垂直腔面发射激光器的载流子和光场分布特性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体垂直腔面发射量子阱激光器是当前光电子学领域最活跃的研究课题之一。它与边发射激光器相比具有更优越的特性,例如,具有极低的阈值、较小的远场发散角、调制频率高、易实现单纵模工作、易实现二维集成等,所以,它被广泛地用于光纤通讯、光信息处理、激光打印、光传感等领域。
     本文建立了一个直接耦合的准三维模型,通过该模型对垂直腔面发射量子阱激光器的等势线分布、注入有源区的电流密度分布、有源区中的载流子浓度分布、光场强度分布等特性进行分析,对激光器的这些相互关联的特性进行数值计算,并研究了这些特性之间的相互影响。
     具体工作可以概括如下:从求解泊松方程、载流子扩散方程和光场方程的自洽解入手,首先,计算出激光器中的等势线分布,从而得到注入有源区的电流密度分布、有源区中载流子浓度分布。其次,研究了N型DBR层、高阻区的不同位置和不同厚度、限制层和出射窗口半径的大小及比值的不同对电流密度分布和载流子浓度分布的影响,并给出了双氧化限制层激光器中的等势线分布。最后,实现了光电耦合,并给出了阈值附近光场分布。计算结果表明,我们的理论计算结果与文献所给出的及实际情况相符。
Currently quantum well VCSEL (Vertical Cavity Surface Emitting Laser) is one of the most active research problems in the field of optoelectronics. It has more advantages than edge-emitting laser, for example, it has very lower threshold current, smaller far-field divergent angle, higher modulating frequency, and it's easy to realize single longitudinal mode operation and 2-dimension integration etc. So it is widely used in the fields such as fiber communication, light-information processing, lasers print and light-sensor etc.
    In this paper, we give a direct coupling, quasi-3-dimesion model. Using this model, we analyzed the distributions of the equipotential lines, current density, carriers concentration and optical fields in the quantum well VCSEL. We also analyzed the correlative characteristics and their influences with each other.
    The specificwork can be summed up as following: we found the self-consistent solution of the equation of Poisson, carriers diffusion and optical field. We first calculated the equipotential lines distributions, then found the distributions of the injected current density, carriers concentration in the active region. Second we studied the influences of N-DBR, different position and thickness of the oxidized region, different radius and ratio of the emitting window, and gave the distributions of equipotential lines in the laser with double oxidized regions. Finally, we realized photoelectricity coupling and gave the optical distribution near the threshold. The results show that the theoretical calculations well match the experimental results.
引文
[1] K. Iga, F. Koyama, and S. Kinoshita. Surface emitting semiconductor lasers. IEEE J. Quantum Electron. 1988.24(9):1845-1855
    [2] 陈国鹰,马祖光,王新桥.具有线性GRIN结构GaAs/AlGaAs单量子阱激光器.固体电子学研究与进展.1999.19(4):405-409
    [3] 半导体超晶格/量子阱物理与光电子器件.讲习班教程.1991.广东广州
    [4] 赵红东.博士论文.半导体微腔激光器的模式结构、瞬态特性和自发发射.1998.5
    [5] Chen guoying. Visible Compound Optical Cavity VSIS GaAIAs-GaAs Lasers. Proceedings of Fourth lnternational Conference on Solid-state and Integrated-Circuit Technology. 1995. Oct.24-28:182-184 Beijing. China
    [6] 蔡伯荣,陈铮,刘旭.半导体激光器.电子工业出版社.1995
    [7] 宋俊峰,付艳萍等.纵向耦合对垂直腔面发射激光器的影响.光学学报.2000.20(6):739-743
    [8] 陈国鹰,马祖光,王新桥.高功率梯度折射率分别限制异质结构InGaAs/AlGaAs应变双量子阱激光器.光学学报.1999.19(8):1084-1088
    [9] 潘炜,张晓霞等.垂直腔面发射半导体微腔激光器.物理.1999.28(4):210-216
    [10] 赵红东,林世鸣,王守武.圆对称光栅对微腔激光器中光波的控制.光子学报.1996.25(5):407-412
    [11] 江剑平.半导体激光器.电子工业出版社.2000
    [12] K. Tai, R. J. Fischer et al. Room-temperature continuous-wave vertical-cavity surface-emitting GaAs injection lasers. Apply Physics Letter. 1989.55(24):2473-2475
