临江地铁冻结工程事故机理及修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上海地铁某中间风井下部两条隧道之间的联络通道施工时发生了涌水涌沙事故,导致约270米长隧道发生损坏,地面发生了较大沉陷,最大沉陷量达7米左右,事故区内地面一些建筑物出现了不同程度的倾斜与破坏。
     本文以上海地铁某中间风井冻结工程事故为依托,对该冻结工程事故的诱因、起因、发生、灾变过程、致灾机理、事故教训、事故抢险与预防、风险管理控制等展开研究,对于我国今后地铁建设中的风险规避和防范具有重要的参考价值。本文在研究时,首先对上海地铁某中间风井的工程地质条件、水文地质条件、冻土力学特性、土层分布、工程勘察、工程设计、现场施工、监理监测等方面资料进行全面收集分析,主要有事故所处地层的物理力学性能分析、冻土力学特性分析、原冻结设计方案与新设计方案的比较等方面的资料。然后在获得工程地质条件及力学特性资料的基础上,建立相应的数值模型、数学模型,对原设计方案下的隧道稳定性分析、新调整方案下的冻结失稳机理分析、突水后的渗流特征及渗流场理论分析、隧道支护结构失稳力学分析、隧道周围土层变形移动规律、以及地表邻近建筑物地基基础结构的响应性分析等,通过数值计算再现破坏过程,揭示失稳机理。同时运用数值计算对冻结帷幕下的联络通道开挖过程进行流~固耦合理论究,探讨联络通道突水形成机制,研究相应的数值计算方法,并对不同温度条件下和存在冻结薄弱部位的隧道突水过程进行计算机模拟分析。以此对上海地铁某中间风井冻结事故机理进行全面深入研究,并对提出的修复对策及技术进行分析,提出事故原因和教训,为今后同类型冻结工程施工提供给有价值的借鉴。
The connecting passage's construction between the two tunnels of undergroundamong the intermediate air shaft's lower part are in great danger, leading to the loss ofa large number of soil around the tunnel, long about270meters' tunnel got collapseddamage, and large ground subsidence, the largest settlement amounted to7meters, thearea of the accident ground's buildings of different degree of tilt and destruction.
     In this paper,taking an intermediate air shaft of the Shanghai Metro freezeaccident as the basis, Through study on the incentive, the cause of, the occurrence ofthe disaster process, formation mechanism, lessons from the accident, accident rescueand prevention, risk management control study and so on,which to freeze constructionaccident in the subway construction process, has important reference value for China'sfuture subway construction in risk aversion and prevention. At the time of the study,through a comprehensive collection and analysis of the Shanghai Metrointermediate air shaft's engineering geological conditions, hydrogeological conditions,the mechanical properties of frozen soil, soil distribution, engineering investigations,engineering design, site construction, supervision and monitoring, Mainly including the data of physical and mechanical properties of the formation of accident analysis,frozen soil mechanics characteristic analysis, the freeze design scheme that comparedwith the new design scheme. Then, on the basis of engineering geological conditionsand mechanical properties' data, the establishment of the corresponding numericalmodel, mathematical model, analysis of the stability of tunnel under the originaldesign, the new adjustment programs under the freeze Instability mechanism, nalysisof seepage characteristics and seepage theory after water inrush, mechanics analysisof tunnel support structure's instability, the tunnel surrounding soil's deformationmovement rules, and the surface response analysis of adjacent building foundation,etc., by numerical calculation to reproduce the failure process and reveal themechanism of instability. At the same time, using numerical calculation to study onflow-solid coupling theory in the connecting passage excavation's process under thefreeze curtain. Explore the contact channel's water inrush formation mechanism, andstudy the corresponding numerical methods, making computer simulation analysisof the tunnel's water inrush procedure under different temperature conditions and theweak and freezen parts. A comprehensive and in-depth study in order to freeze theShanghai Metro Line4middle range air shaft mechanism of the accident, so conducta comprehensive and in-depth study on the Shanghai metro line4middle range airshaft's freezing accident mechanism, and put forward some countermeasures for therepair and technical analysis, put forward the cause of the accident and learn lessons,and provide a valuable reference for the same type of freeze construction in the future.
引文
1.赵树德,廖红建,王秀丽.土力学[M].北京:高等教育出版社,2004.
    2.铁道部第一勘测设计院.铁路工程地质手册(99版)[M].北京:中国铁道出版社:426.
