覆膜旱植对超级杂交稻冠层生理生态特性及产量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级杂交稻的成功选育与大面积推广对于保障我国粮食安全具有重要作用,然而现实生产中超级杂交稻的产量潜力难以得到充分发挥,不同生态区的产量差异大。为进一步探明超级杂交稻高产机理,实现大面积稳定高产,本研究于2007~2009年设置栽培模式、覆盖方式和水分管理方式3个对比试验,对超级杂交稻高产群体特性、冠层特征和产量形成机理进行了较为系统的探讨。主要结果如下:
     1.超级杂交稻88S/1128在覆膜旱植和中后期灌水有利于实现高产。不同栽培模式之间表现为覆膜旱植栽培模式总颖花数提高7.4~16.0%,结实率提高3.94~10.08个百分点,千粒重提高了0.10g~0.79g,地上、地下部各时期的干物质积累均具有明显优势,产量比覆膜水植、不覆膜旱植和不覆膜水植模式相比分别提高了167.2kg/hm2、843.9kg/hm2和1125.9kg/hm2;不同水分管理,覆膜和不覆膜栽培下均为全生育期灌水处理产量最高,全生育期湿润处理最低;地膜、稻草和液膜3种覆盖方式的有效穗数、总颖花量和千粒重都高于不覆膜,产量分别提高16.81%、3.65%和9.59%。
     2.覆膜旱植和中后期灌水提高了冠层覆盖指数、平均叶倾角和直射辐射穿透系数,改善了超级杂交稻的冠层结构。栽培模式之间表现为覆膜旱植明显优于水植不覆膜,水植覆膜和旱植不覆膜介于两者之间,其中冠层覆盖指数的极差达0.28;不同水分管理下,覆膜和不覆膜两种模式均表现为全生育期灌水冠层结构显著优于湿润栽培,中期和后期灌水居中,处理间叶倾角差异覆膜大于不覆膜,齐穗期大于齐穗后20天,有效覆盖指数表现相反;旱植条件下,3种覆盖方式的冠层结构均优于无覆盖栽培,地膜优于稻草和液膜覆盖。
     3.覆膜旱植具有较高的光合速率和蒸腾速率,净光合速率较旱植不覆膜、水植覆膜和水植不覆膜处理平均提高11.84%、19.92%和14.90%,蒸腾速率较其它3种处理提高12.1%~25.1%,且随着生育期的推进差异加大。荧光动力学研究表明,地膜、液膜和稻草3种覆盖栽培都比不覆盖栽培提高了叶片Fv/Fm和Yield等荧光动力学参数,其中地膜覆盖的提高幅度最大,有利于水稻叶片在生育后期维持较高水平的PSⅡ潜在活性和实际原初光能捕获效率;不同水分管理方式对超级稻叶绿素荧光的影响较小。
     4.覆膜栽培能显著改善超级杂交稻88S/1128冠层微环境,降低了冠层温度,提高了冠层湿度。对冠层温度和湿度的监测表明,冠-气温差、冠-气湿度差有相同的变化趋势,其中覆膜水植的冠-气日平均温差高达2.07℃,且日变化在上午9时左右出现第一个降温增湿小高峰,冠-气温差达2.27℃,冠-气湿度提高10.93个百分点,晚上8时出现第二个降温增湿高峰,冠-气温差为2.86℃,冠-气湿度提高20.39个百分点。
     5.覆膜旱植增强了超级杂交稻88S/1128对营养物质的吸收,促进了干物质、Ca和SiO2的积累和转运。覆膜栽培在抽穗到成熟期间灌水,能显著提高水稻茎鞘和叶中钙的吸收和积累,但穗部钙的含量降低了。不同水分管理模式研究结果表明后期灌水显著提高了叶片中钙的含量,中期湿润后期灌水管理能提高茎鞘中钙的含量,后期湿润管理有利于穗中钙的吸收;在覆膜和灌溉双重处理下,植株吸收的SiO2于齐穗期向茎秆转运较多,有利于增强茎秆硬度,对防虫抗倒有积极意义。另外,覆盖栽培增强了旱植水稻对营养元素N、P、K的吸收能力,其中以地膜覆盖处理最为明显。
     6.覆膜栽培通过改善冠层微环境因子,尤其是通过提高蒸腾增湿降温,促进了超级杂交稻88S/1128对营养物质、干物质的积累及转运,提高了光合速率,有利于高产潜力的发挥。分析超级杂交稻产量构成因子与冠层小气候和光合生理特性之间的关系表明,对产量的影响作用大小依次为每穗总粒数、每穗实粒数、千粒重;齐穗期的光合速率对每穗实粒数影响最大,表现为倒2叶大于剑叶,乳熟期光合速率对千粒重影响最大,表现为剑叶大于倒2叶;在生育后期对光合速率影响最大的冠层小气候因子是冠层与大气的湿度差和冠层与大气的温度差,其中冠-气温差直接影响光合速率,冠气湿度差通过影响冠-气温度差而影响光合速率,且冠层湿度随着倒2叶蒸腾速率的升高而显著升高,同时冠层叶片蒸腾速率还促进了干物质向穗部积累和转运,茎叶对Ca吸收和SiO2向穗部的转运。
It is so important for food security in China to successful breeding of Super hybrid rice and extensive promotion, but the yield potential of super hybrid rice is difficult to full play in real production, and the yield is not the same in different ecological area. In order to further prove the high-yield mechanism of Super hybrid rice and achieve stable high yield of large area, between 2007 and 2009, we have designed 3 comparative tests in this study, such as cultivation pattern, mulching modes and water managements, researched of high-yielding population characteristics, canopy characteristics and yield formation mechanism of super hybrid rice. The major results were summarized as follows:
     1 Plastic film mulching dry-land cultivation and irrigation in the middle and late contributed to high yield of Super hybrid rice 88S/1128. Under different cultivation pattern, total spikelet number increased 7.4~16.00%, seed setting rate increased 3.94%-10.08%, and thousand-grain weight improved 0.10g~0.79g in plastic film mulching dry-land cultivation mode. Dry matter accumulation of aerial part and Underground area had obvious advantages in all periods, and its' yield were increased 167.2kg/hm2,843.9kg/hm2 and 1125.9kg/hm2 than plastic film mulching waterland cultivation, nude field dry cultivation and conventional cultivation. Under different water managements, the yield of whole growth period irrigation treatments was the highest in the film and nude field cultivation and whole growth period no-water treatments was the lowest. Effective panicle number, total amount of spikelet and thousand-grain weight of 88S/1128 under plastic mulching, straw mulching and liquid film covering were higher than nude field, and its'yield were increased 16.81%, 9.59% and 3.65%.
     2 Plastic film mulching dry-land cultivation and irrigation in the middle and late increased coverage index, the average leaf angle and direct radiation penetration coefficient, and improved canopy structure of Super hybrid rice. Plastic film mulching much better than the conventional cultivation in different cultivation pattern, and plastic film mulching waterland cultivation and nude field dry cultivation in between, and their canopy coverage index of very poor up to 0.28. Under different water managements, canopy structure of whole growth period irrigation treatments much better than no-water cultivation, the medium-term and late irrigation in between, and leaf inclination angle of plastic film cultivation was greater than nude field cultivation in different treatment, and full heading time is greater than 20 days after heading, but contrary to effective coverage index. Under dry-land conditions, canopy structure of 3 mulching modes are better than nude field cultivation, plastic film is better than covered with rice straw and liquid membranes.
     3 Plastic film mulching dry-land cultivation had high photosynthetic rate and transpiration rate, in particular, NET photosynthetic rate of plastic film mulching cultivation were higher 11.84%,19.92% and 14.90% than nude field dry cultivation, plastic film mulching waterland cultivation and conventional cultivation, and its' transpiration rate were higher 12.1%~25.1% than their, and as the growth stages of promoting the difference increased. On the other hand, compare with CK mulching cultivation enhanced fluorescence dynamics parameter-Fv/Fm and Yield, it's beneficial to potential activity of PSⅡand actual capture rate of luminous energy. Among the treatments of mulching film, straw and liquid film, mulching film was the best one. Otherwise, different water manage has little effect on fluorescence dynamics parameter of super hybrid rice.
