中线法筑堆尾矿坝动力反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云南迪庆矿业公司羊拉铜矿拟在矿区内建一座新尾矿库,该地区为7度地震区,按照初步设计该尾矿库采用中线法堆坝,尾矿坝的设计总高185m,为我国第二座中线法高堆坝尾矿库。本文以该尾矿库工程为研究对象,采用室内试验和数值模拟技术,对中线法高堆坝在地震作用下的动力响应特性进行了系统研究。完成的主要工作和取得的科研成果如下:
     ①按照中线法堆坝工艺要求,配制了堆坝用的粗尾矿和入库的细尾矿。对粗尾矿、细尾矿和全尾矿三种试样的基本物理性质和工程力学性质进行了试验测试。研究了尾矿颗粒的组成与分布、渗透性、压缩性,采用直剪试验和三轴剪切试验对三种尾矿样的强度特性进行研究。
     ②采用DDS-70微机控制电磁式振动三轴仪对三种尾矿试样的动力特性进行了试验研究。包括材料的动本构关系、动弹模阻尼比和动强度等。探讨了颗粒组成、固结围压、固结压力比、动应力对动强度的影响。
     ③动三轴试验结果表明,粗尾矿的抗震稳定性比全尾矿和细尾矿要好。
     ④利用数值模拟技术对中线法高堆坝的动力响应进行了分析,研究了在Ⅷ级地震作用下坝体不同部位的水平加速度、水平位移和孔压的变化发展规律。
     ⑤数值模拟结果显示,该尾矿坝在Ⅷ级地震作用下并未出现液化现象;坝体全局最大位移中心出现在坝坡面中下部。
Yang-La copper of Yun Nan Di Qing mining company wants to build a new tailings reservoir in mining area which is in seven-degree seismic region. According to preliminary design, the central line damming will be built. The tailing dam is designed with height of 185m, which is the second high-central line tailing dams in our country. In this paper, tailing dam engineering is set as research object. The laboratory test and numerical simulation technology are used to study the dynamic responding characteristics of central line damming under seismic action. The main research work and achievements are as follows:
     ①According to the request of central line damming, the coarse tailing sands and fine tailing sands are made up. The basic physical properties and engineering mechanical properties of tailing sands、coarse tailing sands and fine tailing sands are tested. The composition and distribution, permeability and compressibility of tailing sands particle are also studied. The strength characteristics of three samples of tailing sands are studied by direct Shear Test and triaxial shear test.
     ②The DDS-70 electromagnet kinetic equipment is used to study the dynamic characteristics of three samples of tailing sands, including dynamic strength, stress-strain relation, the dynamic modulus and damping ratio. Some affecting factors such as particle composition, consolidated pressure, consolidated stress ratio and dynamic stress are discussed.
     ③The test result of cyclic triaxial shows that the seismic stability of coarse tailing sands is better than that of coarse tailing sands and fine tailing sands.
     ④Numerical simulation technology is applied for analysis of the dynamic responding of central line tailings damming. The horizontal acceleration, horizontal displacement and pore-pressure changing rules at different places of dam under M 8.0 seismic action are analyzed.
     ⑤The numerical simulation result indicates that there is no liquefaction phenomenon on the tailing dam under M 8.0 earthquake. And the global maximum displacement center is in the lower slope surface.
引文
[1]魏作安,尹光志,沈楼燕等.探讨尾矿库设计领域中存在的问题[J].有色金属(矿山部分),2002,4:44~45.
    [2]沈楼燕,魏作安.探讨矿山尾矿库闭库的一些问题[J].金属矿山,2002,6:47~48.
    [3]梁雅丽.10·18南丹尾矿坝大坍塌[J].沿海环境,2000,12:7.
    [4]徐宏达.我国尾矿库病害事故统计分析[J].工业建筑,2001,1(31):69~71.
    [5]魏作安.细粒尾矿及其堆坝稳定性研究[D],重庆大学博士学位论文,2004,5~6.
    [6]宁民霞.水对尾矿坝稳定性影响研究,硕士学位论文.阜新:辽宁工程技术大学,2003.
    [7]孙玉科,杨志法,丁恩保等.中国露天矿边坡稳定性研究[J].北京:中国科学技术出版社,1999.
    [8] Fanelli M. Automatic observation for dam safety. International Water Power & Dam Construction.1979,31(11):106-111.