    3.交通部公路规划设计院.中华人民共和国交通部部标准公路工程名称术语[M].北京:34
    4.《工程地质手册》编委会.工程地质手册[M].北京:中国建筑出版社,2007.
    5.港口工程技术规范(JTJ219-87)[S].北京:人民交通出版社,1987.
    6.岩土工程勘察规范(GB50021-94)[S].北京:中国建筑工业出版社,1995.
    7.侯学渊,钱达仁,杨林德.软土工程施工新技术[M].合肥:安徽科学技术出版社,1999.
    8.崔云龙等.简明建井工程手册[M].北京:煤炭工业出版社,2003.
    9.张荣立,何国纬等.采矿工程设计手册(中)[M].北京:煤炭工业出版社,2003.
    10.伏拉索夫СН,马柯夫斯基ЛВ,米耶尔金ВЕ.圣彼得堡地铁1995年的事故[C].交通隧道与地铁施工期及运营期的事故状况.莫斯科:ТИМР信息出版中心,1997:146~150.
    11.
    12.H.A.崔托维奇.冻土力学[M].张长庆,朱元林译.北京:科学出版社,1985.
    13.煤炭科学研究院北京研究所建井室编.煤矿冻结法凿井[M].北京:煤炭工业出版社,1975.
    14.程桦.城市地下工程人工地层冻结技术现状及展望[J].淮南工业学院学报,2000,20(2):16~
    22.
    15.陈瑞杰,程国栋,李述训等.人工地层冻结应用研究进展和展望[J].岩土工程学报,2000,22(1):40~44.
    16.徐兵壮,苏立凡.上海地铁长沙路泵站地下冻结施工和地层变形[A].地层冻结工程技术和应用—中国地层冻结工程40年论文集[C].北京:煤炭工业出版社,1995:489~492.
    17.周晓敏,苏立凡,贺长俊等.北京地铁隧道水平冻结法施工[J].岩土工程学报,1999,21(3):319~322.
    18.胡向东,白楠,李鸿博.圣彼得堡地铁1号线区间隧道事故分析[J].隧道建设,2008,28(4):418~422.
    19. Ryumin A N. On Hydrogeomechanical Causes of Accident in the Subway of SaintPetersburg[J].Journal of Mining Science,2004,40(1):11~23.
    20. Wallis S. Rebuilding the Red Line at St Petersburg [J].T&T International,2002(2):30~32.
    21.王灵敏,王先锋.冻结法施工越江隧道联络通道工程事故分析[J].建筑施工,2005,28(8):54~
    56.
    22.苗合坤.兴华煤矿立井冻结施工中出水事故分析[J].河北煤炭,2002,02:23~24.
    23.张传亮,吴长民.徐楼煤矿井筒冻结出水质量事故分析与治理[J].华章,2012,06:326~327.
    24.陆卫国,沈华军,靳详生.淮南某冻结井开挖初期出水原因分析及处理措施[A].矿山建设工程技术新进展--2009全国矿山建设学术会议文集(上册)[C].北京:煤炭工业出版社,2009:279~282.
    25.杨太华.越江隧道工程联络通道冻结法施工风险分析[J].地下空间与工程学报,2010,6(6):1201~1206.
    26.胡向东.冻结法施工风险与控制对策[A].海峡两岸轨道交通建设与环境工程高级技术论坛[C].北京:人民交通出版社,2008.10.191-197.
    27.高宗正,林聿,陈敬贤.冻结工法之风险管理暨施工案例探讨[J].地下空间与工程学报,2008,4(4):720~727,748.
    28.吴群慧.软土地层地铁区间隧道工程建设风险分析与对策[J].上咨视点,2011,35(5):6~11.
    29.孙永福.上海地区第四第地层工程地质性质与分区[J],上海地质,1980年第1期:1~16.
    30.张文龙.上海全新统地层中地下水类型和不良作用分析[J],上海地质,2008,2:
    31.洪军.人工冻结条件下上海饱和软粘土的力学特性试验研究[D].上海,同济大学,2008.
    32.汪闻韶.土体液化与极限平衡和破坏的区别和关系[J].岩土工程学报,2005,27(1):1~10.
    33.吴紫汪,马巍等.人工冻结壁变形的模型试验研究[J].冰川冻土,1993,15(1):121~124.
    34.张挺.堤基渗透破坏机理及控制方法研究[D].广州,中山大学,2010.
    35.徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001
    36.齐吉琳,马巍.冻土的力学性质及研究现状[J].岩土学报,2010,31(1):133~143.