    [13] Valentin N. Morozov, John A. Neff, and Haijun Zhou. Analysis of Vertical-Cavity Surface-Emitting Laser Multimode Behavior", IEEE Journal of Quantum Electronics.1997.33(6):980-988
    [14] 陈国鹰,展永.p型GaAs衬底平面结构可见光半导体激光器的研制.河北工业大学学报.1995.24(1):88-91
    [15] 郑厚植.半导体微腔物理及应用.半导体学报.1997.18(7)
    [16] D. Vakhshoori, J. D. Wynn et al. Top-surface emitting lasers with 1.9V threshold voltage and the effect of spatial hold burning on their transverse mode operation and efficiencies. Apply Physics Letter. 1993.62(13): 1448-1450
    
    
    [17] C. J. Chang-Hasnain, Y. A. Wu et al. Low threshold buried heterostructure vertical cavity surface emitting laser. Apply Physics Letter. 1996.63(10):1307-1309
    [18] G. C. Wilson, D. M. Kuchta et al. Spatial hole burning and self-focusing in vertical-cavity surface-emitting laser diodes. Apply Physics Letter. 1994.64(31):542-544
    [19] 赵红东,张以谟,张存善等.量子阱DBR微腔激光器中自发发射的控制,半导体学报.2000.21(10):984-987
    [20] 刘恩科,朱秉升,罗晋升等.半导体物理学.国防工业出版社.1994
    [21] 赵红东,沈光地等.半导体垂直腔面发射激光器的微腔效应.光学学报.2000.20(5):592-596
    [22] R. R. Burton, M. S.Stern et al. VCSEL diffraction-loss theory IEE Proc.- Optoelectron. 1995.142(2):77-81
    [23] 陈国鹰,马祖光,孙以材.量子阱激光器中的热分布对光输出特性的影响.河北工业大学.1999.23(2)
    [24] 赵一广,张宇生等.垂直腔面发射半导体激光器的电、热和光波导特性.半导体学报.1999.20(11):963-970
    [25] Y.-G. Zhao and John G. McInerney. Transverse-Mode Control of Vertical-Cavity Surface-Emitting Lasers. IEEE Journal of Quantum Electronics. 1996.32(11):1950-1958
    [26] 郭长志.半导体激光器模式理论.人民邮电出版社.1989
    [27] 陈国鹰.博士论文.高功率量子阱激光器及其诸特性相互耦合影响的研究.1998
    [28] 黄德修.半导体光电子学.电子科技大学出版社.1994
    [29] 张宇生,赵一广,陈娓兮.梯形截面掩坤结构垂直腔面发射半导体激光器的横模控制.半导体学报.1998.19(1):29-37
    [30] Liu Shi'an, Lin Shiming et al. Numerical Analysis of Steady Current and Temperature Distributions and Characteristics of Transverse Mode in VCSEL.半导体学报.1999.20(11) :1034-1039
    [31] Gunnar Bjork and Yoshihisa Yamamoto. Analysis of Semiconductor Microcavity Lasers Using Rate Equation. IEEE Journal of Electronics. 1991.27(11)
    [32] N. K. Dutta. Analysis of current spreading, carrier diffusion, and transverse mode guiding in surface emitting lasers. J. Appl. Phys. 1990.68(5): 1961-1963
    [33] Zhao Hongdong et al. Controllable enhancement of spontaneous emission in perpendicular direction by single quantum well embedded in planar micro-cavities. Proceeding of SPIE. 1998(9). Beijing
    
    
    [34] 赵红东,林世鸣,张存善等.微腔激光器数码调制及其光纤传输的研究.中国激光.1999.A25(9):833-836
    [35] G. W. Taylor and P. A. Evaldsson. Temperature Dependent Operation of the Vertical Cavity Surface Emitting Laser. IEEE Journal of Quantum Electronics. 1994.30(10):2262-2270
    [36] Zhan-Ming Li, Michel Dion et al. Incorporation of Strain Into a Two-Dimensional Model of Quantum-Well Semiconductor Lasers. IEEE Journal of Quantum Electronics.1993.29(2):346-354
    [37] Zhan-Ming Li, Kenneth M. Dzurko et al. A Self-Consistent Two-Dimensional Mode of Quantum-Well Semiconductor Lasers: Optimization of a GRIN-SCH SQW Laser Structure IEEE Journal of Quantum Electronics.1992.28(4):792-803
    [38] 王沫然.MATLAB 5.X与科学计算.清华大学出版社.2000
    [39] Y.-G. Zhao and J. G. Mclnerney. Transient Temperature Response of Vertical-Cavity Surface-Emitting Semiconductor Lasers. IEEE Journal of Quantum Electronics. 1995.31(9): 1668-1673
