多点激励下连续梁桥随结构参数的地震响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着交通事业的飞速发展,我国兴建了大量的大跨度连续梁桥,又因我国是一个多地震的国家,因此研究大跨度连续桥梁在多点激励下地震响应规律,对其的抗震设计和抗震鉴定与加固都有着重要的现实意义。基于此,本文借鉴已建成某桥的工程背景和最新研究成果,对大跨径预应力混凝土连续梁桥进行数值模拟试验研究,得出有益结论,为连续梁桥抗震设计提供参考。
     地震动对于类似桥梁的大跨度、空间结构会发生很大变化。这种变化主要由三个因素引起:地震波到达不同位置时发生的时间延迟;地震波在不均匀的土壤介质中不规则的反射折射等原因而导致的各个位置激励之间的部分相干效应和不同位置处场地土的性质不相同而造成的局部场地效应。以上导致结构的各个位置地震动的振幅和相位差差异,而现有的桥梁设计规范采用的反应谱抗震分析方法,只考虑一致地震激励的影响,所以有必要对桥梁结构进行多点激励分析。
     本文首先对地震动的特征、影响因素、衰减关系、设计地震动参数的确定和其输入模型等内容做了介绍;其次详细阐述了时间历程分析方法的基本理论,推导了多点激励下大跨度桥梁的基本运动方程并论述了其数值求解方法;最后利用桥梁专用分析软件MIDAS/Civil建立具有代表性的连续梁桥数值模拟分析计算模型,考虑桩-土-结构相互作用,在顺桥向输入地震波的情况下,运用时程分析的方法分析连续梁桥在多点激励作用下随主跨跨径、固定墩纵向抗推刚度、跨数、边中跨比、墩高和支承方式变化的响应规律。在大量的数值分析基础上,得到以下结论:
     1增大主跨跨径,增加结构跨数对结构抗震不利;
     2减小固定墩纵向抗推刚度或增大墩高对结构抗震有利;
     3边中跨比变化对结构抗震利弊兼半;
     4对于本文的支承方式,其变化对结构抗震影响不大;
     5综合分析各种结构参数,主跨跨径对结构抗震最为敏感。
In the recent years, with the development of traffic, a lot of long span continuous beam bridges have been constructed. In our country, earthquake happens so frequently that it is very important to study the seismic response of the long span continuous beam bridges under multi-support excitation. It is very useful to the aseismatic design and identification and reinforcement. Based on above, the thesis draws lessons from a built bridge and the newest research achievement studying and analysising dynamic parameter design of long span continuous beam bridge, obtains some valuable conclusions which will give some reference for practical aseismatic design of continuous beam bridges.
     Seismic ground motions can vary significantly over distances which are of the same order of magnitude as the dimensions of some extended structures, such as bridges. Three phenomena are responsible for these variations: the difference in the arrival times of seismic waves at different stations; the loss of coherency of the motions due to reflections and refractions of the waves in the heterogeneous medium of the ground, as well as due to the difference in the manner of superposition of waves arriving from an extended source at various stations and the difference in the local soil condition at each station. They influence the amplitude and frequency content of the bedrock motion, but the existing bridge criterion use response spectra theory about aseismic analysis considering uniform excitation, so multi-support excitation analysis for bridge structure is very important.
     This thesis introduces characteristics and affect factors and attenuation relation of seismic ground motions, as well as confirmation of designing parameters and input model firstly; Secondly the basic theory of time-history analysis are presented minutely. the equations of motion of long-span bridges under multi-support excitation are deduced and numerical solution method is introduced; In the end, a numerical simulation model of continuous beam bridge is built by the bridge special software-MIDAS/Civil. And the seismic response rules of a continuous beam bridge, which is changed a long with main span length, longitudinal stiffness of brake pier, number of bridge spans, ratio of side to main span height of piers and constrain types, are studied with the time-history analysis method considering the interaction of pile-soil-structure system. In all above calculating model only longitudinal excitations are carried out. The following conclusions are given based on a large amount of numerical analyses:
     1. Increasing the span length and adding the span number is bad for resisting earthquake;
     2. Decreasing the stiffness of brake pier or increasing height of piers is beneficial for resisting the earthquake;
     3. Changing the ratio of side to main span can bring advantages and disadvantages for aseismic performance of continuous beam bridges;
     4. Changing the constrain types of the continuous beam bridge in this thesis has little effect on aseismic performance;
     5. Comprehensive analysis of each structural parameter shows that the length of main span is the most hypersensitive factor for aseismic performance.
