基于差分干涉雷达测量技术的哈尔滨市地面形变监测与综合分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥感技术是地球空间信息获取的重要手段,由于光学遥感应用的局限性,主动方式的微波雷达遥感技术在特定地区发挥重要作用。合成孔径雷达干涉测量(InSAR)技术综合了合成孔径雷达成像原理和干涉测量技术,是一般SAR功能的延伸和发展,极大拓展了成像雷达的功能和应用范围,在军事和国民经济建设中可以发挥重大作用。InSAR技术充分利用了雷达回波信号所携带的相位信息,精确测量地面点三维空间位置及其微小变化。目前,该技术已经受到测绘和地学领域研究人员的普遍青睐。从上世纪八十年代初起,哈尔滨市地面沉降处在缓慢发展过程中,在不同时期已经引起地面建筑物和道路破损等现象,但是至今从未对地表进行全面、系统的形变监测工作。为此,本文基于合成孔径雷达差分干涉测量技术,研究了该地区过去十几年地面沉降的时空变化特征。
     本文利用覆盖哈尔滨地区的ERS和Envisat雷达数据,分别采用常规DInSAR、短基线集和永久散射体方法进行了试验研究,并结合地下水位和地面水准监测数据与InSAR结果进行了相关分析,验证了其精度和可靠性,表明该技术对哈尔滨地区微小缓慢的形变监测是高效可行的。
     论文深入剖析了合成孔径雷达干涉测量相关基本概念,提出了SAR影像配准时控制点粗差的探测和剔除方法,比较了干涉图相位在空域和频域滤波结果,探讨了InSAR大气效应改正方法,研究了基于MODIS数据大气延迟改正,构建了基于GIS技术的地面沉降监测网络数据管理系统。
     通过本文的研究,作者获得以下成果及创新:
     1.利用合成孔径雷达干涉测量技术,首次对哈尔滨市地面沉降进行了系统全面的研究,揭示了地面沉降的时空特征,得到哈尔滨市年沉降量为mm的地面沉降结果。
     2.归纳总结了InSAR大气效应的改正方法,验证了大气对哈尔滨地区InSAR监测结果的影响,并针对该地区进行了MODIS数据试验研究。为了分析大气对干涉测量结果的影响,选取Envisat卫星分别在2006年1月19日和3月30日获得SAR影像为数据源进行干涉处理,选取2006年3月30日MODIS数据用于纠正大气延迟。通过对改正前后的RMS进行统计,发现RMS由改正前的0.8cm降低到了改正后的0.65cm,表明MODIS改正具有一定的效果。
     3.对SAR影像配准产生的粗差的进行了系统分析和研究,提出采用方差分量估计总体检验法与Baarda单个粗差探测法,并通过实际算例进行了验证。粗差剔除前配准选择控制点是46个,剔除后剩下32个参与拟合多项式系数计算,剔除率达到30%。
     4.通过研究哈尔滨地区地质构造、地貌特征和地下水类型,对所探测出的地面沉降信息与地下水位变化进行了相关性分析,结果科学合理,具有说服力,为哈尔滨市地面沉降灾害预防提供重要参考价值。
     5.构建了哈尔滨地面沉降监测网络管理系统,能够对利用遥感图像处理和GIS技术编制的各种图件和数据进行高效的管理。
Remote sensing technique is the important means of acquiring space information of the earth, active way of microwave radar sensing technology plays an important role in specific areas, due to the limits of application of optical remote sensing. Combining the principle of imaging SAR and interferometric technique, synthetic aperture radar interferometric technique is the extension and development of functions of general SAR, and it not only largely expands the function and application range of imaging radar, but also is of significance in both military and the development of national economy. InSAR can accurately measure three-dimensional arrangement of the ground point and its slight changes. At present, it has widely drawn the attention of researchers in areas of geomatics and earth science. Since1980s, the slow changes in ground subsidence have done great damages to the ground and buildings in different periods in Harbin, but no full-scale and systematic monitoring work has been done to the deformation of the earth's surface. So, based on differential interfrometry of synthetic aperture radar, the thesis gets the information for the spatio-temporal change pattern of ground subsidence of recent years in Harbin.
     The thesis does a series research by means of conventional DInSAR, Small baseline subset and Permanent scatter method separately, based on processing the data of ERS and Envisat SAR in Harbin.Combined the monitoring data of water level with the data of level monitoring, and analyzing the related result of InSAR, the thesis proves its accuracy and reliability, which shows that the technique is efficient and feasible in monitoring the tiny and slow deformation in Harbin.
     The thesis analyzes the related basic concept of InSAR deeply, and raises a exploring and rejecting method for gross error while matching SAR Images. It also compares the filtering result of Interfereometric phase in space and frequency domain, discusses the correction methods of InSAR atmosphere effect, researches atmospheric delay correction based on MODIS data, and at the same time it develops the management system of the land subsidence monitoring network data based on GIS technique.