    [9] Nelson J. Parameters affecting stability of tailings dams. Proc of the Conf on Geotech Pract for Disposal of Solid Waste Mater,Ann Arbor,1977:440-460.
    [10]陈厚群.中国大坝的抗震设计与研究[J].水利学报增刊(第20届国际大坝会议专辑).2000,9:77~85.
    [11]《中国有色金属尾矿库概论》编辑委员会.中国有色金属尾矿库概论[R].北京:中国有色金属工业总公司,1992.
    [12] Vick S. G. Risk Based Approach to Seismic Stability and Inundation Hazard for Upstream Tailings Dams [A]. Proc. International Symposium on Safety and Rehabilitation of Tailings Dams[C]. ICOLD,Sydney,Australia,May 23,2,1990.
    [13] Finn,W.D.L. Seismic Stability of Tailings Dams [A].General Reporter Department of Civil Engineering University of British Columbia Vancouver,B.C. Canada,Proc. International Symposium on Safety and Rehabilitation of Talings Dams ICOLD,Sydney,Australia,May 1990.
    [14] Seed H.B, Idriss L.M. (1971) Simplified Procedure for Evaluating Soil Liquefaction Potential[J]. Soil Mech.and Found.Div,ASCE,Vo1.97,SM7.
    [15] Volpe R. Physical and engineering practices of copper tailings [J]. Current Geotechnical Practice in Mine Waste Disposal,ASCE,1979.
    [16] Mittal H,Morgenstern N. Parameters for the design of tailings dams [J]. Canadian Geotechnical Journal,1975,1 (12):235-261.
    [17] Brawner C. Design construction and repair of tailings dams for metal mines waste disposal [J].Current Geotechnical Practice in Mine Waste Disposal,ASCE,1979.
    [18] Johnson J,Kane J. Failure of the church rock tailings dam [M]. Pro. Third Symp. On Uranium Mill Tailings Management, Colorado State University. 1980.
    [19] Lowe J. Stability analysis of embankments[J],Analysis and Design in Geotechnical Engineering,ASCE,1975.
    [20]王武林,杨春和,阎金安.某铅锌矿尾矿坝工程勘查与稳定性分析[J].岩石力学与工程学报,2003,24 (5):858~862.
    [21]张超,杨春和,孔令伟.某种铜矿尾矿砂力学特性研究和稳定性分析[J].岩土力学,2003,24 (5):858~862.
    [22]张建隆.尾矿坝的抗震设计研究.构筑物抗震[M],北京:测绘出版社,1990.
    [23]张超.尾矿动力特性及坝体稳定性分析[D].中国科学院研究生院博士学位论文,2005年5月.
    [24]阎金安,王武林.尾矿砂的动力特性研究[J].岩土力学,1990(4):69~74.
    [25]王余庆,王治平,辛鸿博,李志林.中国尾矿坝地震安全度(1)-大石河尾矿坝1976年唐山大.地震震害及有关强震观测记录[J].工业建筑,1994(7):3 8~42.
    [26]王余庆,高艳平,辛鸿博.中国尾矿坝地震安全度(2)-大石河尾矿坝基岩输入地震动的确定[J].工业建筑,1994(8):41~47.
    [27]王治平,李志林.中国尾矿坝地震安全度(3)-经受唐山大地震的大石河尾矿坝历史和现状剖析[J].工业建筑,1994(9):47~50.
    [28]辛鸿博,王余庆.中国尾矿坝地震安全度(6)-用SPT评价大石河尾矿坝的沉积特征[J].工业建筑,1994(11):50~53.
    [29]李万升,刘静平,王治平.中国尾矿坝地震安全度(7)-大石河尾矿坝原位密度的同位素测试方法[J].工业建筑,1994(12): 36~41.
    [30]李万升,高建平,王治平.中国尾矿坝地震安全度(8)-大石河尾矿砂的力学特性试验研究[J].工业建筑,1995(1):43~48.
    [31]辛鸿博,王余庆.中国尾矿坝地震安全度(9)-大石河尾矿粘性土的动力变形特性和强度特征[J].工业建筑,1995(2):38~42.
    [32]王余庆,辛鸿博.中国尾矿坝地震安全度(10)-用单剪仪研究大石河尾矿砂的动特性田[J].工业建筑,1995(3):37~40.
