基于LOA-XGM的全光逻辑门研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全光逻辑门是实现光分组交换、光计算和未来高速大容量光传输的关键器件,其发展对未来的光分组交换、光计算和光传输等方面具有十分深远的影响。交叉增益调制(XGM)型波长转换的技术具有输出信号啁啾(Chip)小、信噪比(SNR)高、消光比(ER)高、便于集成等优点,具有良好的商业化前景。目前主要对基于半导体光放大器(SOA)的XGM来实现逻辑门作了大量研究。然而,一种新的线性光放大器(LOA)因为其良好的线性增益特性,十分适合用作实现波长转换以及全光逻辑功能,比传统的SOA更能实现大容量、高速率的信息处理。
     本文主要对基于LOA-XGM的一些基本特性以及作为全光逻辑门进行了研究。首先从速率方程出发,构建了LOA-XGM的基本理论模型,利用该模型对LOA的增益特性、消光比特性以及啁啾特性进行详细分析;然后,在XGM的基础上,利用Simulink对级联LOA建模,数值模拟实现了全光逻辑或非运算功能,分析了不同注入电流的组合对于逻辑输出结果的影响;最后,利用Simulink建模便于模块修改的优点,在逻辑或非门模型的基础上,搭建了逻辑与门的模型,分析了LOA每个子段的有源区内载流子浓度随时间的变化以及不同输入参数对于逻辑输出结果的影响,以达到优化设计的效果。
     研究结果表明:(1)由于垂直光场的增益钳制作用,LOA的增益波动范围比SOA小、增益恢复时间短;减小探测光功率以及选择合适的波长间隔和注入电流都有利于获得较大的消光比。但是,在一定范围内减小探测光功率和增加抽运光功率也会造成啁啾的增大,因此合理的选择这些参数,能够达到消光比与啁啾之间的平衡。(2)LOA进行逻辑或非运算时,由于其线性增益特性,使得输出信号所产生的畸变比利用SOA进行逻辑运算时小;适当的选择级联LOA的工作电流组合,有利于改善最后的逻辑输出结果。(3)LOA进行逻辑与门运算时,适当的选择输入探测光波长和抽运光波长范围,以及适当的增加抽运光A的光功率,都有利于改善最后的逻辑输出结果;再与SOA的逻辑输出结果做了比较,进一步证明了LOA的性能优于SOA。
All optical logic is the key devices of optical packet switching system, optical calculation and great capacity transmission which should be influenced heavily in the future. Cross-gain modulation (XGM) have many advantages, such as small chirp, high signal noise rate (SNR) , high extinction rate (ER) and convenient for integration. At present, many researches of logic gate which based on XGM of semiconductor optical amplifier (SOA) have been done. However, because of the linear gain characteristic, LOA is quite suit for wavelength conversion and optical logic function, and achieving higher capacity and rate information processing than traditional SOA.
     The basic characteristics and logic gate of LOA was studied. Firstly, a theoretical model of LOA-XGM is established based on velocity equation, The gain, extinction rate (ER) and chirp characteristics are analyzed particularly using this model. Secondly, based on XGM, numeral simulation realized the output results of logic NOR operation, using Simulink for setting up a model of connect. LOA is presented to the influences of output results with the different input current group. Finally, based on logic NOR gate, a model of all-optical logic AND gate is presented, with the excellence of the Simulink modeling, which is convenient for amending. The carrier consistency is changed with time and the influences of output results with different parameters of LOA are analyzed, they are used for the purpose of optimizing design.
     The results show that owing to the existence of vertical-cavity laser (VCL), the gain fluctuation of LOA is smaller than SOA's, also the gain recovery time is shorter. Lower probe power and suitable wavelength spans, which between pump and probe, and the input current have the advantages to achieve the higher output ER. But lower probe power and higher pump power in certain spectrums can also increase chirp, so suitable choice of these parameters can achieve balance of ER and chirp. The distortion of all-optical logic operation of LOA is smaller than all-optical logic operation of SOA. Proper input current groups have the advantages to achieve better logic operation effect. In the logic AND operation of LOA, proper wavelength scope of probe and pump, and higher power of the input signal A have the advantages to achieve better logic operation effect. Compared with the output results of SOA, it is further proved that the capability of LOA is more excellent than SOA.
