInformatik GmbH, Germany18. Feb.1999.
    [99] CANdb++Manual, Version2.5. Vector Informatik GmbH,2001
    [100]李广军,王厚军,实用接口技术,四川,电子科技大学出版社,1998
    [101]王俊席,杨林,张毅,基于CAN总线的QR电动汽车监测系统的研发,计算机测量与控制,2005,13(2):p120~125
    [102] Mao Xiao-jian,The development and research of electronic control and supply of GD-1high pressure common rail fuel injection system:Doctoral DissertationD, Mechanical&PowerEngineering Dept of Shanghai Jiao Tong University,2002
    [103] WANG Hong-qiao,YANG Ming-gao,LI Jin, A Type of Real-Time Simulation Systemfor Electronic Diesel Engine Controller,Transactions of CSICE Vol,20(2002) No.1
    [104] R.J.Woermann, H.J.Theuerkauf, A.Heinrich, A Real-Time Mode of Common RailDiesel Engine,SAE Paper1999-01-0862,
    [105]凌英,宁智,孙金风,柴油机动态工况仿真模型及控制算法的对比分析研究,柴油机设计与制造,2003,1
    [106] Sameer M.Prabhu,An Overview of Neural Network and Fuzzy Login Applications toEarthmoving Machine Systems Control,SAE Paper No.1999-01-1880
    [107] D.T. Hountalas, A.D.Kouremenos,Development and application of a fully automatictroubleshooting method for large marine diesel engines,Applied Thermal Engineering19(1999)
    [108] C.D.Rakopoulos, E.G.Giakoumis,A computer program for simulating the steady-stateand transient behavior of direct-acting engine governors,Advances in Engineering Software30(1999)
    [109] Lixiang Shen,Francis E.H.Tay,Liangsheng Qu,Yudi Shen,Fault diagnosis using RoughSets Theory,Computers in Industry432000
    [110] Yi Lu,Tie Qi Chen,and Brennan Hamilton,A Fuzzy System for AutomotiveFaultDiagnosis:Fast Rule Generation and Self-Tuning,IEEE transaction on vehicular technology,Vol,49,NO,2,March2000
    [111] Kwang Yoo, Kenneth Simpson, Myron Bell and Stephen Majkowski, DelphiAutomotive System,An Engine Coolant Temperature Model and Application for Cooling SystemDiagnosis,SAE2000-01-0939