引文
1范立础.桥梁抗震.同济大学出版社, 1997: 1~4
    2邵旭东.桥梁工程.人民交通出版社, 2004: 88~91
    3 A. D. Kiureghian, A. Neuenhofer. A coherency model for spatially varying ground motions. EESD. 1996, 25: 99~111
    4吴东.多点激励下大跨度桥梁的地震反应分析.西南交通大学硕士学位论文. 2006:1~6
    5范立础,胡世德,叶爱君.大跨度桥梁抗震设计.人民交通出版社, 2001: 14~18
    6李忠献,史志利.行波激励下大跨度连续刚构桥的地震反应分析.地震工程与工程振动. 2003, 23(2): 68~76
    7 R. W. Clough, J. Penzien. Dynamics of structures, New York: McGraw-Hill Inc, 1993: 202~204
    8曾珂,牛荻涛,杜修力.新型随机地震动模型.地震工程与工程振动. 2005, 25(6): 30~37
    9杜修力,陈厚群.地震动随机模拟及其参数确定方法.地震工程与工程振动. 1994, 14(4): 1~5
    10 R. S. Harichandran, E. H. Vanmarcke. Stochastic Variation of Earthquake Ground Motion in Space and Time, ASCE Journal of Engineering Mechanics, 1986: 154~175
    11 C. H. Loh, Y. T. Yeh. Spatial Variation and Stochastic Modeling of Seismic Differential Ground Motion, EESD. 1988, l6(2): 583~596
    12 J. L. Bonganoff, J. E. Goldberg, A. J. Schiff. The effect of ground transmission time on the response of long structures. Bull Seism Soc Am. 1965, 55(1): 627~640
    13苗家武,胡世德,范立础.大型桥梁多点激励效应的研究现状与发展.同济大学学报. 1999, 27(2): 189~193
    14刘先明.多点输入反应谱法的理论研究.土木工程学报. 2005, 38(3): 17~22
    15 M. Berrah, E Kausel. Response Spectrum Analysis of Structures Subjected to Spatially Varying Motions. EESD. 1992, 21: 461~470
    16 E. H. Zavoni, E. H. Vanmarcke. Seismic Random Vibation Analysis of Mufti-supported Structural Systems, ASCE J. of Engineering Mechanics.1994, 120: 1107~1128
    17刘洪兵,朱稀,郑峰.基于三维相关系数谱的多支承激励反应谱法.世界地震工程. 2005, 21(4): 106~112
    18王淑波.大型桥梁抗震反应谱分析理论与应用研究.同济大学博士学位论文. 1997: 96~100
    19 A. M. Abdel-Ghaffar, I. I. Rubin, Suspension Bridge Response to Multiple Support Excitations. ASCE Journal of Engineering Mechanics. 1982, 108(1): 419~434
    20 A. S. Nazmy, A. M. Abdel-Ghaffar. Effects of Ground Motion Spatial Variability on The Response of The Cable-stayed Bridges. Earthquake Eng.Struct.Dyn. 1992, 21: 1~20
    21陈幼平,周宏业.斜拉桥地震反应的行波效应.土木工程学报. 1996,29(6):61~68
    22 K. Kanai. Semi-empirical Formula for the Seismic Characteristics of the Ground[J],Bulletin of the Earthquake Research Institute. University of Tokyo. 1957, 35(2): 561~565
    23 H. Tajimi. A Statisical Method of Determining the Maximum Response of a Building Structure During an Earthquake. 2001: 121~125
    24屈铁军,王君杰,王前信.空间变化的地震动功率谱的使用模型.地震学报. 1996, 18(1): 55~62
    25林家浩.随机振动的虚拟激励法.科学出版社, 2004: 28~47
    26梁爱虎,杜修力,陈厚群.基于非平稳随机地震动场的拱坝随机地震反应分析方法.水利学报. 1999, 6(1): 21~25
    27项海帆.斜张桥在行波作用下的地震反应分析.同济大学学报. 1983, 18(3):88~91
