干旱半干旱区两种典型下垫面的陆面过程模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱半干旱区占全球陆地面积近40%,其地表类型复杂多样,涵盖了草地,农田,沙漠,戈壁以及冻土等多种类型。这些复杂下垫面的陆面过程特征随地域和季节的变化较大,并且明显受到自然变迁及人类生活生产活动所引起的土地利用和地表覆盖方式改变的影响,因而其陆面过程在全球气候系统中占有十分重要的地位。现有的大部分陆面过程模式对干旱半干旱区典型下垫面的陆面过程模拟仍然存在较大偏差,并且陆面过程观测实验中存在的能量不闭合等问题更是增加了陆面过程模拟研究的复杂性。因此如何改进陆面过程参数化方案,发展更适用于干旱半干旱区的陆面过程模式是陆面过程研究中的重要任务。
     为了提高陆面模式对干旱半干旱区典型下垫面的模拟性能,本文从以下三个方面进行了研究。首先发展了一个陆面过程模式TBLSHAW,并利用兰州大学半干旱气候与环境观测站(SACOL)观测资料进行验证;其次针对陆面观测实验中普遍存在的近地层能量不闭合问题,利用陆面过程模式TBLSHAW和SACOL站近地层观测资料,研究了半干旱区近地层能量闭合度对陆面过程模式的影响;最后,鉴于干旱区地表大量覆盖地膜抑制蒸发的事实,利用西北干旱区开展的“古浪非均匀下垫面近地层观测实验(GHUSLE)"中地膜覆盖农田下垫面的观测资料,建立了相应的参数化方案,发展了TBLSHAW_MULCH模式,并对干旱地区地膜覆盖农田下垫面的陆面过程特征进行了模拟研究。主要结论如下:
     (1)基于陆气间物质和能量平衡原理,在SHAW模式和CoLM模式的基础上发展了TBLSHAW模式。该模式吸收了CoLM模式中的双大叶模型用于计算植被与大气间的物质和能量平衡,详细考虑了植被层辐射传输,降水截留,蒸发蒸腾以及光合作用等物理过程;利用通用的土壤水热耦合传输模型计算土壤温度和湿度,并包含了土壤冻融,蒸发及降水渗透等过程;结合由SACOL站长期观测的土壤温湿及近地层资料发展而来的适用于半干旱区的部分陆面参数化方案,最后采用SHAW模式的动力框架,形成了一个土壤-植被-大气相互作用的陆面过程模式。
     (2)利用SACOL站观测资料,通过模拟黄土高原半干旱区典型干季(裸土)和湿季(草地)陆面过程特征以及土壤冻融过程验证了TBLSHAW模式的模拟性能,通过对比分析观测资料和不同模式的模拟结果,发现TBLSHAW模式改善了该地区土壤水热传输过程的模拟能力。TBLSHAW模式能较好的模拟黄土高原半干旱区干湿两季的净短波和净长波辐射以及土壤温度和湿度,并能合理的反映黄土高原地区的能量分配状况,模式模拟值与相应的观测值偏差较小,模式效率较高;TBLSHAW模式能较好的模拟土壤冻融过程中土壤温度和湿度的变化,模拟的土壤温度和湿度与相应的观测值偏差较小。
     (3)针对干旱半干旱区(甚至大部分地区)观测的近地层能量不闭合问题,利用2007年春季SACOL站的近地层观测资料和TBLSHAW模式,通过数值模拟和对比分析方法研究了半干旱区近地层能量闭合度对陆面过程模式的影响。结果表明:在半干旱区近地层能量不闭合将通过近地层湍流参数化方案传导到陆面过程模式中,当湍流通量低于可利用能量时,能量不闭合将使得陆面过程模式模拟的地表长波辐射和土壤温度明显较观测值偏高;而将实际观测中能量不闭合部分以某种形式分配到观测的湍流通量中,即修正观测的湍流通量使之达到近地层能量平衡,并依据修正的湍流通量发展湍流参数化方案,在不改变任何地表土壤物理生化属性的情况下,陆面过程模式能较好地模拟地表长波辐射和土壤温度。
     (4)以GHUSLE实验中地膜覆盖农田下垫面观测为基础,发展了一个地膜层子模型,并建立了相应的陆面参数化方案,发展了TBLSHAW_MULCH模式,利用该模式模拟了地膜覆盖农田下垫面的陆面过程特征;同时利用相同的大气强迫数据运行TBLSHAW模式作为数值对比试验,研究了地膜覆盖对农田陆面过程特征的影响。结果表明:TBLSHAW_MULCH模式能够较好的模拟地膜覆盖农田下垫面的各项陆面过程特征,模式效率较高,模拟值与观测值的偏差较小。通过与TBLSHAW模式模拟的陆面过程特征对比发现,地膜覆盖显著地影响了陆面过程,因此在模拟干旱区地膜覆盖下垫面的陆面过程时应该考虑地膜的作用。
The arid and semi-arid regions are nearly40%of the global land area, its surface cover are diverse and complex, including various landscapes such as grassland, farmland, desert, Gobi, and permafrost. For these complicated underlying surface, their characteristics of land surface process varies with area and season obviously, and is significantly affected by natural changes and the changes of land use and land cover which is caused by the human activities, and thus their land surface process plays a very important role in the global climate system. But for the most of present land surface process models, there is still existence of a large deviation in land surface process simulation over the typical underlying surface in the arid and semi-arid areas. Furthermore, there is the energy imbalance in the surface layer in observation experiment; this makes the land surface process simulation more difficult. How to improve the land surface parameterization schemes, and develop land surface process model more applicable to the arid and semi-arid regions is an important task in the study of land surface processes.
     In order to improve the performance of land surface model simulation over the typical underlying surface in the arid and semi-arid areas, the land surface model was studied from three aspects in this paper. Firstly, a land surface process model TBLSHAW was developed and verified with the observation data in the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL). Secondly, focusing on the influence of the energy imbalance, which was commonly existed in the land surface observation experiment, the impact of energy imbalance upon land surface process simulation in semi-arid region were studied by using the SACOL surface layer observation data and land surface model TBLSHAW. Finally, in view of the fact that the large number of arid areas surface was covered by plastic mulch to inhibit evaporation, a new model TBLSHAW_MULCH was developed by improving the parameterization scheme with the observation at a cropland underlying surface covered by plastic mulch in the Gulang Heterogeneous Underlying Surface Layer Experiment (GHUSLE) in the arid region to simulate the land surface process of the cropland underlying covered by plastic mulch in arid region. We draw the following conclusions:
     (1) Based on the energy and material balance principle between land surface and atmosphere, a land surface model TBLSHAW was developed by means of SHAW and CoLM models. The TBLSHAW model, which was a land surface model including soil-vegetation-atmosphere interactions, absorbed the two-big-leaf model to calculate the material and energy balance between the vegetation and the atmosphere and to consider the vegetation canopy radiation transfer, precipitation interception, evaporation, transpiration, photosynthesis and other physical processes in detail; It used the general soil heat and water coupling transfer model to calculate soil moisture and temperature, and included the process of soil freezing and thawing, evaporation and precipitation infiltration; It combined part of the land surface parameterization schemes which was developed using the long-term observations of soil temperature and moisture and surface layer at SACOL; and it employed SHAW model framework.