    37.张向东.考虑强度弱化及蠕变特性确定冻结壁厚度[J].阜新矿业学院学报,1990,9(2):21~30.
    38.朱元林.我国冻土强度与蠕变研究[J].冰川冻土.1988,10(3):332~336.
    39.陈有亮,常乐群,徐珊等.上海冻结软土的单轴抗压强度试验[J].上海大学学报,2009,15(3):310~315.
    40.周志鹏,李启明,邓小鹏等.基于事故机理和管理因素的地铁坍塌事故分析——以杭州地铁坍塌事故为实证[J].中国安全科学学报,2009,19(9):139~145.
    41.于镇洪,赵春来.一次冻结事故的分析[J].1979,11:3~4.
    42.陈明华,庞荣庆.深冻结井筒施工中几种常见事故的分析[J].建井技术,1981,04:45~48.
    43.陆卫国,沈华军,赵玄栋.深厚冲积层冻结管断裂机理分析[J].安徽建筑工业学院学报,2010,18(2):6~10.
    44.张剑争.岩层风化裂隙带中的冻结井筒井壁及其事故分析[J].煤炭科学技术,1979,11:1~2.
    45.沈忠言,吴紫汪.冻土三轴强度破坏准则的基本形式及其与未冻水含量的相关性[J].冰川冻土,1999,21(1):22~26.
    46.李宁,程国栋,徐学祖.冻土力学的研究进展与思考[J].力学进展,2001,31(1):95~102.
    47.马巍,王大雁.中国冻土力学研究50a回顾与展望[J].岩土工程学报,2012,34(4):625~640.
    48.刘杰.土的渗透稳定与渗流控制[M].北京:水利电力出版社,1992.
    49.刘杰.无黏性土层之间渗流接触冲刷机理试验研究[J].水利水电科技进展,2011,31(3):27~30.
    50.鞠远江.流土灾害的形成机理与治理[J].水土保持研究,2007,14(2):142~144.
    51.薛新华,张我华.堤坝管涌渗流的损伤机理研究[J].江南大学学报,2009,8(1):85~89.
    52.张秀勇.黄河下游堤防破坏机理与安全评价方法的研究[D].南京,河海大学,2005.
    53.张刚.管涌现象细观机理的模型试验与颗粒流数值模拟研究[D].上海,同济大学,2007.
    54.周健,张刚.管涌现象研究的进展与展望[J].地下空间,2004,24(4):536~542.
    55.周健,姚志雄,张刚.管涌发生发展过程的细观试验研究[J].地下空间与工程学报,2007,3(5):842~848.
    56.唐益群,林志,叶为民等.流土和管涌破坏机理研究[J].工程地质学报,2002,10:204~207.
    57.贺长俊,王良,苏靖.地下工程案例分析及风险预防[A].2005全国地铁与地下工程技术风险管理研讨会[C].北京:156~159.
    58.王梦恕,张成平.城市地下工程建设的事故分析及控制对策[J].建筑科学与工程学报,2008,25(2):1~6.
    59.孙志军,吕振绘,王义海.地下工程的事故分类及防治措施[J].建筑施工,2009,26(5):55~57.
    60.钱七虎,戎晓力.中国地下工程安全风险管理的现状、问题及相关建议[J].岩石力学与工程学报,2008,27(4):649~655.
    61.黄建陵,彭巍,华文鑫.地下工程安全风险管理与控制研究[J].铁道建筑,2012,1:77~79.
    62.张长庆,魏雪霞,苗天德.冻土蠕变过程的微结构损伤行为与变化特征[J].冰川冻土,1995,17:60~65.
    63.李洪升,刘增利,张小鹏.冻土破坏过程的微裂纹损伤区的计算分析[J].计算力学学报,2004,21(6):698~700.
    64.刘亚敏,周晶,李迁.大型工程突发事故形成的复杂性机理研究[J].复杂系统与复杂性科学,2011,8(2):39~44.
    65.白云,肖晓春,胡向东.国内外地下工程事故与修复技术[M].北京:中国建筑工业出版社,2012.
    66.李琦.马钢姑山矿采场边坡坍塌突水的分析与治理[J].安徽冶金科技职业学院学报,2007,17(1):32~35.
    67.陈崇希,林敏.地下动力学[M].武汉:中国地质大学出版社,1999.
    68.尹立明.深部煤层开采底板突水机理基础实验研究[D].青岛,山东科技大学,2011.