    [40] C. J. Chang, M. Orenstein et al. Transverse mode characteristics of vertical cavity surfaceemitting lasers. Apply Physics Letter. 1990.57(3):218-220
    [41] M. A. Hadley, G. C. Wilson et al. High single-transverse-mode output from external-cavity surface-emitting laser diodes. Apply Physics Letter, 1993.63(12):1607-1609
    [42] L. G. Melcer, J. R. Karin et al. Picosecond Dynamics of Optical Gain Switching in Vertical Cavity Surface Emitting Lasers. IEEE Journal of Quantum Electronics. 1991.27(6): 1417-1425
    [43] Zhao Yi-Guang and John G. McInerney. Temperature Dependence of Transverse Mode Evolution in Vertical Cavity Surface-Emitting Lasers. Chinese Physics Letter. 1991.12(3): 160-163
    [44] 宋俊峰,付艳萍等.纵向耦合对垂直腔面发射激光器的影响.光学学报.2000.20(6):739-743
    [45] 陈国鹰,马祖光,孙以材,量子阱激光器各种特性相互关联耦合影响的研究.光学学报.1999,19(7)
    [46] D.L.Huffaker. Sub-40 uA Continuous-Wave Lasing in an Oxidized Vertical-Cavity Surface-Emitting Laser with Dilelectric Mirrors. IEEE Photon. Lett. 1996.8(8):974-976
    [47] Mirsuaki SHIMIZU. Transverse Mode Analysis for Surface Emitting Laser Using Beam Propagation Method. IEICE TRANSACTIONS. 1991 .E.74(10):3334-3340
    [48] H.Martinsson, J.A.Vukusic. Single-Mode Power Dependence on Surface Relief Size for Mode-Stabilized Oxide-Confined Vertical-Cavity Surface-Emitting Lasers. IEEE Photon. Lett.2000.12(9): 1129-1131
    
    
    [49] T.-H.oh, D.L.Huffaker. Comparison of Vertical-Cavity Surface-Emitting Lasers with Half-Wave Cavity Spacers Confined by Single-or Double-Oxide Apertures. IEEE Photon Lett. 1997.9(7):875-877
    [50] Nobuhiko Nishiyama. Multi-Oxide Layer Structure for Single-Mode Operation in Vertical-Cavity Surface-Emitting Lasers. IEEE Photon. Lett.2000.12(6):606-608
    [51] T. OHTOSHI. A TWO-DIMENSIONAL DEVICE SIMULATOR OF SEMICONDUCTOR LASERS. Solid-State Electronics. 1987.30(6):627-638
    [52] TRIBHAWAN KUMAR.SELF-CONSISTENT ANALYSIS OF GAIN-GUIDED TRIPLE STRIPE LASERS. solid-state Electronics. 1987.30(1):21-31
    [53] G.Ronald. Hadley. E.Warrn,K.D.Choquette. Comprehensive Numerical Modeling of Vertical-Cavity Surface-Emitting Lasers. IEEE Journal of Quantum Electronics. 1996.32(4):607-616
    [54] Francoid Gonthier, Alain Henault etc. Mode coupling in nonuniform fibers: comparison between coupled-mode theory and finite-difference beam-propagation method summations. J.Opt. Soc.Am. 1991.8(2)
    [55] Jian-Ping Zhang and Klaus Petermann. Beam Propagation Model for Vertical-Cavity Surface-Emitting Lasers: Threshold Properties. Journal of Quantum Electronics. 1994.30(7): 1529-1536
    [56] G.M.Yang, M.H.MacDougal and P.D. Dapkus. Ultralow threshold current vertical-cavity surface-emitting Lasers obtained with selective oxidation. Electronics Letters. 1995.31 (11):886-888
    [57] Yong-Zhen Huang. Influence of lateral propagating modes on laser output characteristics in selectively oxidized vertical-cavity surface-emitting Lasers with double oxide layers. J.Appl.phys. 1999.86(7):3519-3524
    [58] 张志涌等编著.掌握和精通MATLAB.北京航空航天大学出版社.1999
    [59] 李家泽等编著.光电子学基础.北京理工大学出版社,1998
    [60] 段晓峰.硕士论文.垂直腔面发射激光器的光、电特性分析.2001
    [61] Tae-Woo Lee. Modal Characteristics of ARROW-Type VCSELs. IEEE Photon. Lett. 2001.13(8): 770-772
    [62] 徐森禄,凌世得编.光波导及其应用.浙江大学出版社.1990