基于VCSELs的级联及多信道系统的混沌同步与通信
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着混沌同步的实现,利用混沌信号作为载波进行保密通信受到了广泛关注。通过引入反馈或外部注入,半导体激光器可以产生较大带宽的高维混沌载波,从而使激光混沌通信成为目前的研究热点。垂直腔面发射激光器(VCSELs)作为一种新型的微腔激光器,具有圆形出光、与光纤耦合效率高、易于二维阵列集成、易实现单纵模等优点,将它应用于混沌通信将大大改善现有系统的性能。基于以上考虑,本文对基于VCSELs的级联及多信道系统混沌同步与通信进行研究。
     首先,研究了开环全光级联混沌通信系统的中继性能。对系统同步条件,相关度,同步健壮性,输出功率谱进行了分析;分别就混沌掩藏(CMS)、混沌调制(CM)和混沌键控(CSK)调制方式的编解码过程及性能进行了仿真研究;通过正弦信号传输,观察了混沌滤波(CPF)效应;分析了信息的多级解码能力以及再生信号的传递。结果表明,上级激光器足够强的光注入可以保证相邻激光器足够高的同步质量,并且对参数失配具有较强的鲁棒性。发送端传送的数字信号在三种调制方式下均可很好的隐藏于混沌载波中,并在接收端得到正确恢复。相同条件下,CMS和CSK的解码性能相对好于CM。CPF效应是实现混沌解码的物理基础,跟调制频率有关。由于CPF效应,有用信号每次传递都受到衰减,经过两次传递,有用信号几乎被滤除。并且前两级的CPF效应明显,能够较好的实现信息的解码,而第三级以后无法解调出正确的信息;通过再生传输中衰变的信号,实现了多级联混沌通信。
     在级联系统的基础上,构建了多信道全光混沌通信系统模型,研究了信道串扰对系统混沌同步及解码性能的影响。利用描述其特性的数率方程模型,采用相似指数作为参考标准来评价同步性能,并进行了2.5Gb/s混沌掩藏方式的编解码数值模拟。结果表明,相对注入强度越小,信道间隔越大,系统同步的性能越好;双信道系统的同步质量相比主从式单信道系统会有明显下降,而进一步增加信道数量,同步品质并不发生显著改变。在同步质量足够高时,数字和模拟信号都可以得到较好的恢复。
With the achievement of the chaos synchronization, secure communications with messages encoded in chaotic waveforms have attracted considerable interest. Semiconductor lasers are able to generate hyper-dimension chaotic carriers with large bandwidth subject to optical feedback or injection. Optical chaotic communication has been a subject of intensive research. Meanwhile, vertical cavity surface emitting lasers (VCSELs), as the new type micro-cavity lasers, have many excellent features, such as circular beams, high efficiency for coupling with fibers, easy to be integrated as high density 2D arrays, single longitude mode operation. Therefor, it can largely promote the performance of chaotic optical communication system. Based on above considerations, synchronization and communication in cascade and multi-channel systems with chaotic VCSELs are theoretically investigated in this thesis.
     Firstly, the relaying performance in open-loop cascade chaotic optical communication system is investigated. The synchronization condition, correlation degree, synchronization robustness, and spectra of chaotic outputs are analyzed thoroughly. The encoding/decoding processes and performance in chaotic masking (CMS), chaotic modulation (CM), and chaos-shift keying (CSK) are simulated. The chaos-pass filtering (CPF) effects are observed by transmission of sinusoid signals. Multilevel decoding ability for the messages, and the relay of regenerated signals are the issues we focus on. The results indicate that a high synchronization performance between the neighboring two lasers can be guaranteed by sufficient optical injection from the former laser, and is very robust for variations in the mismatch of parameters. With the three encoding methods, the digital signals sent in transmitting part can be well hidden by chaotic carrier and recovered correctly in the receiver. At the same conditions, the decoding performances in CMS and CSK are better than CM. CPF effect is the physical basis for chaotic decoding, and it is relative to the modulation frequency. The signal is attenuated due to the CPF effects, and nearly filtered out after transferring twice. The original message can be extracted correctly in the first two grades because of the notable CPF effects, and can hardly be recovered in the third or later. The multilevel cascade chaotic communication can be realized by regenerating the depleted signal in relaying.