     4 Film mulching cultivation could significantly improve canopy microenvironment of Super hybrid rice 88S/1128, lowered canopy temperature, and increased humidity in the canopy. Canopy temperature and humidity monitoring showed that canopy-air temperature difference and crown-air humidity difference had the same trend. The average daily temperature range of plastic film water cultivation was the most, up to 2.07℃, and diurnal variation appeared the first small cooling humidification peaks around 9 o'clock am, canopy-air temperature difference up to 2.27℃and improved 10.93%. It appeared the second cooling humidification peaks at 8 o'clock pm, canopy-air temperature difference was 2.86℃, crown-air humidity up to 20.39%.
     5. Calcium absorption characteristics of upland rice were different under different water management. The treatment of later stage irrigation enhanced the content of calcium in leaf, middle stage humidification and later stage irrigation favored calcium absorption of stems, later stage humidification was favorable for spic absorpting calcium. On the other hand, tillering stage to heading stage irrigation was not propitious for calcium absorption of stems and leaf. The treatment of heading stage to maturation stage irrigation enhanced calcium content of stems and leaf obviously, but the spic calcium content was reduced. The research showed that, more SiO2 tansfer to stems at full-heading stage under the treatment of mulching and irrigation,so the stems was more strong and had positive significance for insect resistance and lodging. Otherwise, mulching cultivation enhanced the absorption ability to N, P and K, among them, the treatment of plastic film mulching was most obvious.
     6. Analysis showed that the effects of yield factors on yield from big to small was total grains per panicle, the grain number per spike,1000-grain weight. At full heading stage the second leaf's photosynthetic rate effect the grain number per spike, at milk ripe stage flag leaf's photosynthetic rate effect the 1000-grain weight. Humidity difference and temperature difference between air and canopy were important factor for photosynthetic rate at in late growth stage, among them temperature difference was direct effect, humidity difference was indirect effect. The humidity of canopy increased significantly when second leaf's transpiration rate was improved. At the same time, transpiration promoted dry matter and SiO2 accumulation of spike, calcium transport to stems and leaf, it was dvantageous to high yield.
引文
[1]蔡焕杰,张振华,柴红敏.冠层温度定量诊断覆膜作物水分状况试验研究[J].灌溉排水,2001,20(1);1-4.
    [2]陈倩,孙光明,臧小平等.卡因萝卜N、P、K养分累积规律的研究[J].热带作物学报,2010,32(6):930-935.
    [3]陈温福,徐正进,张文忠,马殿荣,张树林.中国超级稻育种研究进展与前景[J].沈阳农业大学学报,2007,38(5):662-666.
    [4]陈晓飞,等.水稻不同节水灌溉技术措施对春季土壤墒情及养分状况的影响[J].沈阳农业大学学报'2004,35(3-6):462-464.
    [5]陈叶平,林昌庭,叶礼水,等.单季杂交稻覆膜栽培技术应用研究[J].浙江农业,2000,(1):9-11.
    [6]董桂春,王余龙.水稻根系生长动态的研究[J].扬州大学学报(农业与生命科学版),2002,23(4):51-55.
    [7]董振国,刘瑞文.黄淮海平原高产田作物群体结构特征[J].应用生态学报,1992,3(3):240-246.
    [8]董振国.农田作物环境生态[M].北京:中国农业科技出版社,1994.
    [9]段永红,李本纲,陶澍.冬小麦田午时冠层温度与气温和地温的关系[J]_应用气象学报,2003,14(3):56-362.
    [10]樊廷录,宋尚有,徐银萍,等.旱地冬小麦灌浆期冠层温度与产量和水分利用效率的关系[J].生态学报,2007,27(11):4491-4497.
    [11]樊小林,史正军,吴平.水肥(氮)对水稻根构型参数的影响及其基因型差异[J].西北农林科技大学学报:自然科学版,2002,30(2):1-5.
    [12]费槐林,蔡国海.水稻生产现状与技术对策[M].北京:中国农业出版社,1995:6.
    [13]冯永祥,徐正进,姚占军.行向对不同穗型水稻群体微气象特性影响的研究[J].中国农业气象2002,23(3):18-21.
    [14]付立东,王宇,徐久升,等.水稻覆膜插秧节水栽培技术研究[J].垦殖与稻作,2000,(5):9-11.
    [15]付立东,王宇,展广军,等.盐粳68优化栽培技术研究[J].辽宁农业科 学,2006(2):35-37.