     Innovation achievement of the paper is as follow:
     1. This paper is the first time to do a research on the situation of ground subsidence in Harbin completely and systematically by InSAR and gets the annual amount of settlement and accurates it to mm.
     2. In order to analyze the effect that the atmosphere has on the result of the interferometry, the author chooses the SAR image taken in Janu.1st and March30th,2006as the data source to proceed interferometric treatment, and MODIS data of March30th2006to correct the atmospheric delays. The result shows standard deviation has changed from0.8to0.65centimeters, which means MODIS amendment has certain effect.
     3. The thesis comes up with the variance components estimates for the whole inspection and Baarda single gross error detection method by analyzing and studying gross error in SAR Image registration and verifies it by actual example.Finally,46control points were used befor rejecting gross error points,and only32points were calculated in fitting polynomial coefficients.The result shows that deleting rate is up to30%.
     4. Because it is a result of analyzing the geologic structure, geomorphology and groundwater type in Harbin, and so detecting information of land subsidence is scientific and rational.It has more convincing,and provides the important reference of ground subsidence prevention.
     5. The thesis builds a monitoring network system of the ground subsidence,and the aim is more efficient management for the various images and data established by RS and GIS techniques.
引文
[1]常士骠.工程地质手册[M].北京:中国建筑工业出版社,1992
    [2]张梁,张业成.地质灾害灾情评估理论与实践[M].北京:地址出版社,1998
    [3]保铮,刑孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005
    [4]Henri Maitre.合成孔径雷达图像处理[M].孙洪等译.北京:电子工业出版社,2005
    [5]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社,2003
    [6]皮衣鸣,杨建宇,付毓生,等.合成孔径雷达成像原理[M].成都:电子科技大学出版社,2008
    [7]许小剑,黄培康.雷达系统及其信息处理[M].北京:电子工业出版社,2010
    [8]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999
    [9]胡著智,王慧麟,陈钦峦,等.航天航空遥感技术与应用[M].南京:南京大学出版社,2010
    [10]郭华东.雷达对地观测理论与应用[M].北京:科学出版社,2000
    [11]王超,张红,刘智,等.星载合成孔径雷达干涉测量[M].北京:科学版出社,2002
    [12]单新建,李建华.遥感地质与干涉形变测量[M].北京:地震出版社,2009
    [13]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001
    [14]丁鹭飞,耿富录.雷达原理[M].西安:西安电子科技大学出版社,2006
    [15]李平湘,杨杰.雷达干涉测量原理与应用[M].北京:测绘出版社,2006
    [16]舒宁.雷达影像干涉测量原理[M].武汉:武汉大学出版社,2003
    [17]张红,王超,吴涛等.基于相干目标的DInSAR方法研究[M].北京:科学版出社,2002
    [18]舒宁.微波遥感原理[M].武汉:武汉大学出版社,2003
    [19]穆冬.干涉合成孔径雷达成像技术研究[D].武汉:南京航空航天大学博士学位论文,2003
    [20]廖明生,林珲.雷达干涉测量原理与信号处理基础[M].北京:测绘出版社,2003
    [21]陈强.基于永久散射体雷达差分干涉探测区域地表形变的研究[D].成都:西南交通大学博士论文,2006
    [22]李陶.重复轨道星载SAR差分干涉监测地表形变研究[D].武汉:武汉大学博士论文,2004
    [23]赵超英.差分干涉雷达技术用于不连续形变的监测研究[D].西安:长安大学博士论文,2007
    [24]温扬茂.利用InSAR资料研究若干强震的同震和震后形变[D].武汉:武汉大学博士论文,2009
    [25]唐伶俐,张景发,王新鸿,等.极具应用潜力的PS技术[J].遥感技术与应用,2005,12(3),309-313
    [26]张景发,龚利霞,姜文亮.PS-InSAR技术在地壳长期缓慢形变监测中的应用[J].国际地震动态2006,11(6),1-6
    [27]傅文学,田庆久,郭小方等.PS技术及其在地表形变监测中的应用现状与发展[J].地球科学进展,2006,21(11),1193-1197