    28袁万城.大跨桥梁空间非线性地震反应分析.同济大学博士学位论文. 1990: 87~99
    29胡世德,范立础.江阴长江公路大桥纵向地震反应分析.同济大学学报. 1994, 22(4): 434~438
    30刘吉柱.大跨度拱桥地震反应的行波效应分析.同济大学博士学位论文. 1987: 67~82
    31 A. S. Nazmy. Earthquake-response characteristics of long-span arch bridges,Proc of 11th WCEE, Amsterdam: Elsevier Science Ltd. 1996: 1309~1312
    32 Chong, Yun-Loi. Bridge response due to multiple support excitation[M],7th symp.on Earthquake Engineering. Univ. of Rookee. 1982, 1(1): 85~88
    33 S. S. P. Lai. Seismic response of a 4-span bridge sysem subjected to multiple-support ground Excitation, Proc.4th Canndian Conference Earthguake Engincering. 1983: 1011~1017
    34周建春,寿楠椿,魏琴等.三门峡黄河大桥地震反应分析之二.工程力学(增刊). 1993: 840~845
    35柳春光,焦双键.城市立交桥结构三维地震反应,地震工程与工程震动. 2001, 21(2): 41~47
    36袁丽侠.场地土对地震波的放大效应.世界地震工程. 2003, 19(1): 113~120
    37李宏男.结构多维抗震理论.科学出版社, 2006: 16~43
    38 C. H. Loh, W. Y. Jean. Uniform-hazard R esponse Spectra-an Alternative Approach. Ea rthq, Eng.and Struc Dyn. 1994: 433~445
    39 Zbigniew Z. Steen K. Spatial Seismic Excitationsand Response Spectra. ASCE. 1990, 19(12): 2449~2460
    40章在墉.地震危险性分析及其应用.同济大学出版社, 1996:31~38
    41史志利,李忠献.随机地震动场多点激励下大跨度桥梁抗震分析方法.地震工程与工程振动. 2003, 23(4): 124~130
    42徐植信,翁大根.强烈地震运动持续时间对结构物倒塌的影响.同济大学学报. 1982: 31~36
    43 S. S Keta1.Spectral Atenuation of SH Waves Along the Imperial Fault .B SSA. 1982, 72(6): 2003~2016
    44胡聿贤等.基岩地震动参数与震级和距离的关系.地震学报.1982, 14(2): 199~207
    45张新培.钢筋混凝土抗震结构非线性分析.科学出版社, 2003: 87~91
    46 K. J. Bath. Finite Element Procedures in Engineering Analysis. Prentice-Hall Inc. New Jersey, 1982: 712~716
    47爱德华·L·威尔逊.结构静力与动力分析——强调地震工程学的物理方法.中国建筑标准设计研究院.中国建筑工业出版社, 2006: 201~206
    48张建民,张嘎.土体与结构物动力相互作用的研究进展.岩石力学与工程学报. 2001,5(20): 854~865
    49 D. A. Brown, M .W. Nill, M. Hoit. Static and Dynamic Lateral loading of PileGroups. NCHRP report 461, Washington. D. C: Transportation Research Board. 2001: 56~82
    50徐礼华,刘祖德,苗平一.上部结构-桩基础-地基相互作用体系地震反应分析.岩土力学与工程学报. 2002, 21(11): 1720~1723
    51王凤霞,何政,欧进萍.桩-土-结构动力相互作用的线弹性地震反应分析.世界地震工程. 2003, 19 (2): 58~66
    52马文丽.桩-土-上部结构动力相互作用简化分析方法研究.湖南大学硕士学位论文. 2004: 7~10
    53 A. Kaynia, E. Kausel. Dynamic stiffness and seismic response of pile groups Rep.R82-03,Massachusetts Institute of Technology Gambridge. 1982: 1~80
    54孙利民,张晨南.桥梁桩-土相互作用的集中模型及参数确定.同济大学学报. 2002, 4(30): 409~415
    55肖小春,林皋,迟世春.桩-土-结构动力相互作用的分析模型与方法.世界地震工程. 2002, 18(4): 123~130.
    56谢旭.桥梁结构地震响应分析与抗震设计.人民交通出版社, 2006:233~236
    57安瑞晶.设计参数对大跨径预应力混凝土连续梁桥地震响应影响分析.长安大学硕士学位论文. 2005: 38~41