激光照明主动成像光场闪烁及散斑抑制分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光照明主动成像,以激光作为发射光源,经大气湍流传输照明目标进行成像。由于照明光源的高相干性,使得其具有指向性好、发散角小以及作用距离远等特点;但同样是由于其相干性,照明光场必须经历大气湍流的微扰以及目标粗糙表面的调制,最终导致目标光场强度在空间域和时间域的随机起伏,光场均匀性被破坏,严重的影响主动成像系统性能,降低系统分辨率。为了提升系统性能,有效的抑制大气引入的湍流闪烁和粗糙目标引入的散斑现象,本论文对目标光场强度不均匀性的统计特性作了深入分析,并且提出了有效的抑制方法,在理论分析的基础上进行了仿真和实验研究,具体工作如下:
     (1)以Born和Rytov微扰近似理论为基础,将激光照明主动成像光场的研究分解为两个独立过程:第一,分析由发射光场经Kolmogorov谱弱湍流传输形成照明光场的湍流效应,给出了照明光场的强度均值、相干长度以及闪烁指数;第二,分析自由空间照明光场被粗糙表面目标调制后反射散斑场的统计特性,得到了回波散斑场对比度随表面粗糙度变化的关系,并且建立了对比度关于表面均方根高度和相关长度的函数表达式。
     (2)以照明光场和回波散斑场统计矩分析结果为基础,从引起光场强度不均匀性的本质出发,利用多光束破坏发射光场相干性及增加目标光场偏振多样性的方法,抑制照明光场湍流闪烁及回波光场散斑现象,建立了能量可调偏振态可调的多光束照明发射光场模型。以叠加场统计分布为基础,讨论了多光束和偏振多样性对照明光场湍流闪烁及回波光场散斑现象的影响,从统计学的角度解释了所提出模型的可行性。理论上证明多光束等能量发射,对光场不均匀性的抑制可以达到最佳效果,照明光场闪烁指数减小为单光束的1/N,回波光场的散斑对比度减小为单光束的1/√N;同样分析了照明光场的偏振多样性对湍流闪烁和散斑现象的影响。
     (3)在理论分析结果的基础上,建立了基于可变采样的split-step数值仿真光场传输模型。根据折射率起伏变量功率谱密度,以FFT相位屏为基础,形成了Kolmogorov谱大气湍流模型,利用该模型仿真计算了照明光场湍流效应;以表面随机高度函数为基础,形成了具有不同粗糙度的高斯型目标表面模型,利用该模型仿真计算了回波散斑场统计特性。在单光束照明光场和回波光场仿真的基础上,进行了多光束叠加光场的研究,并且与单光束计算结果进行分析对比,验证了多光束对湍流闪烁和散斑现象的抑制效果。
     (4)以理论分析结果和仿真计算结果作为依据,搭建了能量可调偏振态可调的多光束照明发射实验系统,以及大气湍流模拟实验系统,并且利用两实验系统进行了如下实验:一,单光束完全偏振照明湍流效应和散斑现象研究;二,多光束完全偏振照明湍流效应和散斑现象研究;三,多光束部分偏振照明湍流效应和散斑现象研究。实验结果与理论分析和仿真计算预期相吻合,证明等能量分光对光场不均匀性可以起到最佳抑制效果,并且利用多光束增加光场偏振多样性,将会在多光束的基础上进一步抑制回波光场散斑现象。
It is known as laser active imaging that targets illuminated by laser and imagedthrough atmospheric turbulence. Compared to ordinary sources of light, laser has faroperation range, small divergence and high directionality, because of its coherence.And also due to this property, the uniformity of illumination filed, experiencingatmospheric disturbance and rough surface modulation, both of which lead totemporal and spatial intensity fluctuation, is serious undermined, finally, influence theimaging system property and reducing system resolution. Therefore, in order toimproving the imaging system performance, this dissertation focuses on improvingthe uniformity of target filed and inhibiting the scintillation and speckle phenomenonbased on the in-depth analysis of statistics properties of target field. The mainly workstudied in the thesis is arranged as follows:
     (1) The study on target field of laser active imaging is resolved into two processes,based on Born and Rytov perturbation approximation: first, analysis the turbulenceeffect of illumination field after propagation through atmosphere, including the meanirradiance, coherence radius, beam wander and scintillation index; second, study thestatistic properties of return speckle field, reflected by rough surface in free spacepropagation, deriving the influence of roughness on field uniformity, and establishingthe relationship between speckle contrast and surface RMS height and correlationlength.