    [16]高旺盛,杨光立.粮食安全与农作制度建设[M].长沙:湖南科学技术出版社,2004:9.
    [17]洪庆文,黄不凡主编.农业生产中的若干土壤学与植物营养学问题[J].科学出版社,1994,(11):1-6.
    [18]华南农业大学,河北农业大学.1988.植物病理学(第2版).北京:中国农业出版社,1988.
    [19]黄发松,罗玉坤,庞乾林.我国优质稻米的生产现状和发展对策[J].中国稻米,998,(6):3-6.
    [20]黄文江,王纪华,赵春江,等.旱作水稻幼穗发育期若干生理特性及节水机理的研究[J].作物学报,2002,28(3):411-416.
    [21]黄义德,张自立,魏凤珍,等.水稻覆膜旱作的生态生理效应[J].应用生态学报,1999,6(3):305-308.
    [22]黄义德,张玉屏,黄文江,等,茶稻间作系统的生态结构特征及生理特性研究[J].应用生态学报,1999,10(5):559-562.
    [23]胡实,彭娜,谢小立,等.农田秸秆覆盖保墒研究[J].中国农业气象,2007,28(1):49-53.
    [24]金千瑜,欧阳由男.我国发展节水型水稻的若干问题探讨[J].中国稻米,1999,1;9-12.
    [25]金千瑜,欧阳由男,张国平.覆膜旱栽水稻的产量与生育表现研究[J],浙江农业大学学报(生命科学版),2002,28(4):362-368.
    [26]梁永超,胡锋,沈其荣,等.水稻覆膜旱作研究现状与展望[A].冯锋,张锁福,杨新泉.植物营养研究进展与展望[C].北京:中国农业大学出版社,2000:114-127.
    [27]李德志,臧润国.森林冠层结构与功能及其时空变化研究进展[J].世界林业研究,2004,17(3):12-16.
    [28]李克武,易杰忠,董全才.覆膜旱作稻米品质的初步研[J].中国农学通报,2000,6(5):4-6.
    [29]凌启鸿主编,作物群体质量.上海:上海科学技术出版社.2000:1-216.
    [30]凌启鸿.水稻高产群体质量及其优化控制初论[R].南京:江苏省农林厅,江苏农 学会,1991.
    [31]凌启鸿,张洪程,丁艳锋,等.水稻精确定量栽培理论与技术[M].北京:中国农业出版社,2006:92-138.
    [32]梁银丽,张成娥.冠层温度-气温差与作物水分亏缺关系的研究[J].生态农业研究,2000,8(1):24-26.
    [33]林文雄.气候条件对杂交水稻籽粒灌浆的影响[J].中国农业气象,1992,13(2):4-7.
    [34]林世成,过益先,杨泉涌,等.水稻不同群体结构的丰产特性的研究[J].作物学报1963,2(4):363-380.
    [35]林世青,许春晖,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用.植物学通报,1992,9(1):1-16.
    [36]林扬鹏,蔡火车.水稻氮磷钾平衡施肥应用研究[J].福建热作科技,2002(3):6-8.
    [37]林振武,郑朝峰,吴少伯等.硝酸还原酶活力与作物耐肥性的研究Ⅱ.籼、粳稻对硝态氮的吸收和同化[J].作物学报,1986,12(1):9-14.
    [38]刘恩民,于强,谢贤群.水分亏缺对冬小麦冠层温度的研究[J].生态农业研究,2000,8(1):21-23.
    [39]刘凤丽.控制灌溉对水稻冠层结构和干物质增长影响研究[D].南京:河海大学硕士论文,2005,6.
    [40]刘建.环境因子对稻米品质影响研究进展[J].湖北农学院学报,2002,22(6):550-554.
    [41]刘茂国.海城市西四镇水稻“3414”肥效试验研究[J].辽宁农业职业技术学院学报,2009(3):24-26.
    [42]刘瑞文,董振国.冠层温度和气温的差与冬小麦生长的关系[J].生态学报,1993,13(4):377-379.
    [43]刘云,宇振荣,孙丹峰,等.冬小麦遥感冠层温度监测土壤含水量的试验研究[J].水科学进展,2004,15(3):352-356.
