六自由度坦克驾驶模拟器设计优化及其轨迹规划
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是在实际工程项目99式坦克高仿真训练驾驶模拟器研制的基础上提出的,主要用于驾驶员、车长、炮长的协调实战训练。六自由度坦克驾驶模拟器视景系统模拟坦克运行时的各种动作和位姿变化,运动平台实时跟踪虚拟坦克的运动,达到一个非常接近真实坦克驾驶的环境。
     本文根据实际需要设计一个六自由度的Stewart运动平台,加上炮塔旋转运动,可实现包括俯仰、侧倾、旋转、颠簸、平移、打炮后作七个自由度的运动。首先按性能指标对并联机构的结构参数进行设计,对驱动功率影响较大的铰点分布参数进行优化取值。然后根据任意位姿胡克铰摆角,对虎克铰干涉和工作空间进行校验,并利用仿真结果对其再次验证,结构没有干涉,工作空间满足要求。通过有限元分析虎克铰在交变载荷下的强度,对其薄弱的尺寸进行了优化设计,保证坦克驾驶模拟器的强度和刚度。
     根据坦克驾驶模拟器要求运动过程平稳,振动小,实时性高的特点,以及并联机构关节空间轨迹平滑不能保证笛卡尔空间轨迹平滑的特点,提出采用在笛卡尔空间的时间和冲击综合优化轨迹规划方法。利用分段三次样条曲线对坦克姿态点进行插补,以六自由度运动平台速度、加速度为约束条件,以时间和冲击为优化目标,对样条曲线进行控制,规划出满足模拟驾驶仪运动要求的轨迹曲线。在优化插补点时间间隔的非线性规划问题时,采用实时的可行方向法来处理。仿真和试验结果表明,提出的轨迹规划方法可以使模拟驾驶仪实时平稳地跟踪视景系统给定的任意运动轨迹。
     最后根据自身控制的需要,设计了坦克驾驶模拟器的控制系统,并完成包括回原位与初始运动模块,坦克旋转模块,坦克射击后作和颠簸模块等的程序编写,进行了样机的真人测试,完成了坦克驾驶模拟器的性能指标,能够满足坦克模拟的运动要求。
This research topic is proposed on the basis of the actual project of designing Type 99 tank driving simulator, which is mainly used for training commander, driver and gunner's fighting abilities. The visual system of the 6-DOF tank driving simulator displays the tank movements and posture changes during the tank moves and the motion platform tracks the movement of the virtual tank in real time. The aim is to achieve making a very close to real tank driving environment.
     This paper presents a six degree of freedom Stewart motion platform based on the actual need, which can do seven degrees of freedom of motions including pitch, roll, rotation, turbulence, translation, yaw and cannon vibration. Firstly, the structural parameters of the parallel mechanism are designed according to the performance indicators. The parameter of the hinge point distribution having greater impact on the drive power is optimized. Secondly, the interference and working space of the hooks is checked corresponding to any angle of the hook under different positions and orientations. Through simulation the result is re-validated and the hook works well. Lastly, In order to ensure the strength and stiffness of the tank driving simulator, the weak dimensions of the hook is optimized by finite element method under alternating load.
     The tank driving simulator requires smooth movement, little vibration and high real-time. While for parallel mechanism, the trajectory smoothing feature in joint space can not guarantee a smooth trajectory in Cartesian space. This paper proposed a new time-jerk synthetic optimization method for trajectory planning based on Cartesian space of the Stewart parallel mechanism. With the purpose of getting the optimized trajectory, the piecewise cubic spline curve is exploited to interpolate pose series, which is controlled by a set of appropriate constraints such as velocity, acceleration, jerk and time intervals. A real-time method of feasible directions (MFD) is proposed to solve the nonlinear programming problem of optimizing the time interval of the interpolation points. Simulation and experimental results show that the proposed trajectory planning algorithm makes the tank driving simulator track any trajectories given by the visual system smoothly and real-timely.
     Finally, the control system of the tank driving simulator is designed according to the actual requirement. The coding of the back to position and initial motion module, tank rotation module, tank cannon vibration module and turbulence module is completed. The prototype testing is made showing that the tank driving simulator achieves the performance indicators and meet the requirements of simulating the movement of tanks.
引文
[1]郭齐胜,李光辉,张桂元,等.坦克综合训练模拟器的软件系统[J].系统仿真学报,2001,13(2):213-215.
    [2]Shao-Chi Wang, Hiromitsu Hikita, Hiroshi Kubo, Yong-Sheng Zhao, Zhen Huang, Tohru Ifukube. Kinematics and dynamics of a 6 degree-of-freedom fully parallel manipulator with elastic joints[J]. Mechanism and Machine Theory.2003, (38):439-461.
    [3]Ralph C Merkle. A new family of six degrees of freedom positional devices[J]. Nanotechnology 8.1997:47-52.
    [4]金宇.重载六自由度电动摇摆台关键件的结构设计与优化仿真[D].哈尔滨:哈尔滨工业大学机械工程学院,2007.
    [5]赵江波,王军政,汪首坤,吕戎.四自由度摇摆台的研制[J].液压与气动,2003,(10):5-7.
    [6]王旭永,骆涵秀,吴江宁,李世伦,刘宇.六自由度并联电液伺服平台的特点及应用[J].液压与气动,1995,(2):16-18.
    [7]李营.六自由度坦克驾驶模拟器开发[D].吉林大学,2005.