     (2) Using observational data in SACOL, the performance of the TBLSHAW model was verified by simulating the land surface process of the typical dry (bare soil), wet season (grass land), freezing and thawing. Comparing among the observation and the simulations by TBLSHAW and different land surface process models, the results indicated that TBLSHAW model improved the simulation of soil water and heat transfer process in SCAOL. The TBLSHAW model could simulate the net shortwave, net longwave, soil temperature and moisture well, and could reasonably reproduce the energy distribution of the Loess Plateau both in dry and wet seasons. The simulation was close to the observation, and the model was efficient; The TBLSHAW model could also well simulate soil freezing and thawing process, and the bias between simulated soil temperature and the observation was small, so as the soil moisture.
     (3) In view of the fact that the observed surface layer energy was not closed in the arid and semi-arid regions (even the most of the global land surface), the TBLSHAW model was employed to study the impacts of energy closure ratio upon land surface simulations in semi-arid region through numerical simulation and comparative analysis method with the observation at SACOL in the spring,2007. The results showed that the observed energy imbalance could conducted into land surface process model by turbulent parameterization scheme in semi-arid area, when the sum of turbulent fluxes were lower than the available energy, the energy imbalance would make the land surface process model significantly overestimated the surface longwave radiation and soil temperature; when the actual observed energy imbalance part distributed into observed turbulent fluxes in some way, that meant correcting the observed turbulent fluxes so as to make the surface energy balance, and the turbulent fluxes parameterization scheme was developed based on the modified turbulent heat flux, then the land surface process model could well simulate the surface longwave radiation and soil temperature without changing any physical and biochemical properties of soil.
     (4) Based on the observation at a cropland underlying surface covered by plastic mulch in the GHUSLE, a new model TBLSHAW_MULCH was developed by coupling a plastic mulch sub-model to simulate the land surface process of the cropland underlying covered by plastic mulch in arid region; A comparative run the TBLSHAW model was performed to investigate the effect of the plastic mulch. The results showed that TBLSHAW_MULCH model could well simulate the land surface process characteristics of the cropland underlying surface covered by plastic mulch. And the model was efficient and the deviations between simulated and observed values were small. Compared the simulation of the TBLSHAW model with that of the TBLSHAW_MULCH model, it was suggested that the plastic mulch obviously affected the land surface process, and consequently the role of the plastic mulch should be considered in the land surface model.
引文
Albertson, J. D., Parlange, M. B., Katul, G. G.,et al. Sensible Heat-Flux from Arid Region:A Simple Flux-Variance Method[J]. Water.Resour.Res.,1995,31(4):969-973.
    Bounoua, L., DeFries, R., Collatz, G. J.,et al. Effects of Land Cover Conversion on Surface Climate[J]. Climatic Change,2002,52(1):29-64.
    Braud, I., Noilhan, J., Bessemoulin, P.,et al. Bare-Ground Surface Heat and Water Exchanges under Dry Conditions:Observations and Parameterization[J]. Boundary-Layer Meteorology,1993,66(1):173-200.
    Charney, J., Quirk, W. J., Chow, S.-H.,et al. A Comparative Study of the Effects of Albedo Change on Drought in Semi-Arid Regions[J]. Journal of Atmospheric Sciences,1977, 34(9):1366-1385.
    Chen, F., Dudhia, J. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part Ii:Preliminary Model Validation[J]. Monthly Weather Review,2001,129(4):587-604.
    Chen, W., Zhu, D., Liu, H.,et al. Land-Air Interaction over Arid/Semi-Arid Areas in China and Its Impact on the East Asian Summer Monsoon. Part I:Calibration of the Land Surface Model (BATS) Using Multicriteria Methods[J]. Advances in Atmospheric Sciences, 2009,26(6):1088-1098.
    Chen, Y., Yang, K., Zhou, D.,et al. Improving the Noah Land Surface Model in Arid Regions with an Appropriate Parameterization of the Thermal Roughness Length[J]. Journal of Hydrometeorology,2010,11(4):995-1006.
    Collatz, G. J., Bounoua, L., Los, S. O.,et al. A Mechanism for the Influence of Vegetation on the Response of the Diurnal Temperature Range to Changing Climate[J]. Geophys. Res. Lett.,2000,27(20):3381-3384.
    Dolman, A. J., Gash, J. H. C., Goutorbe, J. P.,et al. The Role of the Land Surface in Sahelian Climate:Hapex-Sahel Results and Future Research Needs[J]. Journal of Hydrology, 1997,188-189(0):1067-1079.
    Foken, T. The Energy Balance Closure Problem:An Overview[J]. Ecological Applications,2008, 18(6):1351-1367.
    Fu, C. Potential Impacts of Human-Induced Land Cover Change on East Asia Monsoon[J]. Global and Planetary Change,2003,37(3-4):219-229.
    Garratt, J. R. Sensitivity of Climate Simulations to Land-Surface and Atmospheric Boundary-Layer Treatments-a Review[J]. Journal Name:Journal of Climate; (United States); Journal Volume:6:3,1993:Medium:X; Size:Pages:419-449.
    Garratt, J. R., Pielke, R. A. On the Sensitivity of Mesoscale Models to Surface-Layer Parameterization Constants[J]. Boundary-Layer Meteorology,1989,48(4):377-387.
    Goutorbe, J. P., Lebel, T., Tinga, A.,et al. Hapex-Sahel:A Large-Scale Study of Land-Atmosphere Interactions in the Semi-Arid Tropics[J]. Annales Geophysicae,1994, 12(1):53-64.
    Huang, J., Zhang, W., Zuo, J.,et al. An Overview of the Semi-Arid Climate and Environment Research Observatory over the Loess Plateau[J]. Advances in Atmospheric Sciences, 2008,25(6):906-921.
    Jiang, J.-f., Yan, X.-d., Huang, Y.,et al. Simulation of Co2 and Sensible/Latent Heat Fluxes Exchange between Land Surface and Atmosphere over Cropland and Grassland in Semi-Arid Region, China[J]. Journal of Forestry Research,2007,18(2):114-118.
    Jin, J., Gao, X., Sorooshian, S. Impacts of Model Calibration on High-Latitude Land-Surface Processes:Pilps 2(E) Calibration/Validation Experiments[J]. Global and Planetary Change,2003,38(1-2):73-80.
    Kahan, D. S., Xue, Y., Allen, S. J. The Impact of Vegetation and Soil Parameters in Simulations of Surface Energy and Water Balance in the Semi-Arid Sahel:A Case Study Using Sebex and Hapex-Sahel Data[J]. Journal of Hydrology,2006,320(1-2):238-259.