    [44]李义珍,黄育民.杂交稻高产群体的干物质积累运转与贮藏性碳水化合物的积累运转[J].福建建省农科院学报,1996,11(3):1-7.
    [45]路兴花,吴良欢,刘铭,等.覆膜旱作对水稻生长发育及某些生理特性地影响[J]. 浙江大学学报.2002.28(6):609-614.
    [46]路兴花,吴良欢,郑寨生,等.生态稻区覆膜旱作稻氮营养生理及抗逆生理特性探讨[J].应用生态学报,2005,16(2):273-278.
    [47]吕川根,宗寿余,姚克敏,两优培九稻曲病的发生及其与抽穗后温湿度的关系[J].杂交水稻,2003,18(5):49-52.
    [48]吕川根,宗寿余,胡凝,等.两系杂交稻两优培九粒重因子的环境模型解析及生态特征分析[J].作物学报,2008,34(12):2202-2209.
    [49]农业部推荐的28个符合超级稻标准的水稻品种[J].中国农技推广,2005(5):24.
    [50]彭少麟,任海.南亚热带森林生态系统的能量生态研究[M].北京:气象出版社.1998:15-35.
    [51]彭世彰.节水灌溉水稻需水新特点[J].农田水利与小水电,1992,(11):7-11.
    [52]彭世彰,朱成立.节水灌溉地作物需水量试验研究[J].灌溉排水学报,2003,22(2):21-25.
    [53]钱晓晴,沈其荣,徐勇,等.不同水分管理方式下水稻地水分利用率与产量[J].应用生态学报,2003,14(3):399-404.
    [54]青先国.水稻丰产高效实用技术[M].长沙:湖南科技出版社,2005.
    [55]盛海君,沈其荣,封克.覆盖旱作水稻群体发育特征分析[J].应用生态学报,2004,15(1):59-62.
    [56]沈康荣,罗显树.水稻全程地膜覆盖湿润栽培法增产因子及关键栽培技术的研究[J].华中农业大学学报,1997,16(6):547-551.
    [57]沈康荣,汪晓春,刘军,等.水稻地膜湿润栽培试验示范[J].湖北农业科学,1997,(5):18-22.
    [58]史宝成,刘钰,蔡甲冰.冠层温度指导冬小麦灌溉的试验研究[J].节水灌溉,2008,4:11-14.
    [59]石英,沈其荣,茆泽圣,等.旱作条件下水稻的生物效应及表层覆盖的影响[J].植物营养与肥料学报,2001,7(3):271-277.
    [60]石英,沈其荣.旱作水稻根际土壤铵态氮和硝态氮的时空变异[J].中国农业科学,2002,35(5):520-524.
    [61]司徒凇,王和洲,张薇.中国水稻节水若干问题地讨论与建议[J].灌溉排水学 报,2000,19(1):30-33.
    [62]孙国荣,朱鹏,肖翊华等.杂交水稻硝酸还原酶活性和NO含量昼夜变化规律的研究[J].武汉大学学报(自然科学版),1992,(1):91-97.
    [63]孙宏勇,张喜英,陈素英,等.水分胁迫对冬小麦冠层结构及光合作用特性的研究[J].灌溉排水学报,2005,24(2):31-34.
    [64]孙旭初.水稻叶型的类别及其与光合作用的研究[J].中国农业科学,1985(4):49-55.
    [65]苏祖芳,郭宏文.水稻群体叶面积动态类型的研究[J].中国农业科学,1994,27(4):23-30.
    [66]苏祖芳,张娟,王辉斌,等.水稻群体茎蘖动态与成穗率和产量形成关系的研究[J].江苏农学院学报,1997,18(1):36-40.
    [67]谭长乐,张洪熙.水稻覆膜旱栽特性的研究与讨论[J].江苏农业科学,1999(6).
    [68]王国宇,宋尚有,樊廷录,等.不同基因型玉米冠层温度与产量和水分利用率的关系[J].玉米科学,2009,17(1):92-95.
    [69]汪晓春,刘军.水稻地膜覆盖栽培地抗旱节水效应[J].湖北农业科学,2001,(1):8-11.
    [70]王辉,曾祥宽,张燕之,等.水稻旱作在我国发展的前景分析[J].农业经济,2001(1):11.
