六自由度一体式坦克模拟器误差特性及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于并联机器人的坦克模拟器是模拟坦克路面作战的设备,它可以代替实车进行驾驶员及车炮长培训。因其自身无可比拟优越性(训练不受时间、天气、地点的限制等),在世界各国得到广泛应用。本文以实验室自行研制的六自由度一体式坦克模拟器为研究对象,对其结构特点、运动学、动力学、误差、螺旋耦合及控制系统进行分析研究,对六自由度一体式坦克模拟器平稳运动控制的深入研究具有重要意义。
     本文在充分调研国内外坦克模拟器及并联机器人发展概况及研究现状的基础上,对六自由度一体式坦克模拟器进行运动学建模,为机构速度、加速度的分析及误差模型的建立的奠定基础;建立模拟器动力学模型,为控制硬件的选型奠定基础;同时,利用仿真软件进行简单仿真分析。
     通过分析误差建模的方法,建立自身的误差模型。基于研究对象的结构参数值,利用所建立的误差模型进行实际计算分析,对于同样的杆长误差,在不同位姿下所产生的位姿误差是不同的,且为非线性变化。
     在Plucker坐标下,针对六自由度一体式坦克模拟器中存在的螺旋耦合进行分析验证。推导螺旋耦合公式,并基于所建立的误差模型分析螺旋耦合所产生的杆长误差对运动平台位置误差的影响。提出机构-模型联合实验方法,考虑控制器及电机对控制曲线的影响,对螺旋耦合补偿方法进行实验研究。实验结果表明,该螺旋耦合补偿提高了坦克模拟器运动的平稳性和准确性,降低抖动幅度,延长使用寿命,为模拟器的运动控制进行了有益的探索。
     通过对驱动方式的比较,根据自身的实际情况,选定一体式坦克模拟器驱动方式。对控制系统的硬件和软件分别进行设计,并完成控制柜的设计及调试。
As the equipment for simulate combating on the road, Tank Simulator which based on parallel robot is took for drive and fighting training instead of the real Tank. Nowadays Tank Simulator is widely used for its advantages such as it is not restricted by time, climate and place while training. Taking the 6-DOF integrated Tank Simulator as the research object, this paper studied its structure, kinematics, error, screw coupling and control system which has a significance in depth study for the smooth moving control of 6-DOF integrated Tank Simulator.
     Based on the study of domestic and foreign research about Tank Simulator and parallel robot, the kinematics model is builds for analyze the velocity and acceleration as well as error molding. The dynamic model is also established to provide a theoretical basis for designing hardware of controlling system. Besides, the simulation analysis of molding is also taken.
     The error molding of 6-DOF integrated Tank Simulator is set up according to studying the molding methods. Based on the geometric parameters of Tank Simulator, this paper takes an example to research error molding. The results show that moving plate error appears nonlinear variation along with the same length error of legs in the linear changing positions.
     The screw coupling of 6-DOF integrated Tank Simulator is analyzed in Plucker coordinates which use screw theory. Through deriving the coupling angle and velocity based on inverse kinematics model, the error of moving plate is calculated with the error molding. It uses the mechanism-model combined method which takes practical moving track that considering the performance of motion controller and motor as its input to make the study. Experimental results show that the screw coupling compensation improves motion stability as well as accuracy. Besides, it decreases the dither amplitude and prolonging service life of Tank Simulator. This paper processes positive research for motion control of Simulator.
     According to the performance comparison of drive mode and the characteristics of 6-DOF integrated Tank Simulator, this paper took electric as its own. The hardware and software of controlling system is designed. Besides, this paper also design and debugging the control cabinet.
引文
[1]朱训慧,王忠义,王钰.坦克射击教材[M].北京:海潮出版社,2006:49-78.
    [2]解放军总参谋部.装甲兵专业技术教范[M].北京:军事出版社,1997:3-73.
    [3]D.Stewart. A platform with six degree of freedom[A]. Proceeding of Institute of Mechanical Engineering[C]. London:1965,180,371-386.
    [4]HUANG Q T, JIANG H Z, ZHANG S Y, et al. Spacecraft docking simulation using hardware-in-the-loop simulator with Stewart platform[J]. Chinese Journal of Mechanical Engineering,2005,18(3):415-418.
    [5]杨灏泉,赵克定,吴盛林,曹健.飞行模拟器六自由度运动系统的关键技术及研究现状[J].系统仿真学报,2002,14(1):86-87.
