变化环境下渭河流域水循环分布式模拟与演变规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变化环境下的水循环演变规律及归因分析是目前水文水资源学的研究热点和难点。根据前人研究,变化环境可分为气候变化和人类活动变化两大类,而且人类活动对水循环的影响正不断加强。人类活动影响下的流域水循环过程具有二元特性,即自然-社会双重驱动下的水循环过程。
     论文以“自然-社会”二元水循环理论体系为基础,对WEP-L模型子流域划分过程以及社会水循环模拟过程进行改进,并应用于渭河流域模型构建。同时,以渭河二元水循环模型“仿真模拟”为基础,进行变化环境下渭河流域水循环演变规律及其归因分析。具体研究内容如下:
     (1)对WEP-L模型进行了代码重构,对模型中社会水循环模块进行改进,提高了WEP-L模型对社会水循环中取水、用水、排水等过程的模拟精度。
     (2)对基于实际河网修正的河网提取算法进行改进。针对模拟河网提取过程中存在的各种潜在问题,本文进行了深入研究,并对原有河网提取算法进行改进。改进后的算法能够自行处理这些潜在问题,实现河网提取过程的自动化处理。
     (3)提出一种新的子流域编码方法。针对原有子流域编码方法不能完全满足多种汇流情况(单支汇流、双支汇流以及多支汇流)、子流域上下游关系的快速定位计算等要求的问题,本文在研究现有子流域编码的基础上,提出一种新的编码方法,能够满足水文模型对子流域编码的相关要求。
     (4)研究变化环境下渭河流域水循环演变规律。本文构建了渭河流域分布式WEP-L模型,并基于不同情景仿真模拟,对水循环演变规律进行了分析。主要考虑的水循环要素包括蒸散发、入渗、地表产流、地下水补给、地下水河道交换以及河川径流,考虑的环境因子主要包括气象要素、水土保持措施、农业灌溉取用水以及工业生活取用水。
     (5)提出一种基于分布式水文模型情景模拟的多因素归因分析方法。该方法能够将不同时期多个因素综合影响所引起的水循环变化量分解成各因素单独的贡献量,并且确保所有因素贡献量累加总和刚好等于多因素综合影响下的变化量。以渭河流域1980年前后水循环演化为例,分析了气象要素、水土保持措施、农业灌溉取用水以及工业生活取用水四大因素的贡献。
     本文的主要创新点在于提出了三个方法(河网提取改进方法、子流域编码方法和多因素归因分析方法)以及构建了渭河分布式水文模型用于水循环演变规律分析。本文研究成果不仅解决了子流域划分过程相关问题,而且使得定量描述多因素对水循环演变的影响和贡献率成为可能。同时,本文的研究成果也是对“自然-社会”二元水循环理论体系的补充。
The evolution law of water cycle under changing environment and attribution analysis is the hot and hard issue of the hydrology. According to the literatures, there are two types changing environment:climate changes and human activities. The influences of the human activities on water cycle are enhanced recently. The processes of the water cycle affected by human activities have dual characteristic, which means that the water cycle is driven by natural and social factors.
     In this paper, the WEP-L model is improved on the basis of natural-social dual water cycle theory. The improved aspects are watershed subdivision processes and socil water cycle module. The improved WEP-L is adoped to build the distributed hydrological model on Weihe River Basin. At last, the evolution law of water cycle under changing environment and attribution analysis is explored. Here are the contents:
     (1) The WEP-L model is refactored. The social water cycle module of WEP-L is improved to heighten the simulated precision of water fetching, water consuming and water draining.
     (2) The improvement of the drainage network extraction. The underlying problems, which are hiden in the drainage network extraction process, are investigated. In order to solve these problems, a new algorithm is promoted, which could automatically deals with these questions.
     (3) A new subwatershed coding method is presented for the watershed subdivision. It focuses on the problems of the unfitness of the existing method for meeting the new demands, which are dealing with multi-way confluence situation and locating the upstream and downstream relationship quickly etc. The new coding method could fullfill all the new demands of the distributed hydrological models.
     (4) The evolution law of the Weihe water cycle is investigated, which is based on the different scenes emulational simulation. The main considered water cycle factors are evapotranspiration, infiltration, surface runoff generation, ground water recharge, water exchange between ground water and river water, and streamflow. The main considered changed environments are meteorologic factor, soil and water conservation, agricultural water use, and industrial&living water use.