     (2) Considering the nature of intensity fluctuation during the imaging process, this thesis adopts multi-beam emitting and polarization diversity of illumination field toweaken the coherence, based on the statistical property of illumination field andspeckle field. According to this principle, the multi-beam emitting model, in whichboth energy of each emitting beam and the polarization state overlapped illuminationfield are adjustable, is founded, meanwhile the inhibition effects of this model, provedfeasible, on turbulent scintillation and speckle phenomenon is discussed in terms ofprobability distribution density of the illumination field. The optimal inhibition effect,the scintillation index and speckle contrast of N beams emitting are N and√Ntimessmaller than single beam, respectively, can be achieved by multi-beam emitting withequal energy of each one, and the influence of polarization diversity on irradiancefluctuation is also discussed.
     (3) Under theoretical analysis of illumination field, the simulation of field propagationis conducted based on split-step method, whose sampling interval is adjustable, andFFT phase screen, which is determined by turbulence properties, in Kolmogorovspectrum atmosphere; and the return speckle field, reflected by different roughnesssurface, is also simulated based on surface random height function. The comparison,between the simulation results of single beam illumination and those of multi-beamillumination, demonstrates that the multi-beam emitting does have restraining effectson scintillation and speckle, and that the optimal inhibition effect as expected bytheoretical analysis is obtained.
     (4) According to the multi-beam emitting model, the experimental system isestablished, and the atmospheric turbulence simulation system with static phase plateis also established in lab. With these two system, some experiments are carried out, asfollows: first, the scintillation and speckle phenomenon with linearly polarized singlebeam illumination; second, the scintillation and speckle phenomenon with linearlypolarized multi-beam illumination; third, the scintillation and speckle phenomenonwith partially polarized multi-beam illumination. All the experimental results, agreedwith theoretical expectations and simulation results, demonstrate that the multi-beamemitting with equal energy of each one produces the optimal restraining effects on scintillation and speckle phenomenon, and increasing the polarization diversity, usingmulti-beam, of overlapped field in target field can further reduces the speckle contrastof return field, compared with linearly polarized multi-beam illumination, but uselessfor turbulence scintillation.
引文
[1] N. S. Kopeika. Blur in imaging through the atmosphere: a system engineeringapproach to imaging[C].1998,3433:320-331.
    [2] N. S. Kopeika, A. Zilberman, Y. Yitzhaky, E. Golbraikh. Atmospheric effects ontarget acquisition[C].2012,8355:83550D-83551-83510.
    [3] J. C. Dainty, A. E. Ennos, M. Francon, J. W. Goodman, T. S. Mckechnie, G. Prry.Laser Speckle and Relate Phenomena [M]. New York Springer-Verlag1975.
    [4] J. W. Goodman. Speckle Phenomena in Optics Theory and Applications [M].Greenwood Village: Roberts and Company Publishers,2007.
    [5] J. W. Goodman.光学中的散斑现象:理论与应用[M].北京:科学出版社,2009.
    [6] T. Mavroidis, J. C. Dainty, M. J. Northcott. Imaging of coherently illuminatedobjects through turbulence: plane-wave illumination [J]. J Opt Soc Am A,1990,7(3):348-355.
    [7] D. L. Fried. Optical Resolution Through a Randomly Inhomogeneous Medium forVery Long and Very Short Exposures [J]. J Opt Soc Am,1966,56(10):1372-1379.
    [8] D. L. Fried. Limiting Resolution Looking Down Through the Atmosphere [J]. JOpt Soc Am,1966,56(10):1380-1384.
    [9] D. L. Fried. Probability of getting a lucky short-exposure image throughturbulence [J]. J Opt Soc Am,1978,68(12):1651-1657.
    [10] D. A. Golimowski, M. Clampin, S. T. Durrance, R. H. Barkhouser.High-resolution ground-based coronagraphy using image-motion compensation [J].Appl Opt,1992,31(22):4405-4416.
    [11] J. Sebag, J. Arnaud, G. Lelièvre, J. L. Nieto, E. L. Coarer. High-resolutionimaging using pupil segmentation [J]. J Opt Soc Am A,1990,7(7):1237-1242.