    [6]于俊发,丛明,王智勇,曹斌.某型坦克无姿态仿真驾驶模拟器的研制[J].计算机仿真,2007(24):305-308.
    [7]Bhaskar Dasgupta, T. S. Mruthyunjaya. The Stewart platform manipulator:a review[J]. Mechanism and Machine Theory,2000(35):15-40.
    [8]谢薇.外军坦克模拟训练装备纵览[J].现代军事,2005(15):24-27.
    [9]胡晓峰.美军训练模拟[M].北京:国防大学出版社,2001.
    [10]花传杰,等.装甲兵军事训练仿真技术及应用[M].北京:解放军出版社,2004.
    [11]荣明,王春忠,王钦钊,李小龙,黄鑫.坦克嵌入式车场射击训练系统仿真技术研究[J].装甲兵工程学院学报,2008,22(6):11-14.
    [12]刘兴堂,万少松,张双选.论军用模拟训练器/系统的发展趋势[J].系统仿真学报,2002,14(5):647-649.
    [13]D. Stewart. A platform with six degree of freedom[A]. Proceeding of Institute of Mechanical Engineering[C]. London:1965,180,371-386.
    [14]M.Minsky. Manipulator Design Vignettes[C]. MIT AT Memo No.267, MIT AI Laboratory.1972.
    [15]Hunt. Kinematics Geometry of Mechanism[M]. Oxford:Clarendon Press.1978.
    [16]H. Mac Call ion, D. T. Pham. The analysis of six degrees of freedom work station for mechanized assembly[J]. Proc.5th World Congress on Theory of Machines and Mechanisms. Montreal,1979,7:6-11.
    [17]Marconi. Development of the Tetrabot Robotics Manipulator[R]. Research Report: Marconi Research Centre,1986.
    [18]R. Clavel. Une nouvelle structure de manipulator pour la robotique legere[S]. APII.198923:501-510.
    [19]F. Pierrot, M. Uchiyama, P. Dauchez and A. Fournier. A New Design of a 6-DOF Parallel Robot [J]. Proceedings 23rd International Symposium on Industrial Robots, Bareclona, 1992,10,771-776.
    [20]王洪瑞.液压6-DOF并联机器人操作手运动和力控制的研究[M].河北:河北大学出版,2001.
    [21]陈峰,费燕琼,赵锡芳.六自由度并联机器人的支链选取[J].机器人,2005,27(5):396-399.
    [22]Masaru Uchiyama. Structure and Characteristics of Parallel Manipulators[J]. Advanced Robotics,1994,8(6):545-547.
    [23]张崇峰.空间对接机构综述[J].世界科学,2003,1:26-27.
    [24]周前祥,连顺国.航天器空间交会对接技术的进展[J].航天医学与医学工程,1998,11(4):305-309.
    [25]马婷婷,魏晨曦.空间交会对接测量技术的发展[J].中国航天,2004,7:33-34.
    [26]李迎,龚光容,施祖康.虚拟轴机床的应用研究与发展趋势[J].机械设计与制造工程,1995,28(3):2-4.
    [27]周凯.虚拟轴数控机床的虚实映射联动控制[J].中国机械工程,1998,9(3):16-18.
    [28]刘鹏远,谷宏强,李瑞.虚拟现实技术在武器操纵训练中的应用[J].系统仿真学报,2001,11:369-373.
    [29]孙显营,熊坚.车辆驾驶模拟器的发展综述[J].交通科技,2001,6:49-51.
    [30]李耀辉.模拟飞行器的模拟实现[D].河北:河北工业大学,2002.
    [31]刘又午,章青,王国峰等.数控机床误差补偿技术及应用[J].制造技术与机床,1998,(12):5-7.
    [32]卢强,张友良.用蒙特卡洛法进行6腿并联机床精度综合[J].中国机械工程,2002,13(6):464-467.
    [33]Abdellatif Houssem, Heimann Bodo. On Compensation of Passive Joint Friction in Robotic Manipulators:Modeling, Detection and Identification [A]. Proceedings of the IEEE International Conference on Control Applications[C]. Munich:2006, 2510-2515.
    [34]Abdellatif Houssem, Grotjahn Martin, Heimann Bodo. Independent identification of friction characteristics for parallel manipulators [J]. Journal of Dynamic Systems, Measurement and Control,2007(129):294-302.
    [35]Meng Z, Che R. S, Huang Q. C, Yu Z. J. The direct-error-compensation method of measuring the error of a six-freedom-degree parallel mechanism CMM [J]. Journal of Materials Processing Technology,2002(129):574-578.