    [33]王余庆,辛鸿博,李志林.中国尾矿坝地震安全度(11)-大石河尾矿砂稳态变形特性[J].工业建筑,1995(4):35~40.
    [34]王余庆,辛鸿博.中国尾矿坝地震安全度(12)-用稳态理论评价大石河尾矿坝的液化与稳定[J].工业建筑,1995(5):49~52.
    [35]辛鸿博,王余庆,高艳平.中国尾矿坝地震安全度(13)-1976年大石河尾矿坝一维地震反应分析[J].工业建筑,1995(6):49~52.
    [36]高建生,李万升,王治平.中国尾矿坝地震安全度(14)-利用共振柱对尾矿砂的测试及分析工业建筑[J],1995(7):48~50.
    [37]辛鸿博,王余庆,高艳平.中国尾矿坝地震安全度(15)-1976年大石河尾矿坝二维地震反应分析[J].工业建筑,1995(8):43~46.
    [38]张超,杨春.尾矿料的动力特性试验研究[J].岩土力学,2006年1月.
    [39]陈敬松,张家生,孙希望.饱和尾矿砂动强度特性试验结果与分析[J].水利学报,2006年5月.
    [40]阮元成,郭新.饱和尾矿料静?动强度特性的试验研究[J].水利学报,2004(1):67~73.
    [41]柳厚祥.高尾矿坝-地基相互作用的地震反应分析研究[J].冶金矿山设计与建设,1998,30(6).
    [42]柳厚祥,王开治.旋流器与分散管联合堆筑尾矿坝地震反应分析[J].岩土工程学报,1999,21(2):171~176.
    [43]南京水利科学研究院.土工试验规程SL237-1999[S].北京:中国水利水电出版社1999.
    [44]中华人民共和国建设部.岩土工程勘察规范(GB5001-2001).北京:中国建筑工业出版社. 2002年.
    [45]余君,王崇淦.尾矿的物理力学性质[J] .企业技术开发,2005,24(4):3~4.
    [46]汤馥郁,李旺林.峡山水库主坝物理力学参数的试验研究[J].山东建筑工程学院学报, 2000. 15(4):34~38.
    [47]成静,徐凡.土工试验中的抗剪强度分析[J].江西水利科技,2005,30:34~36.
    [48]高江平,李芳.黄土邓肯张模型有限元计算参数的试验[J].长安大学学报(自然科学版), 2006,26(2):10~13.
    [49]钱家欢,殷宗泽.土工原理与计算[M].中国水利水电出版社.1996.
    [50]谢定义.土动力学.西安:西安交通大学出版社.1988.
    [51]王锤琦等.岩土工程测试技术.北京:中国建筑工业出版社,1986.
    [52]曾春华.关于土在重复荷载下动态特性的综述.见:全国黄土学术会议论文集.新疆科技卫生出版社,1994.
    [53]李永乐,陈宇,李敏芝等.粉煤灰的动力特性试验及地震动液化研究[J].华北水利水电学院,2002,23(4):64~67.
    [54]陈敬松,张家生,孙希望.饱和尾矿砂动强度特性试验研究[J].山西建筑.2005,19(31):75~76.
    [55]王皆伟.四川地区砂卵石土动力特性试验研究.西南科技大学研究生学位论文,2006,51.
    [56]骆亚生,田堪良.非饱和黄土的动剪切模量与阻力比[J].水利学报,2007,36(7):830~834.
    [57]祝玉学,戚国庆等.尾矿库工程分析与管理[M]北京:冶金工业出版社,1999.
    [58]江德飞,何光春.传递系数法与FLAC强度折减法比较分析[J].重庆交通学院学报,2005(1):94~99.
    [59]马健.粘性土破坏机制及FLAC数值模拟.同济大学硕士学位论文,2006,33.
    [60]刘波,韩彦辉.FLAC原理?实例与应用指南[M].人民交通出版社,2005.
    [61] Iasca Consulting Group Inc. FLAC-3D,Version 2.0,Users Manual(Volume V)[R]. USA:tasca Consulting Group Inc,1997.
    [62] Itasca Consulting Group Inc. FLAC, Version 5.00, Users Manual [R]. USA:Itasca Consulting Group Inc,2005.
    [63] Seed H B,Martin P and Lysmer J. The generation and dissipation of pore water pressure during soil liquefaction[R].Report No EERC 75-26,Earthquake Engineering Research Center,University of California at Berkeley,USA.1975.