    [12] D. L. Walters, D. L. Favier, J. R. Hines. Vertical path atmospheric MTFmeasurements [J]. J Opt Soc Am,1979,69(6):828-837.
    [13] X. Shi, R. K. Ward. Restoration of images degraded by atmospheric turbulenceand detection noise [J]. J Opt Soc Am A,1992,9(3):364-370.
    [14] R. Rao. Equivalence of MTF of a turbid medium and radiative transfer field [J].Chin Opt Lett,2012,10(2):020101.
    [15] T. A. Rhoadarmer, J. R. P. Angel. Low-Cost, Broadband Static Phase Plate forGenerating Atmosphericlike Turbulence [J]. Appl Opt,2001,40(18):2946-2955.
    [16] D. L. Snyder, T. J. Schulz. High-resolution imaging at low-light levels throughweak turbulence [J]. J Opt Soc Am A,1990,7(7):1251-1265.
    [17] T. S. McKechnie. Atmospheric turbulence and the resolution limits of largeground-based telescopes [J]. J Opt Soc Am A,1992,9(11):1937-1954.
    [18] W. P. Brown. Effect of illuminator-partial-coherence on optical tracking[C].2002,4632:66-84.
    [19] W. P. Brown. Effect of illuminator partial coherence on optical trackingsystems[C]. User Group Conference,2003Proceedings,2003,95-102.
    [20] G. P. Perram, M. A. Marciniak, M. Goda. High-energy laser weapons: technologyoverview[C].2004,5414:1-25.
    [21] K. W. Billman, J. A. Breakwell, R. B. Holmes, et al. ABL beam controllaboratory demonstrator[C].1999,3706:172-179.
    [22] C. Higgs, H. T. Barclay, D. V. Murphy, C. A. Primmerman. Atmosphericcompensation and tracking using active illumination [J]. Lincoln Laboratory Journal,1998,11(1):5-26.
    [23] C. Higgs, H. T. Barclay, J. E. Kansky, D. V. Murphy, C. A. Primmerman.Adaptive optics compensation using active illumination[C].1998,3381:47-56.
    [24] C. Higgs, H. T. Barclay, S. J. Cusumano, K. W. Billman. Active tracking usingmultibeam illumination[C].1998,3381:160-167.
    [25] C. A. Primmerman, T. R. Price, R. A. Humphreys, B. G. Zollars, H. T. Barclay, J.Herrmann. Atmospheric-compensation experiments in strong-scintillation conditions[J]. Appl Opt,1995,34(12):2081-2088.
    [26] M. C. Roggemann, B. M. Welsh. Imaging through turbulence [M]. CRC press,1996.
    [27] L. C. Andrews, R. L. Phillips. Laser Beam Propagation through Random Media
    [M]. SECOND EDITION. Bellingham, Washington USA: SPIE Press,2005.
    [28] H. W. Babcock. The possibility of compensating astronomical seeing [J].Publications of the Astronomical Society of the Pacific,1953,65(386):229-236.
    [29] D. Kundur, D. Hatzinakos. A novel blind deconvolution scheme for imagerestoration using recursive filtering [J]. Signal Processing, IEEE Transactions on,1998,46(2):375-390.
    [30] O. Shacham, O. Haik, Y. Yitzhaky. Blind restoration of atmospherically degradedimages by automatic best step-edge detection [J]. Pattern Recognition Letters,2007,28(15):2094-2103.
    [31] X. Tan. Bayesian Sparse Signal Recovery [D]: University of Florida,2009.
    [32] D. Sadot, A. Rosenfeld, G. Shuker, N. S. Kopeika. High-resolution restoration ofimages distorted by the atmosphere, based on an average atmospheric modulationtransfer function [J]. Optical Engineering,1995,34(6):1799-1807.
    [33] V. I. Tatarskii. Wave Propagation in a Turbulent Medium [M]. New York:McGraw-Hill Book Company,1961.
    [34] A. N. Kolmogorov. In Turbulence Classic Papers on Statistical Theory [M].New York: Interscience,1961.
    [35] A. N. Kolmogorov. The local structure of turbulence in incompressible viscousfluid for very large Reynolds numbers [J]. Proceedings of the Royal Society ofLondon Series A: Mathematical and Physical Sciences,1991,434(1890):9-13.
    [36] W. B. Miller, J. C. Ricklin, L. C. Andrews. Log-amplitude variance and wavestructure function: a new perspective for Gaussian beams [J]. J Opt Soc Am A,1993,10(4):661-672.