    [71]汪强,樊小林,D Klaus,等.华南地区覆盖旱种水稻节水及其水分利用率的研究[J].灌溉排水学报,2007,26(4):89-92.
    [72]王伟平,武小金.两系超级杂交稻育种研究进展[J].杂交水稻,2006,21(2):5-6.
    [73]王树森,邓根之.地膜覆盖增温机制的研究[J].中国农业科学,1991,24(3):74-78.
    [74]王希群,马履一,贾忠奎,等.叶面积指数的研究和应用进展[J].生态学杂志,2005,24(5):537-541.
    [75]王学华.超级稻上部叶片光合能力的研究[J].作物研究,2004,(2):68-71.
    [76]王友贞,袁先江,许浒,等.水稻旱作覆膜的增温保墒效果及其对生育状况影响研究[J].农业工程学报2002,18(2):29.
    [77]王远敏,硅对水稻生长发育及产量品质的影响研究.硕士论文.西南大学,2007.
    [78]王占乔,欧康泉,杜同兴,等.水稻覆膜旱作分蘖期耐旱能力初步研究[J].安徽农 业通,2000,6(3):33-35.
    [79]王志琴,杨建昌,朱庆森.土壤水分对水稻光合速率与物质运转的影响[J].中国水稻科学,1996,10(4):235-240.
    [80]文玉能.f氐产冷浸田水稻施锌肥的效果分析[J].农技服务,2008,(7):40.
    [81]巫伯瞬.水稻旱作技术[M].北京:农业出版社,1985.
    [82]吴良欢,祝增荣,梁永超,等.水稻覆膜旱作节水节肥高产栽培技术[J].浙江农业大学学报,1999,25(1):41-42.
    [83]吴文革,徐秀娟,陈周前,等.覆膜旱作水稻生育特点及其适宜栽培技术的研究[J].安徽农业科学.1998,26(3):227-230.
    [84]吴一才,等.地膜覆盖旱种水稻试验情况简报[J].辽宁农业科学,1982(,4):28-30.
    [85]吴一才,宋嵩山,邹积斌.水稻覆膜旱作展望[J].辽宁农业科学,1987,(1):13-15.
    [86]吴一才,王玉山,等.水稻覆膜旱作研究[M].稻田生产地结构改革与发展.北京:知识出版社,1993:149-165.
    [87]向万胜,古汉虎.低湖区潜育性稻田施用钾肥的效应及对土壤氧化还原性状的影响[J].土壤肥料,997,(2):32-34.
    [88]薛贞德,宋云英.对水稻茎蘖消长动态的研究[J].安徽农业科学,1997,26(1):38-39.
    [89]徐正进.日本超高产水稻的形态生理特点及其与物质生产的关系[J].沈阳农业大学学报,1991,22(增刊):34-42.
    [90]熊振民,王建林.我国水稻超高产品种选育的理论与实践[J].水稻文摘,1992.11(4):1-7.
    [91]徐国郎,王寿岷,张少康,等.节水型农业灌溉技术[M].北京气象出版杜,1990:80-147.
    [92]许轲,张洪程,戴其根,等.稻田套播麦共生期农田生态环境特征及对小麦生长的影响[J].中国农业科学,2008,41(8):2263-2270.
    [93]杨安中,王敏,张从宇.秸秆与地膜二元覆盖对小麦田间生态环境及产量影响[J].水土保持学报,2003,17(3):181-182.
    [94]杨惠杰,李义珍.超高产水稻的产量构成和库源结构[J].福建农业学报,1999,14(1):1-5.
    [95]杨仁崔.国际水稻研究所的超级稻育种[J].世界农业,1996,(2)25-27.
    [96]杨建昌,王志琴,陈义芳,蔡一霞,刘立军,朱庆森.早种水稻产量与米质的初步研究[J].江苏农业研究,2000,21(3):1-5.
    [97]闫川,丁艳锋,王强盛,等.行株距配置对水稻茎秆形态生理与群体生态的影响[J].中国水稻科学,2007,21(5):530-536.
    [98]颜振德.杂交水稻高产群体的干物质生产与分配的研究[J],作物学报1981,7(1):11-17.
    [99]叶永印,张时龙,等.水稻生长中期群体结构对产量及构成因素的影响[J].安徽农业科学.2003,31(1):87-89.