    Karl, T. R., Trenberth, K. E. Modern Global Climate Change[J]. Science,2003,302(5651): 1719-1723.
    Lhomme, J. P., Chehbouni, A., Monteny, B. Sensible Heat Flux-Radiometric Surface Temperature Relationship over Sparse Vegetation:Parameterizing B-1[J]. Boundary-Layer Meteorology,2000,97(3):431-457.
    Li, Z., Liu, W.-z., Zhang, X.-c.,et al. Impacts of Land Use Change and Climate Variability on Hydrology in an Agricultural Catchment on the Loess Plateau of China[J]. Journal of Hydrology,2009,377(1-2):35-42.
    Liang, X., Wood, E. F., Lettenmaier, D. P.,et al. The Project for Intercomparison of Land-Surface Parameterization Schemes (Pilps) Phase 2(C) Red-Arkansas River Basin Experiment::2. Spatial and Temporal Analysis of Energy Fluxes[J]. Global and Planetary Change,1998,19(1-4):137-159.
    Lloyd, C. R., Bessemoulin, P., Cropley, F. D.,et al. A Comparison of Surface Fluxes at the Hapex-Sahel Fallow Bush Sites[J]. Journal of Hydrology,1997,188-189(0):400-425.
    Narisma, G. T., Foley, J. A., Licker, R.,et al.Abrupt Changes in Rainfall During the Twentieth Century[M].Washington, DC, ETATS-UNIS:American Geophysical Union,2007.
    Nijssen, B., Bowling, L. C., Lettenmaier, D. P.,et al. Simulation of High Latitude Hydrological Processes in the Torne-Kalix Basin:Pilps Phase 2(E):2:Comparison of Model Results with Observations[J]. Global and Planetary Change,2003,38(1-2):31-53.
    Patil, M. N., Waghmare, R. T., Halder, S.,et al. Performance of Noah Land Surface Model over the Tropical Semi-Arid Conditions in Western India[J]. Atmospheric Research,2011, 99(1):85-96.
    Pelgrum, H., Bastiaanssen, W. G. M. An Intercomparison of Techniques to Determine the Area-Averaged Latent Heat Flux from Individual in Situ Observations:A Remote Sensing Approach Using the European Field Experiment in a Desertification-Threatened Area Data[J]. Water Resour. Res.,1996,32(9):2775-2786.
    Prince, S. D., Kerr, Y. H., Goutorbe, J. P.,et al. Geographical, Biological and Remote Sensing Aspects of the Hydrologic Atmospheric Pilot Experiment in the Sahel (HAPEX-Sahel)[J]. Remote Sensing of Environment,1995,51(1):215-234.
    Reynolds, J. F., Smith, D. M. S., Lambin, E. F.,et al. Global Desertification:Building a Science for Dryland Development[J]. Science,2007,316(5826):847-851.
    Schuttemeyer, D., Moene, A. F., Holtslag, A. A. M.,et al. Evaluation of Two Land Surface Schemes Used in Terrains of Increasing Aridity in West Africa[J]. Journal of Hydrometeorology,2008,9(2):173-193.
    Schaake Jr, J. C. Science Strategy of the Gewex Continental-Scale International Project (Gcip)[J]. Advances in Water Resources,1994,17(1-2):117-127.
    Sellers, P. J., Hall, F. G., Asrar, G.,et al. The First Islscp Field Experiment (FIFE)[J]. Bulletin of the American Meteorological Society,1988,69(1):22-27.
    Sellers, P. J., Mintz, Y., Sud, Y. C.,et al. Simple Biosphere Model (SiB) for Use within General Circulation Models[J]. Journal Name:J. Atmos. Sci.; (United States); Journal Volume: 43:6,1986a:Medium:X; Size:Pages:505-531.
    Sellers, P. J., Mintz, Y., Sud, Y. C.,et al. Simple Biosphere Model (SiB) for Use within General Circulation Models[J]. Journal of Atmosphere Science,1986b,43(6):505-531.
    Sud, Y. C., Fennessy, M. A Study of the Influence of Surface Albedo on July Circulation in Semi-Arid Regions Using the Glas Gcm[J]. Journal of Climatology,1982,2(2): 105-125.
    Sud, Y. C., Smith, W. E. The Influence of Surface Roughness of Deserts on the July Circulation[J]. Boundary-Layer Meteorology,1985,33(1):15-49.
    Troufleau, D., Lhomme, J. P., Monteny, B.,et al. Sensible Heat Flux and Radiometric Surface Temperature over Sparse Sahelian Vegetation. I. An Experimental Analysis of the Kb-1 Parameter[J]. Journal of Hydrology,1997,188-189(0):815-838.
    Veenendaal, E. M., Kolle, O., Lloyd, J. Seasonal Variation in Energy Fluxes and Carbon Dioxide Exchange for a Broad-Leaved Semi-Arid Savanna (Mopane Woodland) in Southern Africa[J]. Global Change Biology,2004,10(3):318-328.
    Verhoef, A., Allen, S. J., Lloyd, C. R. Seasonal Variation of Surface Energy Balance over Two Sahelian Surfaces[J]. International Journal of Climatology,1999,19(11):1267-1277.
    Verhoef, A., van den Hurk, B. J. J. M., Jacobs, A. F. G.,et al. Thermal Soil Properties for Vineyard (EFEDA-I) and Savanna (HAPEX-Sahel) Sites[J]. Agricultural and Forest Meteorology,1996,78(1-2):1-18.
    Wood, E. F., Lettenmaier, D. P., Liang, X.,et al. The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase 2(C) Red-Arkansas River Basin Experiment::1. Experiment Description and Summary Intercomparisons[J]. Global and Planetary Change,1998,19(1-4):115-135.
    Yan, X.-d., Li, H.-y., Liu, F.,et al. Modeling of Surface Flux in Tongyu Using the Simple Biosphere Model 2 (SiB2)[J]. Journal of Forestry Research,2010,21(2):183-188.
    Zhang, Y., Grant, R. F., Flanagan, L. B.,et al. Modelling CO2 and Energy Exchanges in a Northern Semiarid Grassland Using the Carbon- and Nitrogen-Coupled Canadian Land Surface Scheme (C-Class)[J]. Ecological Modelling,2005,181(4):591-614.
    Zhou, L., Tucker, C. J., Kaufmann, R. K.,et al. Variations in Northern Vegetation Activity Inferred from Satellite Data of Vegetation Index During 1981 to 1999[J]. J. Geophys. Res.,2001,106(D17):20069-20083.
    王介民.陆面过程实验和地气相互作用研究---从HEIFE到IMGRASS和GAME-TIBET/TIPEX[J]高原气象,1999,18(3):280-294.
    王介民,王维真,刘绍民等.近地层能量平衡闭合问题--综述及个例分析[J].地球科学进展,2009,24(7):705-713.