    [37] L. C. Andrews, W. B. Miller, J. C. Ricklin. Propagation through complex opticalsystems: a phase-screen analysis[C].1994,2312:122-129.
    [38] L. C. Andrews, W. B. Miller. The mutual coherence function and the backscatteramplification effect for a reflected Gaussian-beam wave in atmospheric turbulence [J].Waves in Random Media,1995,5(2):167-182.
    [39] L. C. Andrews, W. B. Miller. Single-pass and double-pass propagation throughcomplex paraxial optical systems [J]. J Opt Soc Am A,1995,12(1):137-150.
    [40] J. C. Ricklin, W. B. Miller, L. C. Andrews. Effective beam parameters and theturbulent beam waist for convergent Gaussian beams [J]. Appl Opt,1995,34(30):7059-7065.
    [41] L. C. Andrews, C. Y. Young, W. B. Miller. Coherence properties of a reflectedoptical wave in atmospheric turbulence [J]. J Opt Soc Am A,1996,13(4):851-861.
    [42] L. C. Andrews, R. L. Phillips, W. B. Miller. Mutual coherence function for adouble-passage retroreflected optical wave in atmospheric turbulence [J]. Appl Opt,1997,36(3):698-708.
    [43] L. C. Andrews, R. L. Phillips, A. R. Weeks. Propagation of a Gaussian-beamwave through a random phase screen [J]. Waves in Random Media,1997,7(2):229-244.
    [44] L. C. Andrews, R. L. Phillips, A. R. Weeks. Rytov approximation of theirradiance covariance and variance of a retroreflected optical beam in atmosphericturbulence [J]. J Opt Soc Am A,1997,14(8):1938-1948.
    [45] L. C. Andrews, R. L. Phillips, C. Y. Hopen, M. A. Al-Habash. Theory of opticalscintillation [J]. J Opt Soc Am A,1999,16(6):1417-1429.
    [46] M. A. Al-Habash, R. L. Phillips, L. C. Andrews. Mathematical model for theirradiance probability density function of a laser beam propagating through turbulentmedia [J]. Optical Engineering,2001,40(8):1554-1562.
    [47] L. C. Andrews, R. L. Phillips. Monostatic lidar in weak-to-strong turbulence [J].Waves in Random Media,2001,11(3):233-245.
    [48] L. C. Andrews, R. L. Phillips, C. Y. Hopen. Laser beam scintillation withapplications [M]. Bellingham, WA: SPIE2001.
    [49] O. Korotkova, L. C. Andrews, R. L. Phillips. Speckle propagation throughatmospheric turbulence: effects of a random phase screen at the source[C].2002,4821:98-109.
    [50] O. Korotkova, L. C. Andrews, R. L. Phillips. Laser radar in turbulent atmosphere:effect of target with arbitrary roughness on second-and fourth-order statistics ofGaussian beam[C].2003,5086:173-183.
    [51]刘维慧.激光在大气湍流中传输时光强起伏的初步分析[D]:[硕士学位论文].成都:电子科技大学,2004.
    [52]刘维慧,吴健.多束部分相干光通过强湍流对光强闪烁的影响[J].光电工程,2004,31(4):5-8.
    [53]刘维慧,吴健.水平均匀大气中多束光在接收面上的相关性及其对光强起伏的影响[J].应用光学,2004,25(6):31-33.
    [54]骆志敏.湍流大气中波的传播及散射问题研究[D]:[硕士学位论文].西安:西安电子科技大学,2002.
    [55]刘培森.散斑统计光学基础[M].北京:科学出版社,1987.
    [56]宋俊杰,田爱玲.非高斯随机粗糙表面计算仿真的研究[J].计算机仿真,2008,25(6):308-311.
    [57] P. Beckmann, A. Spizzichino. The Scattering of Electromagnetic Waves fromRough Surfaces [M]. New York: Pergamon,1985.
    [58] T. R. Tomas. Rough Surface [M]. Second Edition. London: Imperial Collegepress,1999.
    [59]F. Ticconi, L. Pulvirenti, N. Pierdicca. ELECTROMAGNETIC WAVES:Chapter10Models for Scattering from Rough Surfaces [M]. Croatia: InTech,2011.