引文
[1]Meli F,Angellieri M,Grasso G.Gain crosstalk in saturated EDFA for WDM applications[J].Electronics Letters,1992,28(20):1896-1897
    [2]Schober R,Bayvel P,Pasquale F.Analytical model for the calculation of the optical signal-to-noise ratio(SNR)of WDM EDFA chains[J].Optical and Quantum Electronics,1999,31(3):237-241
    [3]Durhuus T,Mikkelsen B,Joergensen C,et al.All-optical wavelength conversion by semiconductor optical amplifiers[J].Lightwave Technology,1996,14(6):942-954
    [4]Runser R J,Zhou D,Coldwell C,et al.Interferometric ultrafast SOA-based optical switches:From devices to applications[J].Optical and Quantum Electronics,2001,33:841-874
    [5]Lavigne B,Chiaroni D,Hamon L,et al.Experimental analysis of SOA-based 2R and 3R optical regeneration for future WDM networks[R].Conference on Optical Fiber Communication,1998,324-325
    [6]Yoo S J B.Wavelength conversion technologies for WDM network applications[J].Lightwave Technology,1996,14(6):955-966
    [7]Lannone E,Sabella R,Destefano L,et al.All-optical wavelength conversion in optical multicarrier network IEEE Trans.On common,1996,44(6):716-723
    [8]McMillen G,Coathup L,CheeYin L.Application requirements for an all-optical network[C]Conference on Optical Fiber Communication,1994,65-66
    [9]Gipser T;MingSeng K.All-optical network architecture[J].Journal of Lightwave Technology,1996,14(5):693-702
    [10]Chan V W,Cryan,R A.;John M S.All-optical communication systems:architecture,control,and network issues[C].The International Society for Optical Engineering,1995,26:338-340
    [11]Yoo S J B.Wavelength conversion technologies for WDM network applications[J].Journal of Lightwave Technology,1996,14(6):955-966
    [12]Durhuus T,Mikkelsen B,Joergensen C,et al.All-optical wavelength conversion by semiconductor optical amplifiers[J].Journal of Lightwave Technology,1996,14(6):942-954
    [13]Runser R J,Zhou D,Coldwell C,et al.Interferometric ultrafast SOA-based optical switches:From devices to applications[J].Optical and Quantum Electronics,2001,33:841-874
    [14]Lavigne B,Chiaroni D,Hamon L,et al.Experimental analysis of SOA-based 2R and 3R optical regeneration for future WDM networks[R].Conference on Optical Fiber Communication,1998,324-325
    [15]Wolfson D,Kloch A,Fjelde T,et al.40 Gb/s all-optical wavelength conversion,regeneration,and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer[J].IEEE Photonics Technology Letters,2000,12(3):332-334
    [16]Renaud M,Keller D,Sahri N,et al.SOA-based optical network components [C].Electronic Components and Technology Conference,2001,433-438
    [17]Shibata Y,Tohmori Y.Semiconductor integrated devices for photonic reuters [C]Lasers and Electro-Optics Society,2002.The 15th Annual Meeting of the IEEE,2002,1:43-44
    [18]Fjelde T,Wolfson D,Kloch A,et al.Demonstration of 20 Gbit/s all optical logic XOR in integrated SOA-based interferometric wavelength converter[J].Electronics Letters,2000,36(22):1863-1864
    [19]Kristof O.Performance analysis of wavelength converters based on gross-gain modulation in semiconductor-optical amplifiers[J].Lightwave Technology,1998,16:78-85
    [20]Durhuus T..All optical wavelength conversion by SOA's in a Mach-Zehnder configuration[J].IEEE Photonics Technology Letters,1994,6:53-55
    [21]Jianhui Zh,Namkyoo P,Dawson J W,et al.Efficiency of broadband four-wave mixing wavelength,conversion using Semiconductor traveling-wave amplifiers[J].IEEE Photonics Technology Letters,1994,6:50-52
    [22]周云峰,伍剑,林金桐.利用TOAD实现全光逻辑操作的实验研究.通信学报,2004,25(12):53-58
    [23]张新亮,董建绩,王颖等.新型全光逻辑与门的理论和实验研究.物理学报,2005,54(5):2066-2071
    [24]Andriolli N,Scaffardi M,Berrettini G,et al.Ultra-fast All-optical Intercormection Network Fully Based on Modular Integrable Photonic Digital Processing[J].Photonics in Switching,2007,19(22):63-64
    [25]Jae H K,Young M J,Young T B,et al.All-optical XOR gate using semiconductor optical amplifiers without additional input beam[J].IEEE Photonics Technology Letters,2002,14(10):1436-1438
    [26]Qiang W,Guang H Zh,Hong M Ch,et al.Study of all-optical XOR using Mach-Zehnder Interferometer and differential scheme.IEEE Quantum Electronics,2004,40(6):703-710