    [28]罗小军,黄丁发,刘国祥.时序差分雷达干涉中的永久散射体自动探测[J].西南交通大学学报.2006,18,26-30
    [29]陈强,李永树,刘国祥.干涉雷达永久散射体识别方法的对比分析[J].遥感信息,2006,35(02),12-19
    [30]陈强,刘国祥,李永树.干涉雷达永久散射体自动探测---算法与试验结果[J].测绘学报,2006,29(2),112-117
    [31]葛大庆,王艳,郭小方,等.基于相干点目标的多基线D-InSAR技术与地表形变监测[J].遥感学报,2007,30(4),574-580
    [32]母景琴,姚国清.干涉雷达时间序列分析方法在地面沉降监测中的应用[J].国土资源遥感,2007(3),28-30
    [33]张继超,宋伟东,张继贤,等.PS-DInSAR技术在矿区地表形变测量中的应用探讨[J].测绘通报,2008,33(8),45-47
    [34]陈基伟.PS-InSAR技术地面沉降研究与展望[J].测绘科学,2008,19(9),88-90
    [35]刘国祥.合成孔径雷达遥感新技术—InSAR介绍[J].四川测绘,2004,22(2):92-95
    [36]刘国祥,陈强,丁晓利.基于雷达干涉永久散射体网络探测地表形变的算法与实验结果[J].测绘学报,2007,36(1):13-18
    [37]刘国祥,丁晓利,李志林等.星载SAR复数图像的配准[J].测绘学报,2001,30(1):60-66
    [38]汪鲁才,王耀南,毛建旭.基于相关匹配和最大谱图像配准相结合的InSAR复图像配准方法[J].测绘学报,2003,32(4):320-324
    [39]曾琪明,解学通.基于谱运算的复相关函数法在干涉复图像配准中的应用[J].测绘学报,2004,33(2):127-131
    [40]罗小军,刘国祥,黄丁发,等.几种卫星合成孔径雷达影像配准算法的比较研究[J].测绘科学,2006,31(1):19-21
    [41]丁晓利,陈永奇,李志林,等.合成孔径雷达干涉技术及其在地表形变监测中的应用[J].紫金山天文台台刊,2000,19(2):158-167
    [42]单新建,宋晓宇,柳稼航,等.星载INSAR技术在不同地形地貌区域的DEM提取及其应用评价[J].科学通报,2001,46(24):2074-2079
    [43]许才军,王华,黄劲松.GPS与INSAR数据融合研究展望[J].武汉大学学报·信息科学版,2003
    [44]廖静娟,郭华东,邵芸,等.干旱—半干旱地区地表特征探测的成像雷达干涉测量方法与模型[J].遥感学报,2002,6(6):430-435
    [45]廖静娟,邵芸,郭华东,等.成像雷达干涉测量数据相关性与干旱—半干旱地区地表类型特征的关系[J].地球科学进展,2002,17(5):648-652
    [46]王超,刘智,张红,等.张北—尚义地震同震形变场雷达差分干涉测量[J].科学通报,2000,45(23):2250-2255
    [47]刘国祥,丁晓利,陈永奇,等.使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场[J].科学通报,2001,46(14):1224-1228
    [48]张红,王超,单新建,等.基于SAR差分干涉测量的张北-尚义地震源参数反演[J].科学通报,2001,46(21):1837-1841
    [49]单新建,马瑾,王长林等.利用差分干涉雷达测量技术(D-InSAR)提取同震形变场.地震学报[J].遥感学报,2002,24(4):413-420
    [50]陈基炜.应用遥感卫星雷达干涉测量进行城市地面沉降研究.测绘通报.2001,
    [51]单新建,叶洪.干涉测量合成孔径雷达技术原理及其在测量地震形变场中的应用[J].地震学报,1998,20(16):647-655
    [52]张红,王超,刘智.获取张北地震同震形变场的差分干涉测量技术[J].中国图像图形学报,2000
    [53]单新建,马瑾,王长林,等.利用星载D-InSAR技术获取的地表形变场提取玛尼地震震源断层参数[J].中国科学,2002,32(10):838-845
    [54]张景发,刘钊.InSAR技术在西藏玛尼强震区的应用[J].清华大学学报(自然科学 版),2002,42(6):847-850
    [55]伍吉仓,许厚泽,丁晓利,等.台湾集集大地震断层非均匀滑动分布的反演[J].测绘学报(增刊),2002,31:34-38
    [56]荆燕,王建军,张景发,等. D-InSAR技术在地震同震形变研究中的应用[J].测绘科学,2004,29(2):64-69
    [57]张艳梅,程晓,李斐.基于SRTM DEM的二路重轨DINSAR地震形变探测—以2001年昆仑山口西MS8.1大地震震中为例[J].地震,2005,25(4):105-111
    [58]夏耶.巴姆地震地表形变的差分雷达干涉测量[J].地震学报,2005,27(4):423-430
    [59]陈基炜.新技术在城市地面沉降研究中的应用—遥感卫星雷达干涉测量[J].上海地质,2001,2:45-50
    [60]王超,张红,刘智,等.苏州地区地面沉降的星载合成孔径雷达差分干涉测量监测[J].自然科学进展,2002,12(6):621-625
    [61]王超,张红,刘智等.基于D-InSAR的1993-1995年苏州市地面沉降监[J].地球物理学报,2002,45:244-253
    [62]姜岩,高均海.合成孔径雷达干涉测量技术在矿山开采地表沉陷监测中的应用[J].矿山测量,2003,1:5-7
    [63]吴立新,高均海,葛大庆,等.工矿区地表沉陷D-InSAR监测试验研究[J].东北大学学报,2005,26(8):778-781
    [64]张拴宏,纪占胜.合成孔径雷达干涉测量在地面形变监测中的应用[J].中国地质灾害与防治学报,2004,15(1):112-118
    [65]游新兆,王琪,乔学军,等.大气折射对InSAR影响的定量分析[J].大地测量与地球动力学,2003,23(2):81-87
    [66]徐希孺.遥感物理[M].北京大学出版社,2005:15-200
    [67]金双根,朱文耀.GPS观测数据提高InSAR干涉测量精度的分析[J].遥感信息,2001,4:8-11
    [68]李德仁,廖明生,王艳.永久散射体雷达干涉测量技术[J].武汉大学学报(信息科学版),2004,29(8):664-668
    [69]汤益先,张红,王超.基于永久散射体雷达干涉测量的苏州地区沉降研究[J].自然科学进展,2006,18(6):1015-1020
    [70]杨清友,王超.干涉雷达复图像配准与干涉纹图的增强[J].遥感学报,1999,3(2): 122-126