    [60]M. H. Lee, J. F. Holmes, J. R. Kerr. Statistics of speckle propagation through theturbulent atmosphere [J]. J Opt Soc Am,1976,66(11):1164-1172.
    [61] V. A. Banakh, I. N. Smalikho, C. Werner. Numerical Simulation of the Effect ofRefractive Turbulence on Coherent Lidar Return Statistics in the Atmosphere [J].Appl Opt,2000,39(30):5403-5414.
    [62] R. Frehlich. Simulation of Laser Propagation in a Turbulent Atmosphere [J].Appl Opt,2000,39(3):393-397.
    [63] P. Stoffa, J. Fokkema, R. de Luna Freire, W. Kessinger. Split‐step Fouriermigration [J]. GEOPHYSICS,1990,55(4):410-421.
    [64] N. A. Roddier. Atmospheric wavefront simulation using Zernike polynomials [J].Optical Engineering,1990,29(10):1174-1180.
    [65] R. J. Noll. Zernike polynomials and atmospheric turbulence [J]. J Opt Soc Am,1976,66(3):207-211.
    [66] G.-m. Dai. Modal wave-front reconstruction with Zernike polynomials andKarhunen-Loève functions [J]. J Opt Soc Am A,1996,13(6):1218-1225.
    [67] B. L. McGlamery. Computer Simulation Studies Of Compensation OfTurbulence Degraded Images[C].1976,0074:225-233.
    [68] R. G. Lane, A. Glindemann, J. C. Dainty. Simulation of a Kolmogorov phasescreen [J]. Waves in Random Media,1992,2(3):209-224.
    [69] J. M. Martin, S. M. Flatté. Intensity images and statistics from numericalsimulation of wave propagation in3-D random media [J]. Appl Opt,1988,27(11):2111-2126.
    [70]张慧敏,李新阳.大气湍流畸变相位屏的数值模拟方法研究[J].光电工程,2006,33(1):14-19.
    [71] M. Carbillet, A. Riccardi. Numerical modeling of atmospherically perturbedphase screens: new solutions for classical fast Fourier transform and Zernike methods[J]. Appl Opt,2010,49(31): G47-G52.
    [72] G. Wang. A new random-phase-screen time series simulation algorithm fordynamically atmospheric turbulence wave-front generator[C].2006,6027:602712-602716.
    [73] W. A. Coles, J. P. Filice, R. G. Frehlich, M. Yadlowsky. Simulation of wavepropagation in three-dimensional random media [J]. Appl Opt,1995,34(12):2089-2101.
    [74]程传福,亓东平,刘德丽,滕树云.高斯相关随机表面及其光散射散斑场的模拟产生和光强概率分析[J].物理学报,1999,48(9):1635-1643.
    [75]董前民.随机表面统计特性的光散射标定和散斑场相位模拟分析[D]:[硕士学位论文].山东:山东师范大学,2001.
    [76] H. Fujii, J. Uozumi, T. Asakura. Computer simulation study of image specklepatterns with relation to object surface profile [J]. J Opt Soc Am,1976,66(11):1222-1236.
    [77]刘春香.随机表面的散斑与光散射标定法及近场散斑的格林函数法计算模拟研究[D]:[硕士学位论文].山东:山东师范大学,2002.
    [78]邱天.数字激光散斑图像的仿真建模和位移测量算法研究[D]:[博士学位论文].安徽:中国科学技术大学,2006.
    [79] X. J. Gan, J. Guo, Y. Y. Fu. The Simulating Turbulence Method of LaserPropagation in the Inner Field [J]. Journal of Physics: Conference Series,2006,48(1):907-910.
    [80]甘新基,郭劲,付有余,王挺峰,程寿国.大气场景模拟器中的湍流模拟方法[J].半导体光电,2006,27(6):764-766.
    [81] D. J. Butler, S. Hippler, S. Egner, W. Xu, J. B hr. Broadband, Static Wave-FrontGeneration: Na-Ag Ion-Exchange Phase Screens and Telescope Emulation [J]. ApplOpt,2004,43(14):2813-2823.
    [82] T.-L. Kelly, D. F. Buscher, P. Clark, et al. Dual-conjugate wavefront generationfor adaptive optics [J]. Optics Express,2000,7(11):368-374.
    [83]S. M. Ebstein. Nearly index-matched optics for aspherical, diffractive, andachromatic-phase diffractive elements [J]. Opt Lett,1996,21(18):1454-1456.