    69.刘增利.冻土断裂与损伤行为研究[D].大连,大连理工大学,2003.
    70.孙卓.冻土断裂力学应力强度因子的数值模拟计算[D].大连,大连理工大学,2003.
    71.王悦东.冻土非线性断裂破坏的数值模拟与实验研究[D].大连,大连理工大学,2003.
    72.李洪升,刘增利,朱元林.冻土断裂力学在挡墙基础稳定性分析中的应用[J].岩土工程学报,2002,24(1):69~71.
    73.吴紫汪.冻土蠕变变形特征的细观分析[J].岩土工程学报,1997,1(1):1~6.
    74.苗天德,魏雪霞,张长庆.冻土蠕变过程微结构损伤理论[J].中国科学(B),1995,2(3):57~62.
    75.林德洪.冻土损伤力学的研究进展和思考[J].山西建筑,2005,31(5):48~49.
    76.何平,程国栋.冻土粘弹塑损伤耦合本构理论[J].中国科学(D),1999,22(1):158~162.
    77.刘增利,李洪升,朱元林.冻土单轴压缩损伤特征和细观损伤测试[J].大连理工大学学报,2002,42(2):15~19.
    78.林德洪.冻土的力学特性和损伤本构模型的研究[D].北京:北京交通大学,2004.
    79.李洪升,王悦东,李亚民.冻土材料非线性断裂模型的试验研究[J].岩石力学与工程学报,2006,25(7):1391~1395.
    80.李洪升,朱元林.冻土断裂力学及其应用[M].北京:海洋出版社,2002.
    81.朱元林.我国冻土强度与蠕变研究[J].冻川冻土.1988,10(3):
    82.孙星亮,汪稔,胡明鉴.冻土弹塑性各向异性损伤模型及其损伤分析[J].岩石力学与工程学报,2005,24(19):3517~3521.
    83.李功洲.深井冻结壁位移实测研究[J].煤炭学报,1995,20(1).
    84.王长生.深井冻结壁变形的分析[A].地层冻结工程技术和应用—中国地层冻结工程40年论文集[C].北京:煤炭工业出版社,1995:165~170.
    85.盛天宝.特厚冲积层冻结法凿井冻结壁径向位移特性研究[J].煤炭工程,2011,11:82~84.
    86.胡翠平,陈红蕾.深厚冲积层冻结壁位移场分析[J].山西建筑,2011,31(21):
    87.王衍森等.特厚冲积层竖井井壁冻结压力的实测与分析[J].岩土工程学报,2009,31(2):207~2012.
    88. S.Murayama, T.Kunieda, T.sat等.在京都双线隧道间砾石层用冻结地层建设排水泵房峒室[A].第四届、第五届国际地层冻结会议论文选[C].北京:煤炭科学研究总院,1990:89~93.
    89. S.Murayama, M.Tanaka, N.Hanawa.冻结法在大直径盾构巷道海底贯通中的应用[A].第四届、第五届国际地层冻结会议论文选[C].北京:煤炭科学研究总院,1990:105~110.
    89. Konrad,J.M.Physical processes during freeze-thaw cycles in clayed silts[J].Cold RegionsScience and Technology,1989.l6(3):291-303.
    90. Viklander.P.Influence of cycles of freezing and thawing on the permeability in soils literatureinvestigation[J].lulea University of Teehnology,lulea,Sweden,TechniealReport,1995.
    91. Viklander,P.,K nutsson,S.Permeability changes in a fine-grained till due to cycles of freezingand thawing.In..Knutsson,S(EDS.), Proc..Intemational Symposium on groundfezing andFrost in soils,lulea, Sweden.A.A.Balkema, Rotterdam,1997:193一202.
    92. Corte,A· E..The frost tbehavior of soils.I.Vertical sorting,Highway Research BoardWashington[J], DC, USA Bulletin,1961.317:9-34.
    93. Yong,R.N.,Boonsinsuk,P.,Yin,C.W.P.. Alteration of soil behavior after cyclic freezing andthawing[A]. Proceedings,4thinternational symposium on ground freezing,Sapporo, Japan,August,1985.13:187-195.
    94. Wallace, J.F. Laboratory testing of bentonite amended soil mixtures Proposed foramdisposal facility liner. In Geotechnical and geohydrological aspeets of waste mamanagement[A] Edited by D.J.A.van Zylet al.J.D.Nelson, S.R.Abt, and TA.ShePherd lewis publishers,Chelsea, MI.1987.24:245-258.