    王澄海,董文杰,韦志刚等.典型干旱地区陆面特征的模拟及分析[J].高原气象,2002, 21(5):466-472.
    朱德琴,高晓清.陆面过程模式SSIB在中国西北典型干旱区使用性能的检验[J].高原气象,2005,24(6):872-879.
    辛羽飞,卞林根,张雪红Colm模式在西北干旱区和青藏高原区的适用性研究[J].高原气象,2006,24(04):567-574.
    孟祥新,符淙斌.不同陆面过程模式对半干旱区通榆站模拟性能的检验与对比[J].气候与环境研究,2009,14(4):352-362.
    房云龙,孙菽芬,李倩等.干旱区陆面过程模型参数优化和地气相互作用特征的模拟研究[J].大气科学,2010,34(2):290-306.
    胡隐樵,高由禧.黑河实验(HEIFE)—对干旱地区陆面过程的一些新认识[J].气象学报,1994,52(3):285-296.
    胡隐樵,高由禧,王介民等.黑河实验(HEIFE)的一些研究成果[J].高原气象,1994,13(3):225-236.
    胡隐樵,孙菽芬,郑元润等.稀疏植被下垫面与大气相互作用研究进展[J].高原气象,2004,23(3):281-296.
    曾庆存,周广庆,浦一芬等.地球系统动力学模式及模拟研究[J].大气科学,2008,32(4):653-690.
    曾庆存,林朝晖.地球系统动力学模式和模拟研究进展[J].地球科学进展,2010,25(1):1-6.
    刘树华,茅宇豪,张称意等.不同下垫面湍流通量计算方法的比较研究[J].地球物理学报,2009,52(3):616-629.
    刘辉志,董文杰,符淙斌等.半干旱地区吉林通榆”干旱化和有序人类活动”长期观测实验[J].气候与环境研究,2004,9(2):378-389.
    吕达仁,陈佐忠,王庚辰等.内蒙古半干旱草原土壤-植被-大气相互作用----科学问题与实验计划概述[J].气候与环境研究,1997,2(3):199-209.
    吕达仁,陈佐忠,陈家宜等.内蒙古半干旱草原土壤-植被-大气相互作用综合研究[J].气象学报,2005,63(5):571-593.
    吕达仁,陈佐忠,陈家宜等.内蒙古半干旱草原土壤-植被-大气相互作用(Imgrass)综合研究[J].地学前缘,2002,9(2):295-306.
    张强,胡向军,王胜等.黄土高原陆面过程试验研究(Lopex)有关科学问题[J].地球科学进展,2009,24(4):363-369.
    Amthor, J. Scaling C02-Photosynthesis Relationships from the Leaf to the Canopy[J]. Photosynthesis Research,1994,39(3):321-350.
    Aphalo, P. J., Jarvis, P. G. The Boundary Layer and the Apparent Responses of Stomatal Conductance to Wind Speed and to the Mole Fractions of CO2 and Water Vapour in the Air[J]. Plant, Cell & Environment,1993,16(7):771-783.
    Baldocchi, D. D., Harley, P. C. Scaling Carbon Dioxide and Water Vapour Exchange from Leaf to Canopy in a Deciduous Forest. Ii. Model Testing and Application[J]. Plant, Cell & Environment,1995,18(10):1157-1173.
    Bonan, G. B.Land Surface Model (Lsm Version 1.0) for Ecological, Hydrological, and Atmospheric Studies:Technical Description and User'S Guide. Technical Note[M].1996.
    Businger, J. A., Wyngaard, J. C., Izumi, Y.,et al. Flux-Profile Relationships in the Atmospheric Surface Layer. [J]. Journal of Atmospheric Sciences,1971,28(2):181-189.
    Caemmerer, S., Farquhar, G. D. Some Relationships between the Biochemistry of Photosynthesis and the Gas Exchange of Leaves[J]. Planta,1981,153(4):376-387.
    Collatz, G., Ribas-Carbo, M., Berry, J. Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants[J]. Functional Plant Biology,1992,19(5):519-538.
    Collatz, G. J., Ball, J. T., Grivet, C.,et al. Physiological and Environmental Regulation of Stomatal Conductance, Photosynthesis and Transpiration:A Model That Includes a Laminar Boundary Layer[J]. Agricultural and Forest Meteorology,1991,54(2-4):107-136.
    Collatz, G. J., Bounoua, L., Los, S. O.,et al. A Mechanism for the Influence of Vegetation on the Response of the Diurnal Temperature Range to Changing Climate[J]. Geophys Res Lett., 2000,27(20):3381-3384.
    Dai, Y., Dickinson, R. E., Wang, Y.-P. A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance[J]. Journal of Climate,2004,17(12): 2281-2299.
    Dai, Y., Zeng, X., Dickinson, R. E. The Common Land Model:Documentation and User's Guide[M].2002.
    Dai, Y., Zeng, X., Dickinson, R. E.,et al. The Common Land Model[J]. B Am Meteorol Soc 2003,84(8):1013-1023.
    Davi, H., Dufrene, E., Francois, C.,et al. Sensitivity of Water and Carbon Fluxes to Climate Changes from 1960 to 2100 in European Forest Ecosystems[J]. Agr Forest Meteorol 2006,141(1):35-56.
    De Pury, D. G. G., Farquhar, G. D. Simple Scaling of Photosynthesis from Leaves to Canopies without the Errors of Big-Leaf Models[J]. Plant, Cell & Environment,1997,20(5): 537-557.
    Deardorff, J. W. Efficient Prediction of Ground Surface Temperature and Moisture, with Inclusion of a Layer of Vegetation[J]. J. Geophys. Res.,1978,83(C4):1889-1903.
    Dickinson, R. E., Shaikh, M., Bryant, R.,et al. Interactive Canopies for a Climate Model[J]. Journal of Climate,1998,11(11):2823-2836.
    Dolman, A. J. A Multiple-Source Land Surface Energy Balance Model for Use in General Circulation Models[J]. Agricultural and Forest Meteorology,1993,65(1-2):21-45.
    Dyer, A. J. A Review of Flux-Profile Relationships[J]. Boundary-Layer Meteorology,1974,7(3): 363-372.
    Farquhar, G., Wong, S. An Empirical Model of Stomatal Conductance[J]. Functional Plant Biology, 1984,11(3):191-210.
    Farquhar, G. D. Models of Integrated Photosynthesis of Cells and Leaves[J]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,1989,323(1216): 357-367.
    Farquhar, G. D., Caemmerer, S., Berry, J. A. A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C3 Species [J]. Planta,1980,149(1):78-90.
    Flerchinger, G. N. Sensitivity of Soil Freezing Simulated by the Shaw Model[J]. Trans of ASAE, 1991,34(6):2381-2389.
    Flerchinger, G. N., Hardegree, S. P. Modelling near-Surface Soil Temperature and Moisture for Germination Response Predictions of Post-Wildfire Seedbeds[J]. Journal of Arid Environments,2004,59(2):369-385.