     (5) A new attribution analysis method is proposed, which is based on the distributed hydrological simualtion and could deal with multi-factors simultaneously. Using this method, it could calculate the contribution of each factor and make sure that the sum of all the contributions just equals to the muti-factors contribution. Taking Weihe River basin as example, the multi-factor contributions before and after1980is calculated, which are meteorologic factor, soil and water conservation, agricultural water use, and industrial&living water use.
     The main innovations of this paper are:(1) three methods, which are drainage network extraction, subwatershed codification and multi-elevation contribution analysis;(2) constructing the Weihe WEP-L distributed hydrologic model for the evolution law of water cycle. This research is of great importance not only resolving the issues on watershed subdivision, but also making it possible for the multi-elevation contribution analysis on the water cycle. Meanwhile, this paper is a supplement of the natural-social dual water cycle theory.
引文
[1]IPCC. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R].2007.
    [2]秦大河,陈振林,罗勇,等.气候变化科学的最新认识[J].气候变化研究进展,2007,3(2):63-73.
    [3]王浩,王成明,王建华,等.二元年径流演化模式及其在无定河流域的应用[J].中国科学(技术科学),2004,34(增刊Ⅰ):42-48.
    [4]贾仰文,周祖昊,雷晓辉.渭河流域水循环模拟与水资源调度[M].北京:中国水利水电出版社,2010.
    [5]PENMAN H L. Natural evaporation from open water, bare soil and grass [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1948,193(1032):120-145.doi:10.1098/rspa.1948.0037.
    [6]MONTEITH J. Principles of Environmental Physics [M].1973.
    [7]JIA Y, TAMAI N. Modeling infiltration into a multi-layered soil during an unsteady rain [J]. Annual Journal of Hydraulic Engineering,1997,41(41):31-36.
    [8]芮孝芳.水文学原理[M].北京:中国水利水电出版社,2004.
    [9]赵人俊.降雨径流流域模型简介[J].人民黄河,1983:40-43.
    [10]FREEZE R A, HARLAN R. BLUEPRINT FOR A PHYSICALLY-BASED, DIGITALLY-SIMULATED HYDROLOGIC RESPONSE MODEL [J]. Journal of Hydrology,1969,9:237-258.
    [11]惠泱河,蒋晓辉,黄强,等.二元模式下水资源承载力系统动态仿真模型研究[J].地理研究,2001,20(2):191-198.
    [12]王西琴,刘昌明,张远.基于二元水循环的河流生态需水水量与水质综合评价方法——以辽河流域为例[J].地理学报,2006,61(11):1132-1140.
    [13]王浩,王建华,秦大庸,等.基于二元水循环模式的水资源评价理论方法[J].水利学报,2006,37(12):1496-1502.
    [14]桑学锋,周祖昊,秦大庸,等.改进的SWAT模型在强人类活动地区的应用[J].水利学报,2008,39(12):1377-1383.
    [15]褚俊英,王浩,王建华,等.我国生活水循环系统的分析与调控策略[J].水利学报,2009,40(5):614-622.
    [16]刘家宏,秦大庸,王浩,等.海河流域二元水循环模式及其演化规律[J].科学通报, 2010,55(6):512-521. doi:10.1007/s11434-010-0043-4.
    [17]贾仰文,王浩,周祖昊,等.海河流域二元水循环模型开发及其应用——Ⅰ.模型开发与验证[J].水科学进展,2010,21(1):1-8.
    [18]贾仰文,王浩,甘泓,等.海河流域二元水循环模型开发及其应用——Ⅱ.水资源管理战略研究应用[J].水科学进展,2010,21(1):9-15.
    [19]O'CALLAGHAN J F, MARK D M. The extraction of drainage networks from digital elevation data [J]. Computer Vision, Graphics and Image Processing,1984, 28:323-344.
    [20]TRIBE A. Automated recognition of valley lines and drainage networks from grid digital elevation models:a review and a new method [J]. Journal of Hydrology,1992, 139:263-293.
    [21]MARTZ L W, GARBRECHT J. The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models [J]. Hydrological Processes,1998,12:843-855.
    [22]GARBRECHT J, MARTZ L W. The assignment of drainage direction over flat ssurface in. raster digital elevation models [J]. Journal of Hydrology,1997, 193:204-213.
    [23]MARTZ L, GARBRECHT J. Numerical definition of drainage network and subcatchment areas from digital elevation models [J]. Computers & Geosciences,1992, 18:747-761.
    [24]JENSON S, DOMINGUE J. Extracting topographic structure from digital elevation data for geographic information system analysis [J]. Photogrammetric engineering & remote sensing,1988,54(11):1593-1600.
    [25]郑子彦,张万昌,邰庆国.基于DEM与数字化河道提取流域河网的不同方案比较研究[J].资源科学,2009,31(10):1730-1739.