    [8]朱竞夫.装甲兵作战模拟训练装备综述[J].现代军事,2005,(12):15-19.
    [9]徐庚保,曾莲芝.军事仿真[J].计算机仿真,2007,24(12):1-5.
    [10]谢薇.外军坦克模拟训练装备纵览[J].现代军事,2005,(15):24-27.
    [11]胡晓峰.美军训练模拟[M].北京:国防大学出版社,2001.
    [12]王开启.勒克莱尔坦克新型训练模拟器[J].国外坦克,1999,(12):37.
    [13]伍英华.六自由度一体式坦克模拟器误差特性及控制[D].大连理工大学,2010.
    [14]王洪斌,魏立新,王洪瑞.并联机器人的理论研究现状[J].自动化博览,2002,(5):42-45.
    [15]赵建文,杜志江,孙立宁.虎克铰干涉判定准则及其优化设计方法的研究[J].机械设计,2004,21(11):45-47
    [16]何立波.六自由度摇摆台动力学仿真及优化[D].哈尔滨工业大学,2006.
    [17]申键.平面并联机器人的结构优化方法综述[J].中国高新技术企业,2008,(11):73.
    [18]Tay, Francis E.H., GuJinxiang. Product modeling for conceptual design support [J]. Computers in Industry,2002,48(2):143-155.
    [19]熊光楞,郭斌,陈小波等.协同仿真与虚拟样机技术[M].清华大学出版社.2004.8.
    [20]Ferretti Gianni, Magnani GianAntonio, Rocco Paolo. Virtual prototyping of mechatronic systems[J]. Annual Reviews in Control,2004,28(2):193-206.
    [21]Esping Bjorn JD. The OASIS structural optimization system [J]. Computers and Structures,1984, 23(3):365-377.
    [22]顾元宪,程耿东.计算机辅助结构优化设计软件MCADS的开发与应用[J].计算结构力学及其应用,1995,12(3):304-307.
    [23]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2000.
    [24]Gasparetto A, Zanotto V. A new method for smooth trajectory planning of robot manipulators[J]. Mechanism and machine theory,2007,42(4):455-471.
    [25]Lin C S, Chang P R, Luh J Y S. Formulation and Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots. IEEE Transactions on Automatic Control,1983,28(12): 1066-1074.
    [26]张一巍,张永民,黄元庆.用高阶多项式插值解决机器人运动轨迹规划中的约束问题.机器人技术与应用,2002,(2):19-21
    [27]Ozaki H, Lin C J. Optimal B-spline joint trajectory generation for collision-free movements of a manipulator under dynamic constraints. Proceeding of the IEEE International Conference on Robotics and Automation.1996,4:3592-3597
    [28]Cong M, Xu X F, Xu P. Time-Jerk Synthetic Optimal Trajectory Planning of Robot Based on Fuzzy Genetic Algorithm.15th International Conference on Mechatronics and Machine Vision in Practice,2008:274-279.
    [29]Shiller Z, Dubrowsky S. On the optimal control of robotic manipulators with actuator and end-effector constraints. Proc. of the 1985 IEEE International Conference on Robotics and Automation,1985.614-620.
    [30]徐海黎,解祥荣,庄健等.工业机器人的最优时间与最优能量轨迹规划.机械工程学报,2010,46(9):19-25.
    [31]Cao B, Doods G I, Irwin G W. Time-Optimal and Smooth Constrained Path Planning for Robot Manipulators. IEEE International Conference on Robotics and Automation.1994,3:1853-1858
    [32]Nguyen C C, Antrazi S S, Park J Y et al. Trajectory planning and control of a stewart platform-based end-effector with passive compliance for part assembly. Journal of Intelligent and Robotic Systems,1992,6(2-3):263-28.
    [33]王攀峰,梅江平,黄田.高速并联机械手抓放操作时间最优轨迹规划.天津大学学报,2007,40(10):1139-1145.
    [34]徐文辉.六自由度Stewart平台运动学参数的计算和试验研究[D].哈尔滨:哈尔滨工业大学机电工程学院,2006.
    [35]刘小初,六自由度运动模拟器结构参数分析设计[D].哈尔滨:哈尔滨工业大学机电工程学院,2006.
    [36]于晖,孙立宁,张秀峰,蔡鹤皋.虎克铰工作空间研究及其在6-HTRT并联机器人中的应用[J].中国机械工程,2002,13(21):1830-1834.
    [37]黄真,孔令富,方跃华.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997.
    [38]于凌涛6-PTRT型并联机器人关键技术及其在正骨手术中的应用[D].哈尔滨:哈尔滨工业大学机电工程学院,2007.
    [39]D.Stewart. A platform with six degree of freedom [A].Proceeding of Institute of Mechanical Engineering[C].London:1965,Vol 180,371-386.
    [40]张绪华6-THRT并联机器人运动学性能研究[D].南京理工大学机械制造及其自动化,2004.
    [41]张红强.工业机器人时间最优轨迹规划[D].长沙:湖南大学机械工程学院,2004.
    [42]谭民.先进机器人控制[M].北京:高等教育出版社,2007.
    [43]陈丹.基于遗传算法B样条曲线优化在机器人轨迹规划中应用[D].武汉:武汉科技大学控制理论与控制工程,2007.
    [44]Jorge Angeles机器人机械系统原理、理论、方法和算法[M].北京:机械工业出版社,2004.