    Flerchinger, G. N., Kustas, W. P., Weltz, M. A. Simulating Surface Energy Fluxes and Radiometric Surface Temperatures for Two Arid Vegetation Communities Using the Shaw Model[J]. Journal of Applied Meteorology,1998,37(5):449-460.
    Flerchinger, G. N., Pierson, F. B. Modeling Plant Canopy Effects on Variability of Soil Temperature and Water[J]. Agricultural and Forest Meteorology,1991,56(3-4):227-246.
    Flerchinger, G. N., Pierson, F. B. Modelling Plant Canopy Effects on Variability of Soil Temperature and Water:Model Calibration and Validation[J]. Journal of Arid Environments,1997a,35(4):641-653.
    Flerchinger, G. N., Pierson, F. B. Modelling Plant Canopy Effects on Variability of Soil Temperature and Water:Model Calibration and Validation[J]. J Arid Enviroment,1997b, 35(4):641-653.
    Flerchinger, G. N., Saxton, K. E.The Simultaneous Heat and Water (Shaw) Model Technical Documentation[M].Technical Report NWRC,2000.
    Flerchinger, G. N., Saxton, K. E. Simultaneous Heat and Water Model of a Freezing Snow-Residue-Soil System I. Theory and Development[J]. Trans of ASAE,1989,32(2): 565-571.
    Goldstein, A. H., Hultman, N. E., Fracheboud, J. M.,et al. Effects of Climate Variability on the Carbon Dioxide, Water, and Sensible Heat Fluxes above a Ponderosa Pine Plantation in the Sierra Nevada (Ca)[J].Agr Forest Meteorol 2000,101(2-3):113-129.
    Green, S. R., McNaughton, K. G. Modelling Effective Stomatal Resistance for Calculating Transpiration from an Apple Tree[J]. Agricultural and Forest Meteorology,1997,83(1-2): 1-26.
    Guan, X., Huang, J., Guo, N.,et al. Variability of Soil Moisture and Its Relationship with Surface Albedo and Soil Thermal Parameters over the Loess Plateau[J]. Advances in Atmospheric Sciences,2009,26(4):692-700.
    Hanson, P. J., Edwards, N. T., Garten, C. T.,et al. Separating Root and Soil Microbial Contributions to Soil Respiration:A Review of Methods and Observations[J]. Biogeochemistry,2000,48(1):115-146.
    Harley, P. C, Thomas, R. B., Reynolds, J. F.,et al. Modelling Photosynthesis of Cotton Grown in Elevated CO2[J]. Plant, Cell & Environment, 1992, 15(3): 271-282.
    Henderson-Sellers, A., Pitman,et al.The Project for Intercomparison of Land Surface Parameterization Schemes (Pilps): Phases 2 and 3[M].Boston, MA, ETATS-UNIS:American Meteorological Society, 1995.
    Holtslag, A. A. M., De Bruijn, E. I. F., Pan, H. L. A High Resolution Air Mass Transformation Model for Short-Range Weather Forecasting[J]. Monthly Weather Review, 1990, 118(8): 1561-1575.
    Kader, B. A., Yaglom, A. M. Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layers[J]. Journal of Fluid Mechanics, 1990, 212: 637-662.
    Karl, T. R., Trenberth, K. E. Modern Global Climate Change[J]. Science, 2003, 302(5651): 1719-1723.
    Kirschbaum, M. U. F. The Temperature Dependence of Soil Organic Matter Decomposition, and the Effect of Global Warming on Soil Organic C Storage[J]. Soil Biology and Biochemistry, 1995, 27(6): 753-760.
    Koren, V., Schaake, J., Mitchell, K.,et al. A Parameterization of Snowpack and Frozen Ground Intended for Ncep Weather and Climate Models[J]. J. Geophys. Res., 1999, 104(D16): 19569-19585.
    Kucharik, J., C, Barford,et al.A Multiyear Evaluation of a Dynamic Global Vegetation Model at Three Ameriflux Forest Sites : Vegetation Structure, Phenology, Soil Temperature, and Co[2] and H[2]O Vapor Exchange[M].Amsterdam, PAYS-BAS:Elsevier,2006:31.
    Kucharik, C. J., M. Norman, J., T. Gower, S. Measurements of Leaf Orientation, Light Distribution and Sunlit Leaf Area in a Boreal Aspen Forest[J]. Agricultural and Forest Meteorology, 1998,91(1-2): 127-148.
    Leuning, R., Kelliher, F. M., De Pury, D. G. G.,et al. Leaf Nitrogen, Photosynthesis, Conductance and Transpiration: Scaling from Leaves to Canopies[J]. Plant, Cell & Environment, 1995, 18(10): 1183-1200.
    Li, T., Grant, R. F., Flanagan, L. B. Climate Impact on Net Ecosystem Productivity of a Semi-Arid Natural Grassland: Modeling and Measurement[J]. Agricultural and Forest Meteorology, 2004, 126(1-2): 99-116.
    Liang, X., Wood, E. F., Lettenmaier, D. R,et al. The Project for Intercomparison of Land-Surface Parameterization Schemes (Pilps) Phase 2(C) Red-Arkansas River Basin Experiment:: 2. Spatial and Temporal Analysis of Energy Fluxes[J]. Global and Planetary Change, 1998, 19(1-4): 137-159.
    Manabe, S. Climate and the Ocean Circulation 1 [J]. Monthly Weather Review, 1969, 97(11): 739-774.
    Monin, A. S., Obukhov, A. M. Basic Laws of Turbulent Mixing in the Surface Layerof the Atmosphere[J]. Tr. Akad. Nauk SSSR Geophiz. Inst., 1954, 24(151): 163-187.
    Nijssen, B., Bowling, L. C, Lettenmaier, D. P.,et al. Simulation of High Latitude Hydrological Processes in the Torne-Kalix Basin: Pilps Phase 2(E): 2: Comparison of Model Results with Observations[J]. Global and Planetary Change, 2003, 38(1-2): 31-53.
    Obukhov, A. M. Turbulence in an Atmosphere with a Non-Uniform Temperature [J]. Boundary-Layer Meteorology, 1971, 2(1): 7-29.
    Oleson, K. W., Lawrence, D. M., B, G.,et al. Technical Description of Version 4.0 of the Community Land Model (CLM) (2010) [M].2010.
    Philip, J. R. Evaporation, and Moisture and Heat Fields in the Soil.[J]. Journal of Atmospheric Sciences,1957,14(4):354-366.
    Qu, W., A., H.-S., Pitman,et al.Sensitivity of Latent Heat Flux from Pilps Land-Surface Schemes to Perturbations of Surface Air Temperature[M].Boston, MA, ETATS-UMS:American Meteorological Society,1998.
    Rutter, A. J., Kershaw, K. A., Robins, P. C.,et al. A Predictive Model of Rainfall Interception in Forests,1. Derivation of the Model from Observations in a Plantation of Corsican Pine[J]. Agricultural Meteorology,1971,9:367-384.