    [26]SAUNDERS W. Preparation of DEMs for Use in Environmental Modeling Analysis [M]//Conference Proceedings:1999 Esri User Conference. Environmental Systems Research Institute, San Diego, California,1999, http://proceedings.esri.com/library/-userconf/proc99/proceed/papers/pap802/p802.htm.
    [27]TURCOTTE R, FORTIN J P, ROUSSEAU A, et al. Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network[J]. Journal of Hydrology,2001,240:225-242.
    [28]GETIRANA A C, BONNET M P, FILHO O C R, et al. Improving hydrological information acquisition from DEM processing in floodplains[J]. Hydrological Processes,2009,23:502-514.
    [29]HELLWEGER R. Agree-DEM Surface Recoditioning System [OL].1997. http:// www.ce.utexas.edu/prof/maidment/gishydro/ferdi/research/agree/agree.html.
    [30]王加虎,郝振纯,李丽.基于DEM和主干河网信息提取数字水系研究[J].河海大学学报(自然科学版),2005,33(2):119-122.
    [31]叶爱中,夏军,王纲胜,等.基于数字高程模型的河网提取及子流域生成[J].水利学报,2005,36(5):1-9.
    [32]VERDIN K, VERDIN J. A topological system for delineation and codification of the Earth's river basins [J]. Journal of Hydrology,1999,218(1-2):1-12. doi: 10.1016/S0022-1694(99)00011-6.
    [33]李建新,曹国荣,余向勇.国内外河流编码技术评述[J].水利信息化,2010,0(2):25-30.
    [34]BRILLY M, VIDMAR A. Watershed coding of large river basins[C]//Modelling and management of sustainable basin-scale water resource systems. Boulder:IAHS,1995.
    [35]DE JAGER A,VOGT J. Development and demonstration of a structured hydrological feature coding system for Europe [J]. Hydrological sciences journal,2010,55(5): 661-675. doi:10.1080/02626667.2010.490786.
    [36]VOGT J, SOILLE P, DE JAGER A. Developing a pan-European Data Base of Drainage Networks and Catchment Boundaries from a 100 Metre DEM[C]//AGILE Int. Conference on Geographic Information Science. Ispra, Italy:2007.
    [37]LI T, WANG G, CHEN J. A modified binary tree codification of drainage networks to support complex hydrological models [J]. Computers & Geosciences,2010, 36(11):1427-1435. doi:10.1016/j.cageo.2010.04.009.
    [38]罗翔宇,贾仰文,王建华,等.基于DEM与实测河网的流域编码方法[J].水科学进展,2006,17:259-264.
    [39]FuRST J, HORHAN T. Coding of watershed and river hierarchy to support GIS-based hydrological analyses at different scales [J]. Computers & Geosciences,2009, 35(3):688-696. doi:10.1016/j.cageo.2008.04.007.
    [40]李铁建,王光谦,刘家宏.数字流域模型的河网编码方法[J].水科学进展,2006,17(5):658-664.
    [41]王皓,李铁键,高洁,等.大尺度流域河网二叉树编码方法[J].河海大学学报(自然科学版),2009,37(5):499-504. doi:10.3876/j.issn.1000-1980.2009.05.00.
    [42]WANG H, FU X, WANG G. Multi-tree Coding Method (MCM) for drainage networks supporting high-efficient search [J]. Computers & Geosciences,2013,52:300-306. doi: 10.1016/j.cageo.2012.11.005.
    [43]郝振纯,李丽,王加虎,等.气候变化对地表水资源的影响[J].地球科学——中国地质大学学报,2007,32(3):425-432.
    [44]蓝永超,仵彦卿,康尔泗,等.祁连山北麓出山径流对气候变化的响应[J].兰州大学学报(自然科学版),2001,37(4):125-132.
    [45]龙虎,毛利强,车振学,等.气候变化对黄河水资源的影响[J].水资源与水工程学报,2006,17(4):74-77.
    [46]张建云,王国庆,贺瑞敏,等.黄河中游水文变化趋势及其对气候变化的响应[J].水科学进展,2009,20(2):153-158.
    [47]刘春蓁.气候变化对我国水文水资源的可能影响[J].水科学进展,1997,8(3):220-225.
    [48]王国庆,王云璋,尚长昆.气候变化对黄河水资源的影响[J].人民黄河,2000,22(9):40-41.
    [49]曾涛,郝振纯,王加虎.气候变化对径流影响的模拟[J].冰川冻土,2004,26(3):324-332.
