基于外光注入VCSELs单周期振荡的毫米波产生及其在ROF系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会全球信息化的进程,人们对高速多媒体通信带宽的需求不断提高,毫米波频段的应用逐步进入人们的视野。频率比微波更高的毫米波有着宽频带,大容量传输信号的优势,但是容易受到大气环境的影响而产生衰减,难以实现远距离传输目标。将毫米波和光纤传输技术相结合,可以有效解决毫米波传输距离短等问题,这就是光纤无线通信(ROF)系统。光纤拥有丰富的频带资源和抗电磁干扰能力,毫米波可以使无线通信向更大容量和更高速率迈进,二者结合的ROF技术具有无限的发展前景。目前,毫米波产生的主要方法有:直接调制技术,上下变频技术,光外差技术和电吸收收发器技术。
     本文提出一种基于外光注入垂直腔表面发射半导体激光器(VCSELs)单周期振荡的毫米波产生方案。利用自旋反转理论模型(SFM),对外光注入下VCSELs的动态行为进行了研究,着重讨论VCSELs处于单周期振荡时所产生的毫米波的性能。研究表明:在适当的参数条件下,主VCSELs的输出注入到副VCSELs,可使副VCSELs处于单周期振荡,其输出的光谱中只含有两个主频率,即第一边带与中心载波频率成分,经过拍频可获得毫米波;通过调节注入光强度以及主副VCSELs的失谐频率,可以得到频率范围极广的毫米波。同时,本文还分析了采用上述方法产生的毫米波在ROF系统中的传输特性。由于此时产生的毫米波具有单边带(SSB)调制特性,因此能够较好地抑制光纤色散的影响,进而可改善ROF系统的传输性能。
With the coming of information age, the demand of broadband multimedia services is going up quickly and at the same time, the application of millimeter-wave attracted much more attentions. The millimeter-wave with higher frequency has the advantages of broad band and large capacity, but in the air, millimeter-wave cannot transmit over a long distance due to large attenuation. Therefore, a new technology of radio over fiber (ROF), which integrates millimeter-wave wireless transmission and fiber wired transmission, has attracted considerable interests for such ROF systems are capable of realizing long distance transmission of millimeter-wave signals. Optical fiber has rich frequency bandwidth and the ability of anti-electromagnetic interference, while millimeter-wave can make wireless communication realize the larger capacity and the higher rate. The combination of them has promising prospects for communication development. At present, the methods of millimeter-wave generation include direct modulation, up and down frequency conversion, optical heterodyne and electro-absorption transceiver technology.
     In this paper, a novel method to generate millimeter-wave based on period-one oscillation in a slave VCSEL subject to optical injection from a master VCSEL is proposed. Based on spin-flip model (SFM), the dynamic behaviors of VCSELs subject to optical injection and millimeter-wave generated by VCSELs based on period-one oscillation have been researched. The results show that, through selecting proper system parameters, the slave VCSEL can be oscillate at period-one state with a dual-frequency optical spectrum distribution, then a low phase-noise millimeter-wave beat signal can be obtained by a high-speed photodiode. Through adjusting the injected strength and the frequency detuning between the slave and master VCSELs, optical millimeter-wave with different frequency can be obtained. Meantime, the transmission characteristics of millimeter-wave generated by above method in ROF system have also been researched. The influence of the fiber dispersion can be suppressed due to the generated millimeter-wave with single sideband (SSB) modulation performance, and the transmission performance of ROF system can be significantly improved.
引文
[1]H. Soda, K. Iga, C. Kitahara, et al. GaInAsP/Inp surface emitting injection lasers[J]. Appl. Phys.,1979,18(12):2329-2330.
    [2]江剑平.半导体激光器.北京:电子工业出版社,2000:169-170.
    [3]黄德修.半导体激光器及其应用.北京:国防工业出版社,1999:56-65.
    [4]G. P. Agrawal. Semiconductor Lasers, Past, Present and Future. New York: AIP Press, Woodbury,1995.
    [5]秦莉.VCSELs的时代正在来临.激光技术与应用,2005:1-6.
    [6]H. E. Li and K. Iga. Vertical-cavity surface-emitting laser devices [M]. Germany: Springer, 2002.
    [7]F. Koyama, S. Kinoshita and K. Iga. Surface emitting semiconductor [J]. IEEE J. Quant. Electro.,1988,24(9):1845-1855.
    [8]C. Wilmsen, H. Temkin and L. A. Coldren. Vertical-cavity surface-emitting lasers: design, fabrication, characterization and application. Cambridge University Press,1999.
    [9]M. Gotoda, H. Sugimoto, Y. Nomura, T. Isu, M. Nunoshita and S. Maruno. Selectively embedded growth by chemical beam epitaxy for the fabrication of InGaAs/InP double-heterostructure lasers. Journal of Crystal Growth,1994,140: 277-281.
    [10]S. F. Yu. Analysis and Design of Vertical Cavity Surface Emitting Lasers [M]. New Jersey John Wiley & Sons, Inc,2003.