    Schlesinger, W. H., Andrews, J. A. Soil Respiration and the Global Carbon Cycle[J]. Biogeochemistry,2000,48(1):7-20.
    Sellers, P. J. Canopy Reflectance, Photosynthesis, and Transpiration, Ii. The Role of Biophysics in the Linearity of Their Interdependence[J]. Remote Sensing of Environment,1987,21(2): 143-183.
    Sellers, P. J., Berry, J. A., Collatz, G. J.,et al. Canopy Reflectance, Photosynthesis, and Transpiration. Iii. A Reanalysis Using Improved Leaf Models and a New Canopy Integration Scheme[J]. Remote Sensing of Environment,1992,42(3):187-216.
    Sellers, P. J., Mintz, Y., Sud, Y. C.,et al. Simple Biosphere Model (Sib) for Use within General Circulation Models[J]. Journal of Atmosphere Science,1986,43(6):505-531.
    Sellers, P. J., Tucker, C. J., Collatz, G. J. A Revised Land Surface Parameterization (Sib2) for Atmospheric Gems. Part Ii:The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data[J]. J Climate 1996,9(4):706-737.
    Sorbjan, Z. On Similarity in the Atmospheric Boundary Layer[J]. Boundary-Layer Meteorology, 1986,34(4):377-397.
    Subin, Z. M., Riley, W. J., Jin, J.,et al. Ecosystem Feedbacks to Climate Change in California: Development, Testing, and Analysis Using a Coupled Regional Atmosphere and Land Surface Model (Wrf3-Clm3.5)[J]. Earth Interactions,2011,15(15):1-38.
    Tuzet, A., Perrier, A., Leuning, R. A Coupled Model of Stomatal Conductance, Photosynthesis and Transpiration[J]. Plant, Cell & Environment,2003,26(7):1097-1116.
    Twine, T. E., Kucharik, C. J. Climate Impacts on Net Primary Productivity Trends in Natural and Managed Ecosystems of the Central and Eastern United States[J]. Agricultural and Forest Meteorology,2009,149(12):2143-2161.
    Usowicz, B. Evaluation of Methods for Soil Thermal Conductivity Calculations[J]. International Agrophysics 1995,9(2):109-113.
    Wang, J., Yu, Q., Li, J.,et al. Simulation of Diurnal Variations of CO2, Water and Heat Fluxes over Winter Wheat with a Model Coupled Photosynthesis and Transpiration[J]. Agr Forest Meteorol 2006,137(3-4):194-219.
    Wang, Y.-P., Leuning, R., Cleugh, H. A.,et al. Parameter Estimation in Surface Exchange Models Using Nonlinear Inversion:How Many Parameters Can We Estimate and Which Measurements Are Most Useful?[J]. Global Change Biology,2001,7(5):495-510.
    Wang, Y. P. A Comparison of Three Different Canopy Radiation Models Commonly Used in Plant Modelling[J]. Functional Plant Biology,2003,30(2):143-152.
    Wang, Y. P. A Refinement to the Two-Leaf Model for Calculating Canopy Photosynthesis[J]. Agricultural and Forest Meteorology,2000,101(2-3):143-150.
    Wang, Y. P., Jarvis, P. G. Description and Validation of an Array Model-Maestro[J]. Agricultural and Forest Meteorology,1990,51(3-4):257-280.
    Wang, Y. P., Leuning, R. A Two-Leaf Model for Canopy Conductance, Photosynthesis and Partitioning of Available Energy I::Model Description and Comparison with a Multi-Layered Model[J]. Agricultural and Forest Meteorology,1998,91(1-2):89-111.
    Wang, Y. P., Polglase, P. J. Carbon Balance in the Tundra, Boreal Forest and Humid Tropical Forest During Climate Change:Scaling up from Leaf Physiology and Soil Carbon Dynamics[J]. Plant, Cell & Environment,1995,18(10):1226-1244.
    Wohlfahrt, G., Bahn, M., Haubner, E.,et al. Inter-Specific Variation of the Biochemical Limitation to Photosynthesis and Related Leaf Traits of 30 Species from Mountain Grassland Ecosystems under Different Land Use[J]. Plant, Cell & Environment,1999,22(10): 1281-1296.
    Woods, D. B., Turner, N. C. Stomatal Response to Changing Light by Four Tree Species of Varying Shade Tolerance[J]. New Phytologist,1971,70(1):77-84.
    Yang, Z.-L., Dickinson, R. E. Description of the Biosphere-Atmosphere Transfer Scheme (Bats) for the Soil Moisture Workshop and Evaluation of Its Performance[J]. Global Planet Change,1996a,13(1-4):117-134.
    Zeng, X., Dickinson, R. E., Barlage, M.,et al. Treatment of Undercanopy Turbulence in Land Models[J]. Journal of Climate,2005,18(23):5086-5094.
    Zeng, X., Shaikh, M., Dai, Y.,et al. Coupling of the Common Land Model to the Near Community Climate Model[J]. Journal of Climate,2002,15(14):1832-1854.
    Zhang, Y, Grant, R. F., Flanagan, L. B.,et al. Modelling CO2 and Energy Exchanges in a Northern Semiarid Grassland Using the Carbon- and Nitrogen-Coupled Canadian Land Surface Scheme (C-Class)[J]. Ecol Model,2005,181(4):591-614.
    Zhao, L., Gray, D. M., Male, D. H. Numerical Analysis of Simultaneous Heat and Mass Transfer During Infiltration into Frozen Ground[J]. Journal of Hydrology,1997,200(1-4): 345-363.
    李倩,孙菽芬.通用的土壤水热传输耦合模型的发展和改进研究[J].中国科学D辑:地球科学,2007,37(11):1522-1535.
    李倩,孙菽芬.冻土模式的改进和发展[J].地球科学进展,2006,21(12):1339-1349.
    辛羽飞,卞林根,张雪红Colm模式在西北干旱区和青藏高原区的适用性研究[J].高原气象,2006,24(04):567-574.
    孟春雷.陆面过程模式中土壤蒸发与水热耦合传输的进一步研究[学位论文].北京师范大学博士学位论文,2006:53-55.
    胡隐樵,孙菽芬,郑元润等.稀疏植被下垫面与大气相互作用研究进展[J].高原气象,2004,23(3):281-296.
    孙菽芬.陆面过程的物理、生化机理和参数化模型[M].气象出版社,2005:163-178.
    Bastiaanssen, W. G. M., Pelgrum, H., Droogers, P.,et al. Area-Average Estimates of Evaporation, Wetness Indicators and Top Soil Moisture During Two Golden Days in Efeda[J]. Agricultural and Forest Meteorology,1997,87(2-3):119-137.
    Chen, L., Wang, J., Wei, W.,et al. Effects of Landscape Restoration on Soil Water Storage and Water Use in the Loess Plateau Region, China[J]. Forest Ecology and Management,2010, 259(7):1291-1298.