    [50]郝芳华,陈利群,刘昌明,等.土地利用变化对产流和产沙的影响分析[J].水土保持学报,2004,18(6):5-8.
    [51]KIM S J, KWON H J, PARK G A, et al. Assessment of land-use impact on streamflow via a grid-based modelling approach including paddy fields [J]. Hydrological Processes,2005,19(19):3801-3817. doi:10.1002/hyp.5982.
    [52]薛丽芳,谭海樵.城市的水循环与水文效应[J].城市问题,2009(11):22-26.
    [53]宋晓猛,朱奎.城市化对水文影响的研究[J].水电能源科学,2008,26(4):33-36.
    [54]李丽娟,姜德娟,李九一,等.土地利用/覆被变化的水文效应研究进展[J].自然资源学报,2007,22(2):211-224.
    [55]FITZGERALD E P, BOWDEN W B, PARKER S P, et al. Urban Impacts on Streams are Scale-Dependent With Nonlinear Influences on Their Physical and Biotic Recovery in Vermont, United States [J]. JAWRA Journal of the American Water Resources Association,2012,48(4):679-697. doi:10.1111/j.1752-1688.2012.00639.x.
    [56]张建云.城市化与城市水文学面临的问题[J].水利水运工程学报,2012(1):1-4.
    [57]ZHOU F, XU Y, CHEN Y, et al. Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region[J]. Journal of Hydrology,2013,485(0):113-125. doi: 10.1016/j.jhydrol.2012.12.040.
    [58]高晓薇,刘家宏.深圳河流域城市化对河流水文过程的影响[J].北京大学学报(自然科学版),2012,48(1):153-159.
    [59]翟家齐,赵勇,裴源生.城市化对区域水循环的驱动机制分析[J].水利水电技术,2011,42(11):6-9.
    [60]许有鹏,丁瑾佳,陈莹.长江三角洲地区城市化的水文效应研究[J].水利水运工程学报,2009(4):67-73.
    [61]王艳君,吕宏军,施雅风,等.城市化流域的土地利用变化对水文过程的影响——以秦淮河流域为例[J].自然资源学报,2009,24(1):30-36.
    [62]汤立群,陈国祥.水利水保措施对黄土地区产流模式的影响研究[J].人民黄河,1995(1):19-22.
    [63]任立良,张炜,李春红.中国北方地区人类活动对地表水资源的影响研究[J].河海大学学报,2001,29(4):13-18.
    [64]王浩,贾仰文,王建华,等.人类活动影响下的黄河流域水资源演化规律初探[J].自然资源学报,2005,20(2):157-162.
    [65]仇亚琴,周祖昊,贾仰文,等.三川河流域水资源演变个例研究[J].水科学进展,2006,17(6):865-872.
    [66]周祖昊,仇亚琴,贾仰文,等.变化环境下渭河流域水资源演变规律分析[J].水文,2009,29(1):21-25.
    [67]王国庆,张建云,刘九夫,等.气候变化和人类活动对河川径流影响的定量分析[J].中国水利,2008(2):55-58.
    [68]王国庆,张建云,贺瑞敏.环境变化对黄河中游汾河径流情势的影响研究[J].水科学进展,2006,17(6):853-858.
    [69]谢平,刘媛,杨桂莲,等.乌力吉木仁河三级区水资源变异及归因分析[J].水文,2012,32(2):40-44.
    [70]GAO P, GEISSEN V, RITSEMA C J, et al. Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China [J]. Hydrology and Earth System Sciences,2013,17(3):961-972. doi: 10.5194/hess-17-961-2013.
    [71]GAO P, MU X M, WANG F, et al. Changes in streamflow and sediment discharge and the respons to human activities in the middle reaches of the Yellow River[J]. Hydrology and Earth System Sciences,2011,15:1-10. doi:10.5194/hess-15-1-2011.
    [72]陈利群,刘昌明.黄河源区气候和土地覆被变化对径流的影响[J].中国环境科学,2007,27(4):559-565.
    [73]丁相毅.变化环境下流域水资源演变及其归因研究[D].北京:中国水利水电科学研究院,2010.
    [74]HEGERL G, HASSELMANN K, CUBASCH U, et al. Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change [J]. Climate Dynamics,1997,13(9):613-634.
    [75]BAO Z, ZHANG J, WANG G, et al. Attribution for decreasing streamflow of the Haihe River basin, northern China:Climate variability or human activities? [J]. Journal of Hydrology,2012,460-461(0):117-129. doi:10.1016/j.jhydrol.2012.06.054.
    [76]JIA Y, WANG H, ZHOU Z, et al. Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River basin [J]. Journal of Hydrology,2006,331:606-629.