    [100]叶正襄,秦厚国,黄荣华,等,不同湿度下背飞虱实验种群生命表[J].植物保护学报[J],1992,4:323-329.
    [101]易杰克,李克武,王松松.不同覆盖物对水稻旱管栽培产量形成地影响[J].江苏农业科学,2001,(2):7-9.
    [102]余敦亮,荣维国.水稻覆膜旱作技术研究[J].安徽技术师范学院学报,2003,17(3):235-236.
    [103]余叔文.不同生长时期土壤干旱对作物的影响[J].作物学报,1962,4(4):399-400.
    [104]袁隆平.超级杂交水稻育种研究的进展.中国稻米,2008,1:1-3.
    [105]袁隆平.实施超级杂交稻“种三产四”丰产工程的建议.杂交水稻,2007,22(4):1.
    [106]袁隆平,马国辉.超给杂交稻亩产800公斤关键技术[M].中国三峡出版社,2006:11.
    [107]员学锋,吴普特,汪有科.地膜覆盖保墒灌溉的土壤水、热以及作物效应研究[J].灌溉排水学报,2006,25(1);25-29.
    [108]翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量的关系[J].中国科学(C辑),2002,32(3):211-217.
    [109]张林青,马爱京,张亚洁.高产水稻生育前期叶面积指数和群体茎蘖组成及其关系的研究[J].安徽农业大学学报,2004,31(3):320-324.
    [110]张文忠,韩亚东,杜宏绢,等.水稻开花期冠层温度与土壤水分及产量结构的关系[J].中国水稻科学,2007,21(1):99-102.
    [111]张盛超,保安辉.冷烂锈水田分厢开沟对水稻增产作用初探[J].耕作与栽培,2006,(1):40.
    [112]张矢,吴宪章,蒋本福,等.水稻陆稻覆盖栽培地技术效应[J].黑龙江农业科学,1983,(5):20-34.
    [113]张顺发,张桂莲,陈立云,肖应辉.高温胁迫对水稻剑叶净光合速率和叶绿素荧光参数的影响[J].中国水稻科学,2011,25(3):335-338.
    [114]张喜英,裴冬,陈素英.用冠气温差指导冬小麦灌溉的指标研究[J].中国生态农业学报,2002,10(2):102-105.
    [115]张玉烛,黎用朝,青先国,等.优质食用稻生产与加工技术[M].长沙:湖南科学技术出版社,2001:35.
    [116]赵春江,黄文江,王之杰,等.不同水肥处理下冬小麦冠层含水率与温度关系的研究.农业工程学报.2002,18(2):25-28.
    [117]赵静,陈晓飞,席联敏,等.水稻覆膜灌溉对生态环境的影响研究[J]-灌溉排水学报,2005,24(3):8-11.
    [118]赵其良.日本东北地区水稻早种地膜覆盏栽培技术[J].辽宁农业科学,1982,(8):52-56.
    [119]赵其良,肖明贤,日本东北地取水稻旱种地膜覆盖栽培技术[J].辽宁农业科学,982,(3):52-56.
    [120]赵鹏,王长发,苗芳.小麦子里灌浆期冠层温度与产量相关性的关系[J].西北农林科技大学学报(自然科学版),2007,35(12):138-142.
    [121]郑曼妮,张海清,敖和军.光温因子对超级杂交稻生长及产量的影响[J].作物研究,2010,24(3):135-144.
    [122]中国农业部.中国超级稻育种——背景、现状和展望.农业部“新世纪农业曙光计划”项目[N],1996.
    [123]周立宏,李秀芬,赵凤艳,等.不同穗型水稻群体中温湿度特征的研究[J].中国农学通报,2009,25(16):86-90.
    [124]周以鸿.云南不同地区水稻产量与气候因素关系的探讨[J].云南农业大学学报.1990,5(1):7-8.
    [125]朱以维.大理市冷浸田水稻覆膜增温高产栽培试验成功[J].大理科技,2002,(1):32.
    [126]朱咏莉,吴金水,童成立,等.稻田C02通量对光强和温度变化的响应特征[J].环境科学,2008,29(4):1040-1044.
    [127]朱自玺,赵国强,邓天宏,等.秸秆覆盖麦田水分动态及水分利用效率研究[J].生态农业研究,2000,8(1):34-37.