    [27]Tangdiongga E,Crijns J J,Spiekman L H,et al.Performance analysis of linear optical amplifiers in dynamic WDM systems[J].IEEE Photonics Technology Letters,2002,14(8):1196-1198
    [28]HeeSang C,JinSoo H,SunHyok C,et al Bidirectional transmissions of 32channels×10 Gb/s over metropolitan networks using linear optical amplifiers [J].IEEE Photonics Technology Letters,2004,16(4):1194-1196
    [29]Awaji Y,Sotobayashi H,Kubota F.Transmission of 80 Gb/s×6 WDM over 100 krn using linear optical amplifiers[J].IEEE Photonics Technology Letters,2005,17(3):699-701
    [30]Leuthold J,Dreyer K.Linear all-optical wavelength conversion based on linear optical amplifier[R].Optical Fiber Communication Conference and Exhibit 2002,56:597-598
    [31]Mingshan Z,Merlier J,Morthier G,et al.All-optical 2R regeneration based on polarization rotation in a linear optical.amplifier[J].IEEE Photonics Technology Letters,2003,15(2):305-307
    [32]Tangdiongga E,Turkiewicz J P,Khoe G D,et al.Clock recovery by a fiber ring laser employing a linear optical amplifier[J].IEEE Photonics.Technology Letters,2004,16(2):611-613
    [33]Taga H.Long distance transmission experiments using the WDM technology [J].Lightwave Technology,1996,14(6):1287-1298
    [34]Berthold J.Evolution of WDM in transport networks[C].Optical Fiber Communication Conference and Exhibit,1998,12:133-135
    [35]李茜,潘炜,罗斌等.基于LOA的XGM全光波长转换消光比特性的研究[J].光通信技术,2006,10:33-35
    [36]李茜,潘炜,李海涛等.基于LOA-XGM全光逻辑与门的研究[J].固体电子学研究与进展(已录用)
    [37]Koga M,Hamazumi Y,Watanabe A,et al.Design and performance of an optical path cross-connect system based on wavelength path concept[J].Journal of Lightwave Technology,19.96,14(6):1106-1119
    [38]Marcenac D.Traveling wave effects for wavelength conversion by cross-gain and cross-phase modulation in optical amplifiers[J].International optoelectronics,1995,10(5):325-329
    [39]Durhuus,Mikkelsen,et al.All-optical wavelength conversion by semiconductor optical amplifiers[J].Journal of Lightwave Technology,1996,14(6):942-954
    [40]Francis D,DiJaili S P,Walker J D.A single-chip linear optical amplifier[R].Optical Fiber Communication Conference and Exhibit,2001,4(13):1-3
    [41]Oksanen J,Tulkki J.On crosstalk and noise in an optical amplifier with gain clamping by vertical laser field[J].Joumal of Lightwave Technology,2003,21(9):1914-1919
    [42]ChaoYuan J,YongZhen H,LiJuan Y,et al.Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field[J].IEEE Journal of Quantum Electronics,2004,40(5):513-518
    [43]Xiaofeng Li,Wei P,Bin L,et al.Theoretical analysis of multi-transverse-mode characteristics of vertical-cavity surface-emitting lasers.[J].Semiconductor Science and Technology,2005,20(6):505-513
    [44]潘炜,张晓霞,罗斌等.垂直腔半导体光放大器双稳及逻辑特性的理论研究[J].半导体学报,2005,26(2):357-362
    [45]Agrawal G P,Dutta N K.Semiconductor Lasers(2nd edition)[M].New York:Van Nostrand Reinhold,1993
    [46]潘炜,张晓霞,罗斌等.DBR微腔激光器典型参数的开关调制响应及控制[J].通信学报,2004,25(9):169-173
    [47]Alan E W,William S.Optimal spectral and power parameters for all-optical wavelength shifting:single stage,fanout,and cascadability[J].Journal of Lightwave Technology,1995,13(5):771-781
    [48]Agrawal G P,Olsson N A.Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers[J].IEEE Journal of Quantum Electronics,1989,25(11):2297-2306
    [49]Mork J,Mecozzi A,Theory of the ultrafast optical response of active semiconductor waveguides[J].Journal of the Optical Society of America B:Optical Physics,1996,13(8):1803-1816
    [50]Agrawal G P著,贾东方,余震虹等译.非线性光纤光学原理及应用[M].北京:电子工业出版社,2002
    [51]邹龙方,潘炜,罗斌等.基于线性光放大器的全光逻辑异或门理论分析[J].光学学报,2006,26(2):895-902
    [52]张存善,张延生,段晓峰等.垂直腔面发射激光器DBR结构反射特性分析[J].光电子·激光,2002,13(1):34-36
    [53]潘炜,张晓霞,罗斌等.VCSELs高阶分岔及混沌行为的参数控制[J].电子学报,2004,32(11):1789-1792
    [54]李孝峰,潘炜,罗斌,邓果,赵峥.多次外光反馈下垂直腔面发射激光器非线性动态特性理论研究[J].中国激光,2004,31(12):1450-1454.
    [55]Xiaofeng Li,Wei P,Bin L,et al..Nonlinear dynamics of two mutually injected external-cavity semiconductor lasers.Semiconductor Science &Technology,2006,21(1):25-34
    [56]李海涛,潘炜,李茜.光脉冲在LOA-XGM中传输的特性[J].西南交通大学学报,2007,42(3):358-362
    [57]李海涛,潘炜,罗斌等.基于LOA-XGM波长转换器消光比特性的数值分析[J].光子学报,2007,36(10):1799-1803