    [77]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社,2005.
    [78]贾仰文,王浩.“黄河流域水资源演变规律与二元演化模型”研究成果简介[J].水利水电技术,2006,37(2):45-52.
    [79]贾仰文,王浩,严登华.黑河流域水循环系统的分布式模拟(Ⅱ)——模型应用[J].水利学报,2006,37(6):655-661.
    [80]贾仰文,王浩,严登华.黑河流域水循环系统的分布式模拟(Ⅰ)——模型开发与验证[J].水利学报,2006,37(5):534-542.
    [81]甘治国,蒋云钟,沈媛嫒.以ET(蒸腾蒸发)为核心理念的水资源配置模型[C]//——中国水利学会第三届青年科技论坛论文集.成都:2007:118-125.
    [82]游进军,甘泓,王浩,等.基于规则的水资源系统模拟[J].水利学报,2005,36(9):1043-1049.
    [83]贾仰文,王浩,周祖昊,等.海河流域水循环及其伴生过程综合模拟[M].北京:科学出版社,2012.
    [84]王喜峰,周祖昊,贾仰文,等.几何插值法在大尺度长系列降雨插值中的比较和改进[J].水电能源科学,2010,28(12):1-3.
    [85]HU Z, ISLAM S. Prediction of ground surface temperature and soil mositure content by the force-restore method [J]. Water Resources Research,1995,31(10):2531-2539.
    [86]NOILHAN J, PLANTON S. A Simple Parameterization of Land Surface Processes for Meteorological Models [J]. Monthly Weather Review,1989,117(3):536-549.
    [87]DICKINSON R E, HENDERSON-SELLERS A, ROSENZWEIG C, et al. Evapotranspiration models with canopy resistance for use in climate models, a review [J]. Agricultural and Forest Meteorology,1991,54(2-4):373-388. doi: 10.1016/0168-1923(91)90014-H.
    [88]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [89]GREEN W, AMPT G. Studies on soil physics,1. The flow of air and water through soils [J]. J. Agric. Sci,1911,4(1):1-24.
    [90]MEIN R, LARSON C. Modeling infiltration during a steady rain [J]. Water Resources Research,1973,9:384-394.
    [91]MOORE I, EIGEL J. Infiltration into two-layered soil profiles [J]. Transactions of the ASAE,1981(24):1496-1503.
    [92]雷晓辉,王海潮,田雨,等.南水北调中线受水区分布式水文模型子流域划分研究[J].南水北调与水利科技,2009,7(3):10-13.
    [93]雷晓辉,田雨,白薇,等.基于DEM的子流域划分方法改进与应用[J].人民黄河,2011,33(2):32-33. doi:doi:10.3969/j.issn.1000-1379.2011.02.013.
    [94]张峰,廖卫红,雷晓辉,等.分布式水文模型子流域划分方法[J].南水北调与水利科技,2011,9(3):101-105. doi:10.3724/SP.J.1201.2011.03101.
    [95]李丽,郝振纯.基于DEM的流域特征提取综述[J].地球科学进展,2003,18(2):251-256.
    [96]翁明华,姚成,李致家.数字化流域及流域信息提取方法研究[J].水文,2009,29(5):13-17.
    [97]任立良,刘新仁.数字高程模型在流域水系拓扑结构计算中的应用[J].水科学进展,1999,10(2):129-134.
    [98]黄玲,黄金良.基于地表校正和河道烧录方法的河网提取[J].地球信息科学学报,2012,14(2):171-178.
    [99]李丽.分布式水文模型的汇流演算研究[D].南京:河海大学,2007.
    [100]雷晓辉,周祖昊,丁相毅,等.分布式水文模型子流域划分中界河、海岸线的处理研究[J].水文,2009,29(6):1-5.
    [101]贾仰文,王浩,王建华,等.黄河流域分布式水文模型开发和验证[J].自然资源学报,2005,20(2):300-308.
    [102]JIA Y, WANG H, ZHOU Z, et al. Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River basin[J]. Journal of Hydrology,2006,331:606-629.
    [103]NASH J, SUTCLIFFE J. River Flow Forecasting Through Conceptual Models, Part I-a Discussion of Principles [J]. Journal of Hydrology,1970,10:282-290.
    [104]周祖昊.变化环境下黄河流域水资源演变规律研究[D].北京:中国水利水电科学研究院,2005.博士后出站报告.
    [105]于开宁,娄华君,郭振中,等.城市化诱发地下水补给增量的机理分析[J].资源科学,2004,26(2):68-73.