    [128]佐藤尚雄.水稻超高产育种研究[J].国外农学—水稻,1984,(2):1-16.
    [129]邹应斌,戴魁根.湖南发展双季稻生产的优势[J].作物研究,2008,22(4):209-213.
    [130]邹应斌,双季稻超高产栽培技术体系研究与应用.长沙:湖南科学技术出版社,1999.
    [131]邹君,杨玉蓉,谢小立.不同水分灌溉下的水稻生态效应研究[J].湖南农业大学学报(自然科学版)2004,30(3):212-215.
    [132]邹应斌,周上游,唐启源.中国超级杂交水稻超高产栽培研究的现状与展望[J].中国农业科技导报,2003,5(1):31-35.
    [133]Ayeneh A, Van ginkel M, Reynolds M P, et al. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research.2002,79(2-3):173-184.
    [134]Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol,1980,31:491-543.
    [135]Crafts-Brandner S J,SalvueciM E.Ruhisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA,2000, 97:1340-1343.
    [136]Genty B,Briantais J M,Baker W. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochemistry Biophysics Acta,1989,990:87-92.
    [137]Horie T. Increasing yield potential in irrigated rice:Breaking the yield barrier [A].In:Peng S, Hardy B. Research for Food Security and Poverty Alleviation[C]. Manila:IRRI,2001:95-108.
    [138]International Rice Research Institute. IRRI towards 2000 and beyond [M].Manila, Philippines:IRRI,1989:36-37.
    [139]IPCC. IPCC Third Assessment Report:Climate Change 2001. Geneva: IPCC.2001.[2010-04-03]. http://www.ipcc.ch.2001.
    [140]Jackson R D, Idbo S B, Reynolds R J, et al. Canopy temperature as a crop water stress indicator, Water Source Research,1981.17:1133-1138.
    [141]Kirkham M D, Suksayretrup K, Wassorn C E, el al. Canopy temperature of drought-resistive genotypes of maize. Maydica,1984.24:287-303.
    [142]Krause G H,Weis E Chlorophyll fluorescence and photosynthesis:the basics[J]. Plant Physoil,1991,42:313-349.
    [143]Maddonni G A,M ChelleJ L Drouetet,et al.Light intenception of contrasting-azimuth canopies under square and rectangular plant spatial distribution: simu-lations and crop measurements[J].Field Crop Research,2001,(7):1-13.
    [144]Monneveux P,Pastenes C, Reynolds M P. Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes.J Plant Physiol,2003,1 60(6):657-666.
    [145]Pamplona, R.R.; et al.1995. Effect of solar radiation and temperature on rice yield. Phil Rice Technical Bulletin.1(1).
    [146]Pandey N, Tripathi R S, Mittra B N. Yield, nutrient uptake and water use effeciency of rice as influences by nitrogen and irrigation. Annals of Agricultural Research,1992,13(4):377-382.
    [147]Park,H.;Kim,Y.S.;Yoon,J.H.1972.Analysis of Productivity in Rice Plant. Ⅱ. Evaluation of Canopy Structure and Canopy Seore. J. Korean Soc. Soil Sci. Fert. 5(1):9-15.
    [148]Ralph P J, Gademann R, Larkum A W D Kuhl M. Spatial heterogeneity in active chlorophyll fluorescence and PSⅡ activity of coral tissues [J]. Mar.Biol.2002,141: 639-646.
    [149]Van Dat Tran. An overview of upland rice in the world. In:progress in upland rice research proceedings of the Jakarta conference [J]. IRRI, Manila, Philippines.1985,51-66.
    [150]Van Kooten O, Snel J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research,1990,25:147-150.
    [151]Vories E D. Production of water-seeded rice on a clay soil. Research Series, 1996,453:271-274.
    [152]Rashid A, Stark J C, Tanveer A, et al. Use of canopy temperature measurements as a screening tool for drought tolerance in spring wheat Journal of agronomy and crop science,1999,182(4):231-237.
    [153]Tanner C B. Plant temperature, Agronomy Journal,1963,55:210-211.
    [154]Triboi E, Martre P, Triboi Blondel A M. Environmentally induced changes in protein composition in developing grains of wheat are related to changes in total protein content.J Exp Bot,2003,54(388):1731-1742.