    [71]陶鹃,杨汝良.利用残余点衡量干涉复影像配准质量[J].测绘学报,2003,32(1):63-66
    [72]戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析[M].清华大学出版社,2004
    [73]刘峰.应用Kriging算法实现气象资料空间内插[J].气象科技,2004,32(2):110-115
    [74]张超,赵春江,李存军,等.应用Kriging插值方法插补干涉雷达DEM奇异值斑块[J].遥感信息,2005,1:4-7
    [75]肖斌,赵鹏大,侯景儒.时空域中的指示克立格理论研究[J].地质与勘探,1999,35(4):25-28
    [76]张克绪,李明梓,周宏.哈尔滨市开采地下水引起的地面沉降及其对工程的危害[J].自然灾害学报,1998,(7)4:98-104
    [77]孙香泰,刘文,沃晓岚.哈尔滨市区地下水超采区分析与治理对策[J].黑龙江水利科技,2007,35(3):95-97
    [78]冯焕勇,苏凤全,于新.哈尔滨市松北区地下水流系统数值模拟[J].水利科技与经济,2008,14(7):622-624
    [79]王明利.松花江水利枢纽工程对哈尔滨市地下水环境影响的预测[J].环境科学与管理,2007,32(3):59-61
    [80]高津.黑龙江省水文地质志[M].黑龙江人民出版社,1999
    [81]崔荣久.黑龙江省地下水资源评价[M].黑龙江人民出版社,2004
    [82]刘德东.哈尔滨市地下水回灌技术研究[M].中国地震局工程力学研究所,2002
    [83]刘本义,商维兴,王晓春.浅谈哈尔滨地下水人工补给[J].水利科技与经济,2002,8(3):27-29
    [84]林衷辉,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值[J].地理学报,2002,57(1):47-56
    [85]段天友,朱广生.克立格方法在建立平均速度场数据库中的应用[J].江汉石油学院学报,1999,21(4):41-44
    [86]门福录.上海粘土层流变性质及地面沉降问题初步研究(一)[J].自然灾害学报,1999,8(3):117-126
    [87]门福录.上海粘土层流变性质及地面沉降问题初步研究(二)[J].自然灾害学报,1999,,8(4):123-132
    [88]金松培,孙化江,姜福发.黑龙江省城市主要环境地质问题及防治对策[J].中国地质灾害与防治学报,1998,4
    [89]张梁,张业成.地质灾害灾情评估理论与实践[M].北京:地质出版社,1998
    [90]徐德兰.浅论城市发展与地质灾害的关系[J].中国地质灾害与防治学报,2002,13(1):6-7
    [91]许才军,张朝玉.地壳形变测量与数据处理[M].武汉:武汉大学出版社,2009
    [92]徐金明,张孟喜,丁涛.Matlab实用教程[M].北京:清华大学出版社,2005
    [93]周江文,欧吉坤,杨元喜.测量误差理论新探[M].北京:地震出版社,1999
    [94]李德仁,袁修孝.误差处理与可靠性理论[M].武汉:武汉大学出版社,2002
    [95]葛大庆,王艳,范景辉等,地表形变D-InSAR监测方法及关键问题分析,国土资源遥感,74(4):14-22,2007.12
    [96]郑波浪.机载高分辨率合成孔径雷达运动补偿研究.中国科学院研究生院(电子学研究所)硕士论文,2006.6
    [97]汪鲁才,星载合成孔径雷达干涉成像的信息处理方法研究.湖南大学博士论文,2005.11
    [98]吴云孙,李振洪,刘经南,许才军.InSAR观测值大气改正方法的研究进展.武汉大学学报(信息科学版),31(10):862-867,2006.10
    [99]孙香泰,刘文,沃晓岚.哈尔滨市区地下水超采区分析与治理对策.黑龙江水利科技,2007(3):96-98
    [100]Zebker H.A., Goldstein R.M. Topographic mapping from interferometric synthetic aperture radar observations[J]. J. Geophys. Res.1986,91(B5):4993-4999
    [101]Goldstein R.M., Zebker H.A., Werner C.L. Satellite radar interferometry: Two-dimensional phase unwrapping[J]. Radio Sci.1988,23(4):713-720
    [102]Zebker H.A., Rosen P.A. Hensley S. Atmospheric Effects in Interferometric Synthetic Aperture Radar Surface Deformation and Topographic Maps[J]. Journal of Geophysical Research.1997,103(B4):7547-7563
    [103]Hanssen R.F., Weckwerth T.M., Zebker H.A., et al. High-Resolution Water Vapor Mapping from Interferometric Radar Measurements [J]. Science.1999,283:1297-1299
    [104]Zebker H.A., Villasenor J. Decorrelation in interferometric radar echoes[J]. IEEE Trans. Geosci. Remote Sensing.1992,30:950-959
    [105]Wegmuller U., Werner C.L. SAR interferometric signatures of forest[J]. IEEE Trans. Geosci. Remote Sensing.1995,33:1153-1161
    [106]Wegmuller U., Werner C.L. Retrieval of vegetation parameters with SAR interferometry[J]. IEEE Trans. Geosci. Remote Sensing.1997,35:18-24
    [107]Strozzi T., Dammert P.B.G., Wegmuller U. Landuse Mapping with ERS SAR Interferometry[J]. IEEE Trans. Geosci. Remote Sensing.2000,38(2):766-775