     A multi-channel chaotic optical communication system is established on the basis of cascade system, in order to investigate the effects of the cross talk on synchronization and decoding. Based on the corresponding rate equations, similarity index is used to evaluate the synchronization performance, and 2.5Gb/s message coding/decoding of chaotic masking method is numerically analyzed. The results show that the system can get better synchronization quality with less relative injection strength and more channel interval. The synchronization performance of dual-channel system decreases obviously compared with master-slave single channel system, and changes little when the channel number increases. The digital and analog signals can be correctly recovered when the synchronization is good enough.
引文
[1]关新平,范正平,陈彩莲,等.混沌控制及其在保密通信中的应用.国防工业出版社,北京,2002.
    [2]Tao Yang,Chai Wah Wu,Leon O.Chua.Cryptographybased on chaotic systems.IEEE Trans.Circuits Syst.Ⅰ,1997,44(5):469-472.
    [3]T.L.Liao,S.H.Tsai.Adaptive synchronization of chaotic systems and its application to secure communication.Chaos,Solitons and Fractals,2000,11(9):1387-1396.
    [4]L.M.Pecora,T.L.Carroll.Synchronization in chaotic systems.Phys.Rev.Lett.,1990,64(8):821-824.
    [5]G.Kolumban,M.P.Kennedy,and L.O.Chua.The role of synchronization in digital communication using chaos-part Ⅱ:fundamentals of digital communications.IEEE Trans.Circuits Syst.Ⅰ,1998,45(11):1129-1140.
    [6]G.D.VanWiggeren,R.Roy.Communications with chaotic lasers.Science,1998,279:1198-1200.
    [7]S.Sivaprakasam,K.A.Shore.Signal masking for chaotic optical communication using external-cavity diode lasers.Opt.Lett.,1999,24(17):1200-1202.
    [8]J.Ohtsubo.Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback.IEEE J.Quantum Electron.,2002,38(9):1141-1154.
    [9]H.Fujino,J.Ohtsubo.Experimental synchronization of chaotic oscillations in external-cavity semiconductor lasers.Opt.Lett.,2000,25(9):625-627.
    [10]M.W.Lee,Y.H.Hong,K.A.Shore.Experimental demonstration of VCSEL-based chaotic optical communications.IEEE Photon.Technol.Lett.,2004,16(10):2392-2394.
    [11]P.S.Spencer,C.R.Mirasso,P.Colet,et al.Modeling of optical synchronization of chaotic external-cavity VCSEL's.IEEE J.Quantum Electron.,1998,34(9):1673-1679.
    [12]李孝峰,潘炜,马冬,等.激光器自发辐射噪声对混沌光通信系统的影响.物理学报,2006,55(10):5094-5104.
    [13]R.Roy,K.S.Thomburg.Experimental synchronization of chaotic lasers.Phys.Rev.Lett.,1994,72(13):2009-2012.
    [14]V.Armovazzi-Lodi,S.Donati,A.Scire.Synchronization of chaotic injected-laser systems and its application to optical cryptography.IEEE J.Quantum Electron.,1996,32(6):953-959.
    [15]V.Annovazzi-Lodi,S.Donati,A.Scire.Synchronization of chaotic lasers by optical feedback for cryptographic applications.IEEE J.Quantum Electron.,1997,33(9):1449-1454.
    [16]A.Uchida,Mshionozuka,T.Ogawa,F.Karmari.Experiments on chaos synchronization in two separate microchip lasers.Opt.Lett.,1999,24(13):890-892.
    [17]P.S.Spencer,C.R.Mirasso.Analysis of optical chaos synchronization in frequency-detuned external-cavity VCSEL's.IEEE J.Quantum Electron.,1999, 35(5):803-809.
    [18] C. Juang, T. M. Hwang, J. Juang, et al. Optical chaotic AM demodulation by asymptotic synchronization. IEEE Photon. Technol. Lett., 2000, 36(1): 179-181.
    [19] Y. Liu, P. Davis. Synchronization of chaotic mode hopping. Opt. Lett., 2000, 25(7):475-477.
    [20] I. Fischer, Y. Liu, P. Davis. Synchronization of chaotic semiconductor laser dynamics on sub-nanosecond time scales and its potential for chaos communication. Phys. Rev. A, 2000, 62: 0118011. ,
    [21] A. Uchida, Y. Liu, I. Fischer, et al. Chaotic anti-phase dynamics and synchronization in multimode semiconductor lasers. Phys. Rev. A, 2001, 64: 0238011.
    [22] H. Fujino, J. Ohtsubo. Synchronization of chaotic oscillations in mutually coupled semiconductor lasers. Opt. Rev., 2001, 8(5):351-357.