    [84] S. V. Mantravadi, T. A. Rhoadarmer, R. S. Glas. Simple laboratory system forgenerating well-controlled atmospheric-like turbulence[C].2004,5553:290-300.
    [85] C. Higgs, H. T. Barclay, K. W. Billman. Multibeam laser illuminator approach[C].1999,3706:206-215.
    [86] K. E. Wilson. Overview of the Compensated Earth-Moon-Earth RetroreflectorLaser Link (CEMERLL) experiment[C].1994,2123:66-74.
    [87] K. W. Billman. Multi-beam illuminator laser [P]. United States Patent,5734504.1998-05-31.
    [88] Y. Cai, Y. Chen, H. T. Eyyubo lu, Y. Baykal. Propagation of laser array beams ina turbulent atmosphere [J]. Appl Phys B,2007,88(3):467-475.
    [89] A. Peleg, J. V. Moloney. Scintillation Reduction by Use of Multiple GaussianLaser Beams With Different Wavelengths [J]. IEEE PHOTONICS TECHNOLOGYLETTERS,2007,19(12):883-885.
    [90] P. Polynkin, A. Peleg, L. Klein, T. Rhoadarmer, J. Moloney. Optimizedmultiemitter beams for free-space optical communications through turbulentatmosphere [J]. Opt Lett,2007,32(8):885-887.
    [91]从珊.基于光斑图像优化的多光束发射的光源配置方法[D]:[硕士学位论文].重庆:重庆大学,2012.
    [92]周朴,刘泽金,许晓军.湍流对相干合成与非相干合成远场光束质量的影响[J].中国激光,2009,36(5):1042-1046.
    [93]石秀梅,窦汝海,王从刚, et al.多光束合成场远场特征的傅里叶分析[J].强激光与粒子束,2007,19(12):1942-1946.
    [94]J. A. Louthain, J. D. Schmidt. Anisoplanatism in airborne laser communication [J].Optics Express,2008,16(14):10769-10785.
    [95] J. A. Louthain, J. D. Schmidt. Synergy of adaptive thresholds and multipletransmitters in free-space optical communication [J]. Optics Express,2010,18(9):8948-8962.
    [96] J. A. Tellez, J. D. Schmidt. Multibeam scintillation cumulative distributionfunction [J]. Opt Lett,2011,36(2):286-288.
    [97]马东堂.大气激光通信中的多光束发射和接收技术研究[D]:[博士学位论文].湖南:国防科学技术大学,2004.
    [98]李宾中.多束激光的并合、传输变换与照明特性研究[D]:[博士学位论文].四川:四川大学,2002.
    [99] D. Dayton, J. Gonglewski, C. St. Arnauld. Laser speckle and atmosphericscintillation dependence on laser spectral bandwidth[C].2009,7476:74760-74766.
    [100]饶瑞中.光在湍流大气中的传播[M].安徽:安徽科学技术出版社,2005.
    [101]张逸新,迟泽英.光波在大气中的传输与成像[M].北京:国防工业出版社,1997.
    [102] S. M. Rytov. Diffraction of Light by Ultrasonic Waves [M].1937.
    [103] A. M. Obukhov. Effect of Weak Inhomogeneities in the Atmosphere on Soundand Light Propagation [M].1953.
    [104] J. W. Strohbehn. Laser Beam Propagation in the Atmosphere [M]. Heidelberg:Springer-Verlag,1978.
    [105] J. W. Strohbehn. Optical Propagation through the Turbulent Atmosphere [M].North-Holland: Amsterdam,1971.
    [106]塔塔尔斯基.湍流大气中波的传播理论[M].北京:科学出版社,1978.
    [107] J. C. Leader. Beam-intensity fluctuations in atmospheric turbulence [J]. J OptSoc Am,1981,71(5):542-558.
    [108] F. G. Gebhardt, J. S. A. Collins. Log-Amplitude Mean for Laser-BeamPropagation in the Atmosphere [J]. J Opt Soc Am,1969,59(9):1139-1148.
    [109] R. G. Frehlich, S. M. Wandzura, R. J. Hill. Log-amplitude covariance for wavespropagating through very strong turbulence [J]. J Opt Soc Am A,1987,4(11):2158-2161.
    [110] J. H. Churnside, S. F. Clifford. Log-normal Rician probability-density functionof optical scintillations in the turbulent atmosphere [J]. J Opt Soc Am A,1987,4(10):1923-1930.