    [108]Gabriel A.K., Goldstein R.M., Zebker H.A. Mapping small elevation changes over large areas—differential radar interferometry[J].J. Geophys. Res.1989,94:9183-9191
    [109]Massonnet D., Rossi M., Carmona C., et al. The displacement field of the landers earthquake mapped by rader interferometry[J]. Nature.1993,364:138-142
    [110]Massonnet D., Thatcher W., Vadon H. Detection of postseismic fault zone collapse following the landers earthquake [J]. Nature.1996,382(6592):612-616
    [111]Zebker H.A., Roser P.A., Goldstein R.M., et al. On the derivation of coseismic displacement fields using differential radar interferometry-the Landers earthquake [J]. J.Geophys. Res.1994,99:19617-19634
    [112]Peltzer G., Rosen P. Surface displacement of the 17 May 1993 Eureka Valley, California,earthquake observed by SAR interferometry[J]. Science.1995,268:1333-1336
    [113]Burgmann R., Rosen P.A., Fielding E.J. Synthetic aperture radar interferometry to measure earth's surface topography and its deformation[J]. Annu. Rev. Earth Planet. Sci. 2000,28:169-209
    [114]Peltzer G., Hudnut K., Fiegl K. Analysis of coseismic surface displacement gradients using radar interferometry:new insights into the landers earthquake [J]. J. Geophys. Res. 1994,99:21971-21981
    [115]Hernandez B., Cotton F., Campillo M., et al. A comparison between short term (Coseismic) and long term (one year) slip from the landers earthquake:measurements from strong motion and SAR interferometry [J]. Geophys. Res. Lett.1997,24:1579-1582
    [116]Price E.J., Sandwell D.T. Small2scale deformations associated with the 1992 landers, California, earthquake mapped by synthetic aperture radar interferometry phase gradients[J].J. Geophys. Res.1998,103:27001-27016
    [117]Massonnet D., Feigl K. Satellite radar interferometric map of the coseismic deformation field of the M=6.1 Eureka Valley, CA earthquake of May 17,1993[J]. Geophys. Res. Lett.1995,22:1541-1544
    [118]Massonnet D., Feigl K., Vadon H., et al. Coseismic deformation field of the M=6.7 Northridge, California earthquake of January 17,1994 recorded by 2 radar satellites using interferometry[J]. Geophys. Res. Lett.1996,23(9):969-972
    [119]Meyer B., Armijo R., Massonnet D., et al. The 1995 Grevena (northern Greece) earthquake—Fault model constrained with tectonic observations and SAR interferometry[J]. Geophys. Res. Lett.1996,23(19):2677-2680
    [120]Saastamoinen J. Atmospheric Correction for the Troposphere and St ratosphere in Radio Ranging of Satellites [C]. Geophysics Monograph 15,the 3rd Int.Symp. Use of Artificial Satellites for Geodesy,A GU, Washington D C,1972
    [121]Shimada M, Minamisawa M, Isoguchi O. Correction of Atmospheric Excess Path Delay Appeared in Repeatpass SAR Interferometry Using Objective Analysis Data[J].International Geoscience and Remote Sensing Symposium,2001 (5):2052-2054
    [122]Webley,P.W., Atmospheric Water Vapour Correction to INSAR surface motion measurements on mountains:Case Study on Mount Etna,PhD thesis,The University of Reading,Reading,2003.