    [36]Yang Chifu, Huang Qitao, Jiang Hongzhou, Ogbobe Peter 0, Han Junwei. PD control with gravity compensation for hydraulic 6-DOF parallel manipulator [J]. Mechanism and Machine Theory,2010(45):666-677.
    [37]Kevin C, Tatsuo A. A prototype parallel manipulator:kinematics, construction, software, workspace results, and singularity analysis[A]. Proceedings-IEEE International Conference on Robotics and Automation[C]. Sacramento:1991, 1:566-571.
    [38]王伟,谢海波,傅新,杨华勇.大型液压Stewart平台动态藕合特性[J].机械工程学报,2007(43):12-15.
    [39]李强,王宣银,程佳.基于逆动力学模型的Stewart平台干扰力补偿[J].机械工程学报,2009(45):14-19.
    [40]张歆.6_THHT并联机器人动力学分析及控制技术研究[D].南京:南京理工大学,2006.
    [41]Jianming Ma, Jingfeng He, Haiguo Xiong and Junwei Han. Simulation of coupling characteristic of hydraulically driven Stewart Platform based On dynamics model[J].2008 International Workshop on Modeling, Simulation and Optimization, 2008:88-92.
    [42]S. Iqbal, A. I. Bhatti, Q. Ahmed. Determination of realistic uncertainty bounds for the Stewart Platform with payload dynamics [A].17th IEEE International Conference on Control Applications[C]. San Antonio,2008:995-1000.
    [43]刘胜,李晚龙,杜延春,宋佳.潜器Stewart平台动力学仿真[J].哈尔滨工业大学学报,2009(41):249-255.
    [44]熊有伦等.机器人学[M].北京:机械工业出版社,1993.
    [45]黄真等.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997.
    [46]高为炳.非线性控制系统导论[M].北京:科学出版社,1991.
    [47]Nakamura Y, Gbodoussi M. Dynamics computation of closed-link robot mechanism with nonredundant and redundant actuators[J], IEEE Transaction on Robotics and Automation,1989,5(3):294-302.
    [48]Bhaskar, Dasgupta, Mruthyunjaya T S. Closed-form dynamic equations of the general stewart platform through the Newton-Euler approach [J]. Mechanism and Machine Theory,1998,33(7):993-1012.
    [49]Koekebakker S. Model based control of a flight simulator motion system [D]. Delft: Delft University of Technology,2001.
    [50]G. de rivals-Mzaeres, W. Yim, F. Mora-Camino and S. N. singh. Inverse control and stabilization free-flying flexible robots[J]. Robotic,1999,17:343-350.
    [51]孟(?),车仁生.并联六坐标测量机的误差模型和误差补偿[J],哈尔滨工业大学学报,2004,36(3):317-320.
    [52]刘含玮,王洪光,李树军,何立波.一种3自由度并联柔索驱动机器人的精度研究[J].机器人,2008,30(5):392-397.
    [53]张建军,王晓慧等.微操作并联机器人几何误差建模的参数误差转换法及误差敏感性分析[J].机械工程学报,2005,41(10):39-43.
    [54]谭晓兰,邹东林.六坐标并联式数控机床误差分析[J].机械传动,2004,28(3):25-27.
    [55]赵永杰,赵新华,葛为民.6-SPS并联机器人精度综合算法[J].机械科学与技术,2004,23(4):392-395.
    [56]张典范,高峰,金振林.6-(P-2P-S)并联机器人误差分析及参数优化[J].机械设计与研究,2009,25(3):27-29.
    [57]朱小蓉,沈惠平.一种新颖并联运动坐标测量机的误差建模与仿真[J].中国制造业信息化,2006,35(17):56-60.
    [58]阎华,刘桂雄,郑时雄.机器人位姿误差建模方法综述[J].机床与液压,2000,1:3-5.
    [59]徐卫良,张启先.机器人机构(位姿)误差分析的微小位移合成法[J].南京工学院学报,1987,17(6):43-54.
    [60]徐卫良.机器人机构误差建模的摄动法[J].机器人,1989,3(6):39-44.
    [61]谭晓兰,邹东林.六坐标并联式数控机床误差分析[J],机械传动,2004,28(3):25-27.
    [62]R. S. Ball, A Treatise on The Theory of Screws [M], Cambridge University Press,1900.
    [63]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006.
    [64]陈峰,费燕琼,赵锡芳.六自由度并联机器人的支链选取[J].机器人,2005(27):396-399.