    [11]M. Ying, W. Cheng, M. T. Qun. Blue light laser by direct frequency doubling of VCSEL [J]. Opt. and Precision Engineering.2005,13 (3): 253-259 (in Chinese).
    [12]S. Nakagawa, E. Hall, G Almuneau, et al.1.55 u m InP-lattice-matched VCSELs with Al-GaAsSb-AlAsSb DBRs [J]. IEEE J. Select. Topics Quantum Electron.,2001, 7(2):224-230.
    [13]C. K. Lin, D. P. Bour, J. T. Zhu, et al. High temperature continuous-wave operation of 1.3-and 1.55-μ m VCSELs with InP/air-gap DBRs [J]. IEEE Photon. Technol. Lett., 2003,9(5):1415-1417.
    [14]赵路民.980nm高功率垂直腔ICI发射激光器的研制及测试分析[硕士论文].长春:吉林大学,2004年5月.
    [15]R. D. Burnham, D. R. Scifres, W. Streifer, et al. Transverse light emitting electroluminescent devices[P]. U.S. Patent.1982,4309670.
    [16]K. Iga, S. Ishikawa, S. Ohkouchi et al. Room—temperature pulsed oscillation of GaAlAs/GaAs Surface—emitting injection laser. Appl. Phys. Lett.,1984,45(4):348-350.
    [17]K. Kojima, R. A. Morgan. T. Mulaly, G D. Guth. and M. W. Focht, Reduction of p-doped mirror electrical resi-stance of GaAs/AlGaAs vertical-cavity surface-emitting lasers by delta doping.Electron. Lett.,1993,29,1771-1772.
    [18]M. Ogura, S. Mukai. M. Shimada. T. Asaka. Y. Yamasaki, and T. Seki, Surface-Emitting Laser Diode with Distributed Bragg Reflector and Buried Heterostructure. Electron. Lett.,1990,26,18-19.
    [19]R. S. Geels, S. W. Corzine, L. A. Coldren et al. InGaAs vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron.,1991,27(6):1359-1367.
    [20]C. J. Chang-Hasnain, V. C. Berkeley, Progress and prospects of long-wavelength VCSELs [J]. IEEE Communications Magazine,2003,41(2):30-34.
    [21]C. J. Chang-Hasnain. Tunable VCSEL [J]. IEEE J.Select.Topics in Quantum Electron,2000,6(6):978-987.
    [22]M. H. Macdougal, P. D. Dapkus, A. E. Bond et al. Design and fabrication of VCSEL's with AlxOy-GaAs DBR's [J]. IEEE J. Select. Topics Quantum Electron.,1997, 3(3):905-915.
    [23]韩力英,张存善.垂直腔面发射激光器的结构和应用.光电器件,2003(4):73~74.
    [24]Gerd Keiser著,李玉权,崔敏等译.光纤通信[M].北京:电子工业出版社,2002.
    [25]C. T. Yen, J. F. Huang. Realization of OSW/AGW—based bipolar wave-length- time optical CDMA for wired-wireless transmissions [J]. Optical Fiber Technology, 2009,15:74-82.
    [26]黄嘉明,陈舜儿,刘伟平等.RoF技术分析及其应用[J].光纤与电缆及其应用技术,2007,2:32-35.
    [27]Vieira A. J. C., De Barros L. E. M, et al. Millimeter wave over fiber— a new approach[C], Antennas and Propagation Society International Symposium. IEEE Digest, 1997,2,13-18.
    [28]严开恩.OFDM-ROF光传输系统中一些问题的研究[硕士论文].上海:上海大学,2005.
    [29]M. G. Larrode, A. M. Koonen, J. J. V. Olmos, et al. Bidirectional radio-over-fiber link employing optical frequency multiplication[J]. IEEE Photonics Technology Letters, 2006,18:241-243.
    [30]Lin Chen, Xiaoyan Lei, Shuangchun Wen. A novel radio over fiber system with DWDM mm-wave generation and wavelength reuse for upstream data connection. Optics Express,2007,15(9):5893-5897.
    [31]H. U. Weiwei, K. Inagaki, T. Ohira. Radio-on-Fiber Techniques Using Two-Mode Injection-Locked Lasers for Broadband Millimeter-Wave Communications. Proc ICMMT02, Beijing, China,2002:7-10.
    [32]G. H. Smith, D. Novak, Z. Ahmed. Overcoming Chromatic-Dispersion Effects in Fiber-wireless Systems Incorporating External Modulators. IEEE Trans. Microw. Theory Tech.,1997,45 (8):1410-1415.
    [33]杨湘云,胡薇薇,徐安士.毫米波ROF光通信系统中的信号传输色散影响的研究[J].北京大学学报(自然科学版),2006,42(3):401-405.
    [34]甘仲民,张更新,王华力等.毫米波通信技术与系统.北京:电子工业出版社,1989,22-54.
    [35]樊昌信,张甫翊,徐炳祥等.通信原理.北京:国防工业出版社,2001,83-157.