    [123]Wadge,G.,P.W. Webley,I.N. James, R.Bingley, A.Dodson, S.Waugh, T.Veneboer, G.Puglisi, M.Mattia, and D.Baker, Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna, Geophysical Research Letters,,2002,29(19):1905
    [124]Williams S, Bock Y, Fang P. Integrated Satellite Interferometry:Tropospheric Noise GPS Estimates and Implications for Interferomet ric SyntheticAperture Radar Products[J] Journal of Geophysical Research,1998,103 (B11):27051-27068
    [125]Zebker H A, Goldstein R M. Topographic Mapping from Interferometric Synthetic Apertur Rada rObservation [J].Journal of Geophysical Research.1986,91 (B5):4993-4999
    [126]Zebker H A, Rosen P A, Hensley S. Atmospheric Effects in Interferomet-ric Synthetic Aperture Radar Surface Deformation and Topographic Maps [J].Journal of Geophysical Research.1997,102 (B4):7547-7563
    [127]Li Zhenhong, Muller J P, Cross P, et al. Assessment of the Potential of MERIS Near-infrared WaterVapour Product s to Correct ASAR Interfe-rometric Measurement s [J]. International Journal of Remote Sensing,2006,27 (1/2):3492365
    [128]Lanari R, Lundgren P, Manzo M, et al. Satellite Radar Interferometry Time Series Analysis of Surface Deformation for Los Angeles, California [J].Geophysical Research Letters,2004,31 (23):613
    [129]Massonnet D, Feigl K, Rossi M,etal. Radar Interferomet ric Mapping of Deformation in the Year After the Landers Earthquake [J].Nature.1994,369:227-230
    [130]Massonnet D, Feigl K L.Discrimination of Geophysical Phenomena in Satellite Radar Interferograms[J].Geophysical Research Letters.1995,22(12):1537-1540
    [131]Peltzer G., Crampe F., King G., et al. Evidence of nonlinear elasticity of the crust from the MW7.6 Mani (Tibet) earthquake [J]. Science.1999,286:272-276
    [132]Stramondo S., Moro M., Doumaz F., et al. The 26 December 2003, Bam,Iran earthquake:surface displacement from Envisat ASAR interferometry[J]. International Journal of Remote Sensing.2005,26(5):1027-1034
    [133]XiaYe.Bam earthquake:Surface deformation measurement using radar interferometry [J]. ACTA seismologica Sinica.2005,27(4):423-430
    [134]Luo Xiaojun, Huang Dingfa, Liu Guoxiang. Extracting co-seismic deformation of Bam earthquake with differential SAR interferometry [J]. New Zealand Surveyor.2006, 296:20-23
    [135]Massonnet D., Briole P., Arnaud A. Deflation of Mount Etna monitored by spaceborne radar interferometry [J], Nature.1995,375:567-570
    [136]Rosen P. A., Hensley S., Zebker H. A., et al. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry [J]. J.Geophys. Res.1996,268:1333-1336
    [137]Amelung F., Jonsson S., Zebker.H Widespread uplift and'trapdoor'falulting on Galaoagis volcanoes observed with radar interferometry [J]. Nature.2000,407:993-997
    [138]Pritchard M.E., Simons M. A satellite geodetic survey of large-scale deformation of volcanic centres in the centeral Andes[J]. Nature,2002,418:167-172
    [139]Zebker H. A., Rosen P. A., Hensley S., et al. Analysis of active lava flows on Kilauea volcano, Hawaii, using SIR-C radar correlation measurements[J]. Geology.1996, 24:495-498
    [140]Wicks J.C., Thatcher W., Dzurisin D. Migration of Fluids Beneath Yellowstone Caldera Inferred from Satellite Radar Interferometry[J]. Science.1998,282:458-462
    [141]Mattar K. E., Gray A. L., Kooij M. Farris-Manning, Airborne interferometric SAR results from mountainous and glacial terrain[A]. Proc. IGARSS, Pasadena, CA,1994, 4:2388-2390
    [142]Joughin I. R. Estimation of ice sheet topography and motion using interferometric synthetic aperture radar[D]. Ph.D.dissertation. Univ.Washington,1995
    [143]Goldstein R. M., Engelhardt H., Kamb B.,et al. Satellite radar interferometry for monitoring ice sheet motion:Application to an antarctic ice stream[J]. Science.1993, 262:1525-1530
    [144]Rignot E., Jezek K.C., Sohn H.G. Ice flow dynamics of the Greenland ice sheet from SAR interferometry[J]. Geophys. Res. Lett.1995,22(5):575-578
    [145]Mohr J.J., Reeh N., Madsen S. N. Three-dimensional glacial flow and surface elevation measured with radar interf[J]. Erometry. Nature,1998,391(6664):273-276
    [146]Hartl P., Thiel K. H., Wu X.,et al. Application of SAR interferometry with ERS-1 in the Antarctic[J]. Earth Observation Quarterly.1994,43:1-4
    [147]Alsdorf D.E., Smith L.C. Interferometric SAR observations of ice topography and velocity changes related to the 1996, Gjalp subglacial eruption, Iceland[J]. IntJ Remote Sensing.1999,20(15-16):3031-3050