    [111] J. Ohtsubo, T. Asakura. Statistical properties of speckle intensity variations inthe diffraction field under illumination of coherent light [J]. Optics Communications,1975,14(1):30-34.
    [112] J. Ohtsubo, T. Asakura. Statistical properties of speckle patterns produced bycoherent light at the image and defocus planes [J]. Optik,1976,45,65-72.
    [113] N. Takai, H. Kadono, T. Asakura. Statistical Properties Of The Speckle Phase InImage And Diffraction Fields [J]. Optical Engineering,1986,25(5):255627-255627-.
    [114] H. Kadono, N. Takai, T. Asakura. Statistical properties of the speckle phase inthe diffraction region [J]. J Opt Soc Am A,1986,3(7):1080-1089.
    [115]陈辉,胡元中等.粗糙表面计算机模拟[J].润滑与密封,2006,14(10):52-59.
    [116] D. J. Janeczko. Power Spectrum Standard For Surface Roughness: Part I[C].1990,1165:175-183.
    [117] J. W. Goodman. Some fundamental properties of speckle [J]. J Opt Soc Am,1976,66(11):1145-1150.
    [118] J. Ohtsubo, T. Asakura. Statistical properties of laser speckle produced in thediffraction field [J]. Appl Opt,1977,16(6):1742-1753.
    [119] H. Fujii, T. Asakura. Statistical properties of image speckle patterns in partiallycoherent light [J]. Nouv Rev Optique,1975,6(1):5-14.
    [120] H. M. Pedersen. Theory of speckle dependence on surface roughness [J]. J OptSoc Am,1976,66(11):1204-1210.
    [121] H. Fujii, T. Asakura, Y. Shindo. Measurement of surface roughness propertiesby using image speckle contrast [J]. J Opt Soc Am,1976,66(11):1217-1222.
    [122] C. Cheng, C. Liu, N. Zhang, T. Jia, R. Li, Z. Xu. Reply to Comment: AbsoluteMeasurement of Roughness and Lateral-Correlation Length of Random Surfaces byUse of the Simplified Model of Image-Speckle Contrast [J]. Appl Opt,2003,42(14):2523-2525.
    [123] H. T. Yura, S. G. Hanson. Comment: Absolute Measurement of Roughness andLateral-Correlation Length of Random Surfaces by use of the Simplified Model ofImage-Speckle Contrast [J]. Appl Opt,2003,42(14):2521-2522.
    [124] C. Cheng, C. Liu, N. Zhang, T. Jia, R. Li, Z. Xu. Absolute Measurement ofRoughness and Lateral-Correlation Length of Random Surfaces by Use of theSimplified Model of Image-Speckle Contrast [J]. Appl Opt,2002,41(20):4148-4156.
    [125] Y. Zhao, D. Xu, X. Zhong. Scintillation reduction using multi-beam propagatingtechnique in atmospheric WOCDMA system [J]. Chin Opt Lett,2011,9(11):110602.
    [126] X. Xiao, J. Aluguri, D. Voelz. Wave optics simulation study of multipleGaussian beam transmitters for free space optical transmission through turbulence[C].Proc of SPIE,2009,7200:72001-72008.
    [127] C. Higgs, H. T. Barclay, K. W. Billman. Multibeam laser illuminator approach[J]. SPIE,1999,3706(Airborne Laser Advaced Technology II):206-215.
    [128] L. F. Fenton. The Sum of Log-Normal Probability Distributions in ScatterTransmission Systems [J]. IRE TRANSACTIONS ON COMMUNICATIONSSYSTEMS,1960:57-67.
    [129] J. Ohtsubo. Joint probability density function of partially developed specklepatterns [J]. Appl Opt,1988,27(7):1290-1292.
    [130] J. Ohtsubo, T. Asakura. Statistical properties of the sum of partially developedspeckle patterns [J]. Opt Lett,1977,1(3):98-100.
    [131] X. Xifeng, D. Voelz. Annular beam propagation through turbulence: Waveoptics study of intensity and scintillation properties[C]. Aerospace Conference,2012IEEE,2012,1-6.
    [132] W. He, J. Wu, C. Yang, Y. Han, G. Xu. Numerical simulation of beampropagation through atmospheric turbulence for laser radar[C].2007,6832:683221-683228.