    Dahiya, R., Ingwersen, J., Streck, T. The Effect of Mulching and Tillage on the Water and Temperature Regimes of a Loess Soil:Experimental Findings and Modeling[J]. Soil Till Res,2007,96(1-2):52-63.
    Fu, B., Chen, L. Agricultural Landscape Spatial Pattern Analysis in the Semi-Arid Hill Area of the Loess Plateau, China[J]. Journal of Arid Environments,2000,44(3):291-303.
    Gedney, N., Cox, P. M. The Sensitivity of Global Climate Model Simulations to the Representation of Soil Moisture Heterogeneity [J]. Journal of Hydrometeorology,2003, 4(6):1265-1275.
    Guan, X., Huang, J., Guo, N.,et al. Variability of Soil Moisture and Its Relationship with Surface Albedo and Soil Thermal Parameters over the Loess Plateau[J]. Advances in Atmospheric Sciences,2009,26(4):692-700.
    Henderson-Sellers, A., Pitman,et al.The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS):Phases 2 and 3[M].Boston, American Meteorological Society,1995.
    Huang, J., Zhang, W., Zuo, J.,et al. An Overview of the Semi-Arid Climate and Environment Research Observatory over the Loess Plateau[J]. Advances in Atmospheric Sciences, 2008,25(6):906-921.
    Liebethal, C., Huwe, B., Foken, T. Sensitivity Analysis for Two Ground Heat Flux Calculation Approaches[J]. Agricultural and Forest Meteorology,2005,132(3-4):253-262.
    Nugteren, G., Vandenberghe, J. Spatial Climatic Variability on the Central Loess Plateau (China) as Recorded by Grain Size for the Last 250 Kyr[J]. Global and Planetary Change,2004, 41(3-4):185-206.
    Team, T. G., Koster, R. D., Dirmeyer, P. A.,et al. Regions of Strong Coupling between Soil Moisture and Precipitation[J]. Science,2004,305(5687):1138-1140.
    Wood, E. F., Lettenmaier, D. P., Liang, X.,et al. The Project for Intercomparison of Land-Surface Parameterization Schemes (Pilps) Phase 2(C) Red-Arkansas River Basin Experiment:1. Experiment Description and Summary Intercomparisons[J]. Global and Planetary Change, 1998,19(1-4):115-135.
    Zhou, Z. C., Shangguan, Z. P., Zhao, D. Modeling Vegetation Coverage and Soil Erosion in the Loess Plateau Area of China[J]. Ecological Modelling,2006,198(1-2):263-268.
    王澄海,师锐.青藏高原西部陆面过程特征的模拟分析[J].冰川冻土,2007,29(1):73-80.
    左金清,王介民,黄建平.半干旱草地地表热通量的计算及其对能量平衡的影响[J].高原气象,2010,29(4):840-848.
    李倩,孙菽芬.冻土模式的改进和发展[J].地球科学进展,2006,21(12):1339-1349.
    肖霞.黄士高原半干旱区荒草地湍流和湍流能量传输特征及能量平衡状况[学位论文].兰州大学博士学位论文,2011:107-135.
    肖霞,左洪超,刘辉志.春末黄土高原半干旱区地表能量闭合的观测研究[J].冰川冻土,2010,32(1):70-77.
    郭东林,杨梅学.SHAW模式对青藏高原中部季节冻土区土壤温、湿度的模拟[J].高原气象,2010,29(6):1369-1377.
    张文煜,张宇,陆晓静等.黄土高原半干旱区非均一下垫面粗糙度分析[J].高原气象,2009,28(04):763-768.
    张杰,张强,黄建平.2007年5-10月黄土高原陆面能量通量特征研究[J].高原气象,2010,29(4):855-863.
    张强,王胜.关于黄土高原陆面过程及其观测试验研究[J].地球科学进展,2008,23(2):167-173.
    张强,胡向军,王胜等.黄土高原陆面过程试验研究(LOPEX)有关科学问题[J].地球科学进展,2009,24(4):363-369.
    杨启国,杨兴国,马鹏里等.陇中黄土高原冬季地表辐射和能量平衡特征[J].地球科学进展,2005,20(9):1012-1021.
    Cava, D., Contini, D., Donateo, A.,et al. Analysis of Short-Term Closure of the Surface Energy Balance above Short Vegetation[J]. Agricultural and Forest Meteorology,2008,148(1): 82-93.
    Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J. Biosphere-Atmosphere Transfer Scheme (BATS) Version Le as Coupled to the Near Community Climate Model[J]. NCAR TECHNICAL NOTE,1993.
    El Maayar, M., Chen, J. M., Price, D. T. On the Use of Field Measurements of Energy Fluxes to Evaluate Land Surface Models[J]. Ecological Modelling,2008,214(2-4):293-304.
    Foken, T., Wimmer, F., Mauder, M.,et al. Some Aspects of the Energy Balance Closure Problem[J]. Atmospheric Chemistry and Physics,2006,6:4395-4402.
    Gao, Z. Determination of Soil Heat Flux in a Tibetan Short-Grass Prairie[J]. Boundary-Layer Meteorology,2005,114(1):165-178.
    Gao, Z., Chae, N., Kim, J.,et al. Modeling of Surface Energy Partitioning, Surface Temperature, and Soil Wetness in the Tibetan Prairie Using the Simple Biosphere Model 2 (SiB2)[J]. J. Geophys. Res.,2004,109(D6):D06102.
    Gao, Z., Chen, G., Hu, Y. Impact of Soil Vertical Water Movement on the Energy Balance of Different Land Surfaces[J]. International Journal of Biometeorology,2007,51(6): 565-573.
    Gao, Z., Fan, X., Bian, L. An Analytical Solution to One-Dimensional Thermal Conduction-Convection in Soil[J]. Soil Science,2003,168(2):99-107.
    Garratt, J. R. Sensitivity of Climate Simulations to Land-Surface and Atmospheric Boundary-Layer Treatments-a Review[J]. Journal Name:Journal of Climate,1993,6 (3): 419-449.
    Garratt, J. R., Pielke, R. A. On the Sensitivity of Mesoscale Models to Surface-Layer Parameterization Constants[J]. Boundary-Layer Meteorology,1989,48(4):377-387.
    Kanda, M., Inagaki, A., Letzel, M. O.,et al. Les Study of the Energy Imbalance Problem with Eddy Covariance Fluxes[J]. Boundary-Layer Meteorology,2004,110(3):381-404.
    Thomas, C., Foken, T. Detection of Long-Term Coherent Exchange over Spruce Forest Using Wavelet Analysis[J]. Theoretical and Applied Climatology,2005,80(2):91-104.
    Wilson, K., Goldstein, A., Falge, E.,et al. Energy Balance Closure at Fluxnet Sites[J]. Agricultural and Forest Meteorology,2002,113(1-4):223-243.