    [148]Dammert P.B.G., Lepparanta M., Askne J. SAR interferometry over Baltic Sea ice[J]. Int. J. Remote Sensing,1998,19(16):3019-3037
    [149]Rosen P.A., Hensley S. Synthtic Aperture Radar Interferometry [J]. Proceedings of the IEEE.2000,88(3):333-382
    [150]Li Z.W, Ding X.L, Chen Y.Q, et al. Assessment of Atmospheric Effects on Repeat-Pass InSAR Measurements in Southern China[J]. Journal of Geospatial Engineering.2005, 7(1):1-10
    [151]Ferretti A., Claudio P., Rocca A. Nonlinera subsidence rate estimation using permanent scatters in differential SAR interferometry [J]. IEEE Transactions on Geoscience and Remote sensing.2000,38(5):2202-2212
    [152]Ferretti A., Claudio P., Rocca A. Permanent scatters in SAR interferometry [J]. IEEE Transactions on Geoscience and Remote sensing.2001,39(1):8-20
    [153]Prati C., Rocca F. Interferometric techniques and applications. ESA Study Contract Rep. Contract N.3-74939/92/HE-I, Ispra,Italy,1994
    [154]Small D.Generate of Digital ElevationModels through Spaceborne SAR. Interferometry [D] Ph.D.thesis.1997:17-22
    [155]Webley P.W., Bingley R.M., Dodson A.H.,et al. Atmospheric water vapour correction to InSAR surface motion measurements on mountains:Results from a dense GPS network on Mount Etna[J].Physics and Chemistry of the Earth.2002,27:363-370
    [156]Janssen V., Ge L.L., Rizos C. Tropospheric corrections to SAR interferometry from GPS observations[J]. GPS Solutions.2004,8:140-151
    [157]Li Z.W., Ding X.L., Liu G.X. Modeling atmospheric effects on InSAR with Meteorological and continuous GPS observations:algorithms and some test results[J]. Journal of Atmospheric and Solar Terrestrial Physics.2004,66:907-917
    [158]Ferretti A., Prati C., Rocca F. Analysis of Permanent Scatterers in SAR interferometry [A]. Proceedings. IGARSS,2000.2:761-763
    [159]Mora O., Mallorqui J.J., Duro J.,et al. Long-term subsidence monitoring of urban areas using differential interferometric SAR techniques [A]. IGARSS,2001.3:1104-1106
    [160]Ketelaar G, van Leijen F., Marinkovic P., et al. Initial point selection and validation in PS-InSAR using integrated amplitude calibration[A]. Proceedings. IGARSS,2005. 5490-5493
    [161]Colesanti C., Ferretti A., Prati C., et al. Comparing GPS, optical leveling and permanent scatterers[A]. IGARSS,2001.6:2622-2624
    [162]Colesanti C., Ferretti A., Noveli F., et al. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique[J]. IEEE Transactions on Geoscience and Remote Sensing.2003,41(7):1685-1701
    [163]Colesanti C., Ferretti A., Locatelli R.,et al. Permanent Scatterers precision assessment and multi-platform analysis[A]. Proceedings. IGARSS,2003.2:1193-1195
    [164]Colesanti C., Locatelli R., Novali F. Ground deformation monitoring exploiting SAR permanent scatterers [A]. IGARSS,2002.2:1219-1221
    [165]Colesanti C., Ferretti A., Prati C., et al. ERS-ENVISAT permanent scatterers interferometry[A]. Proceedings. IGARSS,2003.2:1130-1132
    [166]Perissin D., Prati C., Rocca F., et al. ERS-ENVISAT Permanent Scatterers[A]. Proceedings. IGARSS,2004.2:985-988
    [167]Bovenga F., Stramaglia S., Nutricato R., et al. Discrimination of different sources of signals in permanent scatterers technique by means of independent component analysis[A]. Proceedings. IGARSS,2003.2103-2105
    [168]KampesB.M.,Hanssen R.F.Ambiguity resolution for permanent scatterer. interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing.2004,42(11):2446-2453
    [169]Leijen F.J.,KetelaarV.B.H.,Marinkovic P.S., et al.Persistent Scatterer Interferometry Precision,ReliablityandIntegration[DB/OL]. http://www.ipi.uni-hannover.de/html/publikationen/2005/workshop/
    [170]Huanyin Yue, Hanssen R., van Leijen F., et al. Land subsidence monitoring in city area by time series interferometric SAR data[A]. Proceedings. IGARSS,2005.4590-4592
    [171]Allievi J., Ambrosi C., Ceriani M., et al. Monitoring slow mass movements with the Permanent Scatterers technique[A]. Proceedings. IGARSS,2003.1:215-217
    [172]Dehls J.F., Basilico M., Colesanti C. Ground deformation monitoring in the Ranafjord area of Norway by means of the permanent scatterers technique[A]. IGARSS,2002. 1:203-207
    [173]Chul H., Jung, Min K.D. Observing coal mining subsidence from JERS-1 permanent scatterer analysis[A]. IGARSS,2005.7:4578-4581