    95. Wong, L.C..lmPact of freeze-thaw cycles on permeability of compacted soilM].M.Sc.thesis,Department of Civil Engineering,University of Saskatchewan, Saskatoon, Sask,1987.
    96. Yanful, E.X, Haug,M.D.,Wong,LC.The impact of synthetic leachate on the hydraulicconduetivity of a specific till underlying a landfill near Saskatoon,Saskatchewan[J].CanadianGeothehnical Jounral,1990,27:507-519
    97. Gandahl.R.The damaging effeets of frost action in roads,over view of types of ddamage andpreventive measures(in swedish)[J].Swedish Road and Traffic esearch Institute, VYIReport.No.230,likoping,Sweden,1980.
    98. Harlan, R. L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. WaterResources Research,1973,19(5):314-323.
    99. Fukuda M, Nakagawa S. Numerical analysis of frost heaving based upon the coupled heatand water flow model[A],4th International Symposium on Ground Freezing,5-7August1985, Sapporo,Japan,1985:109-117.
    100. Guymon G, Berg R. Hromadka T. A one-dimensional frost heave model based uponsimulation of simultaneous heat and water flux[J].Cold Regions Science andTechnology,1980,3(2-3):253-263.
    101. Fowler A.C, Noon C. G. A simplified numerical solution of the Miller model of secondaryfrost heave[J],Cold Regions Science and Technology,1993,21:327-336.
    102. Miller, R. D. Lens initiation in secondary heaving, Proceedings International Symposium onFrost Action in Soils[A], University of Lulea,1977,1:68-74.
    103. O'neill K, Miller R. D. Exploration of a rigid ice model of frost heave[J], Water ResourcesResearch,1985,21(3):281-296.
    104. Konrad, J. M. Sixteenth Canadian geotechnical colloquium: frost heave in soils: concept andengineering[J]. Canadian Geotechnical Journal,1994,31(2):223-235.
    105. Lim, I. L. Johnston and Et Al. Assessment of mixed-mode fracture toughness testing methodsfor rock[J], Int.J. Rock Mech. Min. Sci. Geomech. Abstr.,1994,31(3):265-272.
    106.Qizhi Wang, Lei Xing. Determination of fracture toughness IC K by using the flattenedBraziliandisk specimen for rocks[J], Engineering Fracture Mechanics,1999,64:193-201.
    107. Qiuhua Rao, Zongqi Sun and Et Al. Shear fracture (mode II) of brittle rock[J], Int. J. RockMech. Min. Sci,2003,40:355-375.
    108.Soo-Ho Chang, Chung-in Lee and Et Al. Measurement of rock fracture toughness undermodes I and II and mixed-mode conditions by using disc-type specimens[J], EngineeringGeology,2002,66:79-97.
    109. Isrm. Suggested methods for determining the fracture toughness of rock[J], Int. J.Rock.Mech. Min.Sci. Geomech. Abstr.,1988,25:71-96.
    110. Whittaker B.N, Singhand R. N. Sun G. Rock Fracture Mechanics[J]. Elsevier SciencePublishersB.V.,1992.
    111. Kaplan, M. F. Crack propagation and the fracture of concrete[J], Journal of AmericanConcrete Institue,1961,58(5):591-610.
    112. Elfgren, L. Fracture Mechanics of concrete structure from theory to application[M], NewYork&London: Chapman and Hall Ltd,1989.
    113. Hillerborg, A. Analysis of crack formation and crack growth in concrete by means offracturemechanics and finite elements[J], Cement and Concrete Research,1976,6(6):773-782.
    114. Planas, J. Elices M. Asymptotic analysis of the developmtnt of a cohesive crack zone inmodelloading for arbitrary softening curves[J]. Proceeding of Concrete and RockSEM-Rilem Conference, Huston,1987.
    115. Wierzbich, T. Spalling and buckling of ice sheets, ASCE Arctic's85Conference[A], SanFrancisco.1985:953-961.
    116. Palmer, A. C. Fracture mechanics model of ice-structure interaction. ILITAM/IAHRSymposium on ice structure interaction. St. Jorhn's Newfoundland,1989.
    117. Tomin, M. J. Cheung M. And Cormean A. Analysis of failure modes and damage processes offresh water ice in indentation tests[J]. OMAE86, TOKYO,1986,Vo1.4,867-878.
    118.余暄平,朱卫杰.上海市轨道交通四号线修复工程综述[J].建筑机械,2008.02:16~26.