    Yang, K., Wang, J. A Temperature Prediction-Correction Method for Estimating Surface Soil Heat Flux from Soil Temperature and Moisture Data[J]. Science in China Series D:Earth Sciences,2008,51(5):721-729.
    王介民,王维真,刘绍民等.近地层能量平衡闭合问题--综述及个例分析[J].地球科学进展,2009,24(7):705-713.
    左洪超,肖霞,杨启东等.论近地层大气运动特征与观测和计算能量不平衡的成因[J].中国科学D辑:地球科学,2011.(待刊)
    左洪超,胡隐樵.黑河试验区沙漠和戈壁的总体输送系数[J].高原气象,1992,11(4):371-380.
    肖霞.黄土高原半干旱区荒草地湍流和湍流能量传输特征及能量平衡状况[学位论文].兰州 大学博土学位论文,2011:107-135.
    辛羽飞,卞林根,张雪红Colm模式在西北干旱区和青藏高原区的适用性研究[J].高原气象,2006,24(04):567-574.
    刘树华,茅宇豪,张称意等.不同下垫面湍流通量计算方法的比较研究[J].地球物理学报,2009,52(3):616-629.
    卢俐,刘绍民,孙敏章等.大孔径闪烁仪研究区域地表通量的进展[J].地球科学进展,2005,20(9):932-937.
    陈家宜,范邵华,赵传峰等.涡旋相关法测定湍流通量偏低的研究[J].大气科学,2006,30(3):423-432.
    Berger, A. L. Long-Term Variations of Daily Insolation and Quaternary Climatic Changes[J]. J. Atmos. Sci.,1978,35:2362-2367.
    Bounoua, L., DeFries, R., Collatz, G. J.,et al. Effects of Land Cover Conversion on Surface Climate[J]. Climatic Change,2002,52(1):29-64.
    Cunnington, W. M., Rowntree, P. R. Simulations of the Saharan Atmosphere-Dependence on Moisture and Albedo[J]. Quarterly Journal of the Royal Meteorological Society,1986, 112(474):971-999.
    Dahiya, R., Ingwersen, J., Streck, T. The Effect of Mulching and Tillage on the Water and Temperature Regimes of a Loess Soil:Experimental Findings and Modeling[J]. Soil Till Res 2007,96(1-2):52-63.
    Findell, K. L., Shevliakova, E., Milly, P. C. D.,et al. Modeled Impact of Anthropogenic Land Cover Change on Climate[J]. J Climate 2007,20(14):3621-3634.
    Flerchinger, G. N., Saxton, K. E.The Simultaneous Heat and Water (Shaw) Model:Technical Documentation[M].Technical Report NWRC,2000.
    Grossman-Clarke, S., Zehnder, J. A., Loridan, T.,et al. Contribution of Land Use Changes to near-Surface Air Temperatures During Recent Summer Extreme Heat Events in the Phoenix Metropolitan Area[J]. J Appl Meteorol Clim 2010,49(8):1649-1664.
    Ham, J. M., Kluitenberg, G. J. Modeling the Effect of Mulch Optical Properties and Mulch-Soil Contact Resistance on Soil Heating under Plastic Mulch Culture[J]. Agr Forest Meteorol 1994,71(3-4):403-424.
    Ham, J. M., Kluitenberg, G. J., Lamont, W. J. Optical Properties of Plastic Mulches Affect the Field Temperature Regime[J].J Am Soc Hortic Sci 1993,118(2):188-193.
    Li, S., Kang, S., Li, F.,et al. Evapotranspiration and Crop Coefficient of Spring Maize with Plastic Mulch Using Eddy Covariance in Northwest China[J]. Agricultural Water Management, 2008,95(11):1214-1222.
    Li, T., Grant, R. F., Flanagan, L. B. Climate Impact on Net Ecosystem Productivity of a Semi-Arid Natural Grassland:Modeling and Measurement[J]. Agricultural and Forest Meteorology, 2004,126(1-2):99-116.
    Liakatas, A., Clark, J. A., Monteith, J. L. Measurements of the Heat Balance under Plastic Mulches. Part Ⅰ. Radiation Balance and Soil Heat Flux[J]. Agricultural and Forest Meteorology,1986,36(3):227-239.
    Liu, H., Tu, G., Dong, W. Three-Year Changes of Surface Albedo of Degraded Grassland and Cropland Surfaces in a Semiarid Area[J]. Chinese Sci. Bull.,2008,53((8)):1246-1254.
    MacKinnon, D. J., Clow, G. D., Tigges, R. K.,et al. Comparison of Aerodynamically and Model-Derived Roughness Lengths (Zo) over Diverse Surfaces, Central Mojave Desert, California, USA[J]. Geomorphology,2004,63(1-2):103-113.
    Mahmood, R., Hubbard, K. G., Leeper, R. D.,et al. Increase in near-Surface Atmospheric Moisture Content Due to Land Use Changes:Evidence from the Observed Dewpoint Temperature Data[J]. Mon Weather Rev 2008,136(4):1554-1561.
    Niyogi, D., Xue, Y. Soil Moisture Regulates the Biological Response of Elevated Atmospheric Co2 Concentrations in a Coupled Atmosphere Biosphere Model[J]. Global Planet Change 2006,54(1-2):94-108.
    Oleson, K. W., Lawrence, D. M., B, G.,et al. Technical Description of Version 4.0 of the Community Land Model (Clm) (2010) [J].2010.
    Schwaiger, H. P., Bird, D. N. Integration of Albedo Effects Caused by Land Use Change into the Climate Balance:Should We Still Account in Greenhouse Gas Units?[J]. Forest Ecol Manag 2010,260(3):278-286.
    Sui, H.-j., Zeng, D.-c., Chen, F.-z. A Numerical Model for Simulating the Temperature and Moisture Regimes of Soil under Various Mulches[J]. Agricultural and Forest Meteorology, 1992,61(3-4):281-299.
    Wang, S., Davidson, A. Impact of Climate Variations on Surface Albedo of a Temperate Grassland[J]. Agricultural and Forest Meteorology,2007,142(2-4):133-142.
    Wu, C. L., Chau, K. W., Huang, J. S. Modelling Coupled Water and Heat Transport in a Soil-Mulch-Plant-Atmosphere Continuum (Smpac) System[J]. Applied Mathematical Modelling,2007,31(2):152-169.
    Xie, Z. K., Wang, Y. J., Li, F. M. Effect of Plastic Mulching on Soil Water Use and Spring Wheat Yield in Arid Region of Northwest China[J]. Agr Water Manage 2005,75(1):71-83.
    Zeng, X. M., Zhao, M., Su, B. K.,et al. Effects of the Land-Surface Heterogeneities in Temperature and Moisture from the "Combined Approach" on Regional Climate:A Sensitivity Study[J]. Global Planet Change,2003,37(3-4):247-263.
    田静,苏红波,孙晓敏.基于地面试验的植被覆盖率估算模型及其影响因素研究[J].国土资源遥感,2009,33-5.