    [174]Colesanti C., Mouelic S.L., Bennani M., et al. Detection of mining related ground instabilities using the Permanent Scatterers technique—A case study in the east of France[J]. International Jounal of Remote Sensing.2005,26(1):201-207
    [175]Ferretti A., Ferrucci F., Prati C., et al. SAR analysis of building collapse by means of the permanent scatterers technique[A]. IGARSS,2000.7:3219-3221
    [176]Ketelaar V.B.H., Hanssen R.F. Separation of different deformation regimes using PS-InSAR data[A]. Proceedings of FRNGE, Frascati,Italy,2003.1-5
    [177]Colesanti C., Ferretti A., Locatelli R., et al. Multi-platform permanent scatterers analysis:first results[A].2nd GRSS/ISPRS,2003.52-56
    [178]Colesanti C., Ferretti A., Prati C., et al. Full exploitation of the ERS archive:multi data set permanent scatterers analysis[A]. IGARSS,2005.2:1234-1236
    [179]Kampes B. Delft Object-oriented Radar Interferometric Software User's manual and technical documentation[S]. http://www.geo.tudelft.nl/fmr/research/insar/sw/doris/Usersmanual/index.html.1999
    [180]Gabriel A. K, Goldstein R.M. Crossed orbit interferometry:theory and experimental results from SIR-B[J]. International Journal of Remote Sensing,1988,9(8):857-872
    [181]Lin Q., Vesecky J.F., Zebker H.A. Registration of interferometric SAR images[A]. IGARSS 1992.2:1579-1581
    [182]Lin Q.,Vesecky J.F., Zebker H.A. New approaches in interferometric SAR data processing[J]. IEEE Transactions on Geoscience and Remote Sensing.1992, 30(3):560-567
    [183]Zhang Hong, Wang Chao, Tang Yixian, et al. A new image registration method for multi-frequency airborne high-resolution SAR images. Proceedings.IGARSS 2003. 1:167-169
    [184]Hanssen R. Radar interferometry:Data interpretation and error analysis[M]. Kluwer Academic Publishers,2001:9-75
    [185]Prati C., Rocco F., Guarnieri A M, et al. Report on ERS-1 SAR interferometric techniques and applications[A]. Dipartimento di Eletronica, Politecnico di Milano. 1994.
    [186]Prati C., Rocco F., Guarnieri A M, et al. ERS-1 SAR Interferometric Techniques and Applications. Tutorial for Microwaves Sensors, Calibration and Data Processing[A]. ISPRS,Common. I Symposium,Olmo Como Italy.1994
    [187]Scheiber R., Moreira A. Coregistration of interferometric SAR images using spectral diversity[J]. IEEE Transactions on Geoscience and Remote Sensing.2000, 38(5):2179-2191
    [188]Fornaro G., Franccschetti G. Image registration in interferometric SAR processing[A]. Radar, Sonar and Navigation, IEEE Proceedings.1995,142(6):313-320
    [189]Fornaro G, Franceschetti G., Marzouk E.S.A new approach for image registration in interferometric processing [A]. IEEE International Geoscience and Remote Sensing Symposium.1994,4:1983-1985
    [190]Moreira A., Scheiber R. A new method for accurate co-registration of interferometric SAR images[A]. IEEE International Geoscience and Remote Sensing Symposium Proceedings.1998,2:1091-1093
    [191]Abdelfattaha R., Nicolasa J.M., Tupin F. Interferometric SAR image coregistration based on the Fourier-Mellin invariant descriptor[A]. IEEE International Geoscience and Remote Sensing Symposium.2002,3:1334-1336
    [192]Albet, P.,R. Bennartz, and J. Fischer, Remote Sensing of Atmospheric Water Vapor from Backscattered Sunlight in cloudy Atmospheres, Journal of Atmospheric and Oceanic Technology,18(6),865-874,2001.
    [193]Askne J, Nordius H. Estimation of Tropospheric Delay for Microwaves from Surface Weather Data[J].Radio Science.1987,22:379-386
    [194]Bennartz, R., and J. Fischer, Retrieval of columnar water vapour over land from back-scattered solar radiation using the Medium Resolution Imaging Spectrometer (MERIS), Romote Sensing of Environment,78,271-280,2001.
    [195]Bonforte, A., A. Ferreti, C. Prati, G. Puglisi, and F. Rocca, Calibration of atmospheric effects on SAR interferograms by GPS and local atmosphere models:first results,Journal of Atmosphere and Solar-Terrestrial Physics,63,2001.
    [196]Bock Y,Williams S D P. Integrated Satellite Interferometry in Southern California [J]. Eos Trans.AGU,1997,78 (29):2992300
    [197]Baby, H., P. Gole, and J.A. Lavergnat, Model for tropospheric excess path length of radio waves from surface meteorological measurements, Radio Science,22,1023-1038, 1988.
    [198]Berardino P, Fornaro G, Lanari R,et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J].IEEE Transactions Geoscience and Remote Sensing,2002,40:2375-2383