    [133] W. P. Brown. Simulation of laser propagation on long stratospheric paths[C].1997,3065:313-329.
    [134] J. D. Schmidt. Numerical Simulation of Optical Wave Propagation withExamples in Matlab [M]. Bellingham, Washington USA: SPIE Press,2005.
    [135] S. M. Flatté, G. Y. Wang, J. Martin. Irradiance Variance of Opticalwaves throughAtmospheric Turbulence by Numerical Simulation and Comparison with Experiment[J]. J Opt Soc Am A,1993,10(11):2363-2370.
    [136] J. A. Rubio, A. Belmonte, A. Comerón. Numerical Simulation of Long-PathSpherical Wave Propagation in Three-Dimensional Random Media [J]. J Opt Soc AmA,1999,38(9):1462-1469.
    [137] V. Sriram, D. Kearney. An ultra fast Kolmogorov phase screen generatorsuitable for parallelimplementation [J]. Optics Express,2007,15(21):13709-13714.
    [138] G. Sedmak. Implementation of Fast-Fourier-Transform-Based Simulations ofExtra-Large Atmospheric Phase and Scintillation Screens [J]. Appl Opt,2004,43(23):4527-4538.
    [139] R. A. Johnston, R. G. Lane. Modeling Scintillation from an AperiodicKolmogorov Phase Screen [J]. Appl Opt,2000,39(26):4761-4769.
    [140] M. B. Roopashree, A. Vyas, B. Raghavendra Prasad. Multilayered temporallyevolving phase screens based on statistical interpolation[C].2010,7736:77363Z-77361-77310.
    [141]付玉,金振宇.多层湍流大气相位屏的数值模拟[J].天文研究与技术,2010,7(1):47-54.
    [142]钱仙妹,朱文越,饶瑞中.非均匀湍流路径上光传播数值模拟的相位屏分布[J].物理学报,2009,58(9):6633-6639.
    [143]王立瑾,李强,魏宏刚,廖胜,沈忙作.大气湍流随机相位屏的数值模拟和验证[J].光电工程,2007,34(3):1-4.
    [144]王龙,沈学举,张维安,董红军,何永强.相位屏法研究平顶高斯光束的大气传输特性[J].激光与红外,2012,42(8):852-856.
    [145]向劲松,张孝雷,张苗苗,杨松.无限长湍流相位屏产生方法[J].强激光与粒子束,2012,24(5):1071-1075.
    [146]张鹏青.激光大气传输仿真系统的设计与研究[D]:[硕士学位论文].北京:北京邮电大学,2012.
    [147] A. D. McAulay. Generating Kolmogorov phase screens for modeling opticalturbulence[C].2000,4034:50-57.
    [148] M. H. Mahdieh. Numerical approach to laser beam propagation throughturbulent atmosphere and evaluation of beam quality factor [J]. OpticsCommunications,2008,281(2):3395-3402.
    [149] M. A. Vorontsov, J. C. Ricklin, W. B. Miller, N. G. Irochnikov. Opticalsimulation of imaging systems using multiple turbulent phase screens[C].1994,2312:136-144.
    [150] B. J. Herman, L. A. Strugala. Method for inclusion of low-frequencycontributions in numerical representation of atmospheric turbulence[C].1990,1221:183-192.
    [151]刘曼.随机表面的散斑标定法与近场散斑特性的研究[D]:[硕士学位论文].山东:山东师范大学,2003.
    [152] B. J. Herman, L. A. Strugala. Method for Inclusion of Low-FrequencyContributions in Numerical Representation of Atmospheric Turbulence [J]. SPIE,1990,1221(Propagation of High-Energy Laser Beams through the Earth'sAtmosphere):183-192.
    [153] J. Xiang. Accurate compensation of the low-frequency components for theFFT-based turbulent phase screen [J]. Optics Express,2012,20(1):681-687.
    [154]王永德,王军.随机信号分析基础[M].第三版.北京:电子工业出版社,2009.
    [155] E. M. Johansson, D. T. Gavel. Simulation of Stellar Speckle Imaging [J]. SPIE,2200,372-383.
    [156] Y. Z. Tian, J. Guo, R. Wang, T. F. Wang. Mathematic model analysis ofGaussian beam propagation through an arbitrary thickness random phase screen [J].OPTICS EXPRESS,2011,19(19):18216-18228.