    [23] F. Rogister, A. Locquet. Secure communication scheme using chaotic laser diodes subject to incoherent optical feedback and incoherent optical injection. Opt. Lett., 2001, 26(19):1486-1488.
    [24] S. Sivaprakasam, K. A. Shore. Cascaded synchronization of external-cavity laser diodes. Opt. Lett., 2001, 26(5):253-255.
    [25] S. Sivaprakasam, E. M. Shahverdiev, P. S. Spencer, et al. Experimental demonstration of anticipating synchronization lasers with optical feedback. Phys. Rev. Lett., 2001,26(9): 154011.
    [26] Y. Liu, Y. Takiguchi, P. Davis, T. Aida, et al. Experimental observation of complete chaos synchronization in semiconductor lasers. Appl. Rev. Lett., 2002, 80:4036-4038.
    [27] A. Murakami, J. Ohtsubo. Synchronization of feedback-induced chaos in semiconductor lasers by optical injection. Phys. Rev. A, 2002, 65:033826.
    [28] E. M. Shahverdiev, S. Sivaprakasam, K. A. Shore. Lag times and parameter mismatches in synchronization of unidirectionally coupled chaotic external cavity semiconductor lasers. Phys. Rev. E, 2002, 66:037202.
    [29] A. Locquet, C. Masoller, P. Megret, et al. Comparison of two types of synchronization of external-cavity semiconductor lasers. Opt. Lett., 2002, 27(1):31-33.
    [30] R. Vicente, T. Perez, C. R. Mirasso. Open- versus close-loop performance of synchronized chaotic external-cavity semiconductor lasers. IEEE J. Quantum Electron., 2002,38(9):1197-1204.
    [31] S. Tang, J. M. Liu. Chaos synchronization in semiconductor lasers with optoelectronic feedback. IEEE J. Quantum Electron., 2003, 39(6):708-715.
    [32] Y. Takiguchi, K.Ohyagi, J.Ohtsubo. Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback. Opt. Lett., 2003,28(5):319-321.
    [33] S. Yanchuk, K. R. Schneider, L. Recke. Dynamics of two mutually coupled lasers: Instantaneous coupling limit. Phys. Rev. E, 2004, 69(5):056221.
    [34] M. S. Torre, C. Masoller, K. A. Shore. Synchronization of unidirectionally coupled multi-transverse-mode vertical-cavity surface-emitting lasers. J. Opt. Soc. Am. B, 2004, 21(10):1772-1780.
    [35] J. M. Buldu, J. Garcia-Ojalvo, M. C. Torrent. Demultiplexing chaos from multimode semiconductor lasers. IEEE J. Quantum Electron., 2005, 41(2):164-170.
    [36] M. W. Lee, J. Paul, C. Masoller, et al. Observation of cascade complete chaos synchronization with zero time lag in laser diodes. J. Opt. Soc. Am. B, 2006, 23(5):846-851.
    [37] N. Shibasaki, A. Uchida, S. Yoshimori, et al. Characteristics of chaos synchronization in Semiconductor Lasers subject to polarization-rotated optical feedback. IEEE J. Quantum Electron., 2006,42(3):342-350.
    [38] P. Colet, R. Roy. pigital communication with synchronization chaotic laser. Opt. Lett., 1994,19(24): 2056-2058.
    [39] G. D. VanWiggeren, R. Roy. Optical communication with chaotic waveforms.. Phys. Rev. Lett., 1998, 81(16):3547-3550.
    [40] L. G Luo, P. L. Chu. Optical secure communications with chaotic erbium-doped fiber lasers. J. Opt. Soc. Am. B, 1998,15(10):2524-2530.
    [41] J. P. Goedgebuer, L. Large, H. Port. Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback laser diode. Phys. Rev. Lett., 1998, 80(10):2249-2252.
    [42] A. Sanchez-Diaz, Claudio R. Mirasso, P. Colet, et al. Encoded Gbit/s digital communications with synchronized chaotic semiconductor lasers. IEEE J. Quantum Electron., 1999, 35(3):292-297.
    [43] S. Sivaprakasam, K. A. Shore. Signal masking for chaotic optical communication using external-cavity diode lasers. Opt. Lett., 1999, 24(17): 1200-1202.
    [44] J. K. White, J. V. Moloney. Multichannel communication using an infinite .dimensional spatiotemporal chaotic system. Phys. Rev. A, 1999, 59(3):2422-2426..
    [45] S. F. Yu, P. Shum, N. Q. Ngo. Performance of optical chaotic communication system using multimode vertical cavity surface emitting lasers. Opt. Commun., 2001,200:143-152.
    [46] H. D. I. Abamanel, M. B. Kennel, L. Illing, et al. Synchronization and communication using semiconductor lasers with optoelectronic feedback. IEEE J. Quantum Electron, 2001, 37(10):1301-1311.
    [47] T. Heil, J. Mulet, I. Fischer, et al. ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers. IEEE J. Quantum Electron., 2002, 38(9):1162-1169.
    [48] C. R. Mirasso, J. Mulet, C. Masoller. Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme. IEEE Photon. Technol. Lett, 2002,14(4):456-458.
    [49] A. Uchida, Y. Liu, P. Davis. Characteristics of chaotic masking in synchronized semiconductor lasers. IEEE J. Quantum Electron, 2003, 39(8):963-970.
    [50] F. Zhang, P. L. Chu, Effect of transmission fiber on chaos communication system based on erbium-doped fiber ring fiber. IEEE J. Lightwave Technol, 2003,21(12):3334-3343.
    [51] J. M. Liu, H. F. Chen, S. Tang. Synchronized chaotic optical communications at high bit rates. IEEE J. Quantum Electron, 2002, 38(9): 1184-1196.
    [52] M. W. Lee, Y. H. Hong, K. A. Shore. Experimental demonstration of VCSEL-based chaotic optical communications. IEEE Photon. Technol. Lett, 2004,16(10):2392-2394.
    [53]J.Paul,M.W.Lee,K.A.Shore.Effect of chaos pass filtering on message decoding quality using chaotic external-cavity laser diodes.Opt.Lett.,2004,29(21):2497-2499.
    [54]J.Paul,S.Sivaprakasam,K.A.Shore.Dual-channel chaotic optical communications using external-cavity semiconductor lasers.J.Opt.Soc.Am.B,2004,21(3):514-521.
    [55]颜森林,迟泽英,陈文建.激光混沌同步及其在光纤保密通信中的应用.中国科学E辑,2004,34(4):467-480.
    [56]颜森林,迟泽英,陈文建.掺铒光纤激光器反相相位混沌同步及其编码.光学学报,2004,24(1):29-32.
    [57]颜森林,汪胜前.激光混沌串联同步以及混沌中继器系统理论研究.物理学报,2006,55(4):1687-1695.
    [58]L.Wu,S.Q.Zhu.Communications using multi-mode laser system based on chaotic synchronization.Chinese Phys.,2003,12(3):300-304.
    [59]Y.Zhou,L.Wu,S.Q.Zhu.Digital.communication of two-dimensional messages in a chaotic optical system.Chinese Phys.,2005,14(11):2196-2201.
    [60]吴加贵,吴正茂,林晓东,等.双信道光混沌通信系统的理论模型及性能研究.物理学报,2005,54(9):4169-4175.
    [61]潘炜,张晓霞,罗斌,等.VCSELs高阶分岔及混沌行为的参数控制.电子学报,2004,32(11):1789-1792.
    [62]X.F.Li,W.Pan,B,Luo,et al.Chaos synchronization and communication of cascade-coupled semiconductor lasers.IEEE J.Lightwave Technol.,2006,24(12).
    [63]X.F.Li,W.Pan,B,Luo,et al.Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization.IEEE J.Quantum Electron.,2006,42(9):953-960.
    [64]Wei Li Zhang,Wei Pan,Bin Luo et al.Synchronization performance comparison of vertical-cavity surface-emitting lasers with two different feedback chaos schemes.Semiconductor Science and Technology,2005,20(9):979-984.
    [65]T.Li,J.A.Yorke.Period three implies chaos.Am.Math.Monthly,1975,82:985-992.
    [66]L.M.Pecora,T.L.Carrot.Driving systems with chaotic signals.Phys.Rev.A,1991,44(4):2374-2384.
    [67]L.Kocarev,U.Parlitz.General approach for chaotic synchronization with application to communication.Phys.Rev.Lett.,1995,74(25):5028-5031.
    [68]K.Pyragas.Predictable chaos in slightly perturbed edictable chaotic systems.Phys.Lett.A,1993,181(3):203-210.
    [69]A.Murakami.Synchronization of chaos due to linear response in optically driven semiconductor lasers.Phys.Rev.E,2002,65:056617.