    [36]A. J. Seeds. Microwave Photonics. IEEE Transactions on Microwave Theory and Techniques,2002,50(3):877-887.
    [37]Guohua Qi, Jianping Yao, Joe Seregelyi. Generation and Distribution of a Wide-Band Continuously Tunable Millimeter-Wave Signal with an Optical External Modulation Technique. IEEE Trans. Microwave Theory Technol.,2005,10(53):3090-3097.
    [38]C. Park, C. K. Oh, C. G Lee, et al. A photonic up-converter for a WDM radio-over-fiber system using cross-absorption modulation in an EAM. IEEE Photo Technol Lett., 2005,17(9):1950-1952.
    [39]Le Guennec Y., Maury G, Jianping Yao et al. New optical microwave up-conversion solution in radio-over-fiber networks for 60-GHz wireless applications[J]. IEEE Lightwave Technology,2006,24(3):1277-1282.
    [40]秦海琳,修明磊,陈新桥等.应用于光纤无线电系统的一种改进的光外差技术.光通信研究,2006,3:47-50.
    [41]B. Madhumita, K. S. Anuj, C. Taraprasad. Optical Generation of mm-Wave Signal Trough Optoelectronic Phase-Locked Loop [J]. 光子学报,2003,23:391-392.
    [42]M. Ogusu, K. Inaqgaki, Y. Mizuguchi, et al. Carrier Generation and Data Transmission on Millimeter-Wave Bands Using Two-Mode Locked Fabry-Perot Slave Lasers [J]. IEEE Transactions on Microwave Theory and Techniques,2003,51(2):382-391.
    [43]H. J. Song, J. S. Lee, J. I. Song. All-optical Frequency Upconversion of Radio over Fibre Signal with Optical Heterodyne Detection [J]. Electronics Letters,2004, 40(5):330-331.
    [1]J. M. Regalado, F. Prati, M. S. Miguel, et al. Polarization properties of vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics,1997,33(5): 765~783.
    [2]刘文揩.VCSEL的偏振特性与半导体微腔效应的研究[博士论文].北京:中科院半导体所,2002.
    [3]M. S. Miguel, Q. Feng, and J. V. Moloney. Light-polarization dynamics in surface emitting semiconductor lasers [J]. Physical Review A. Atomic, Molecular, and Optical Physics,1995,52(2):1728~1739.
    [4]J. P. Hermier, M. I. Kolobov, I. Maurin, et al. Quantum spin-flip model of vertical-cavity surface-emitting lasers [J]. Physical Review A. Atomic, Molecular, and Optical Physics,2002,65(5):538251~5382513.
    [5]J. M. Regalado, S. Balle, and M. S. Miguel, et al. Polarization and transverse mode selection in quantum-well vertical-cavity surface-emitting lasers [J]. Opticas Letters, 1997,22:460~462.
    [6]M. P. V. Exter, R. F. M. Hendriks, and J. P. Woerdman. Physical insight into the polarization dynamics of VCSEL's. Phys. Rev. A, 57:2080-2090.
    [7]C. Masoller, M. S. Torre. Influence of optical feedback on the polarization switching of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron.,2005,41(4):483-489.
    [8]M. Sciamanna, K. Panajotov. Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers. Phys. Rev. A,2006,73(2):023811.
    [9]R. Ju, P. S. Spencer, K. A. Shore. Polarization-preserved and polarization-rotated synchronization of chaotic vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron.,2005,41(12):1461-1467.
    [10]G P. Agrawal, H. K. Dutta. Semiconductor lasers, 2nd ed.. New York: Van Nostrand Reinhold,1993.
    [11]S. F. Yu. Nonlinear dynamics of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron.,1999,35(3):332-341.
    [12]J. Y. Law, G P. Agrawal. Feedback-induced chaos and intensity-noise enhancement in vertical-cavity surface-emitting lasers. J. Opt. Soc. Am. B,1998,15(2):562-569.
    [13]A. Valle, L. Pesquera. Theoretical calculation of relative intensity noise of multimode vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron.,2004, 40(6):597-606.
    [14]I. Gatare, M. Sciamanna, A. Locquet, and K. Panajotov, "Influence of polarization mode competition on the synchronization of two unidirectionally coupled vertical-cavity surface-emitting lasers," Opt. Lett.,2007,32:1629-1631.
    [1]J. Y. Park, S. S. Jeon, and Y. X. Wang. "Integrated antenna with direct conversion circuitry for broad-band millimeter-wave communications," IEEE Trans. Microw. Theory Tech.,2003,51:1482-1488.
    [2]胡黎亮.光纤无线通信系统中的毫米波调制和基站简化技术研究[硕士论文].湖南:湖南大学,2007年12月.
    [3]甘仲民,张更新,王华力等.毫米波通信技术与系统.北京:电子工业出版社,2003,505-507.
    [4]K. Kitayama, A. Stohr, T. Kuri, R. Heinzelmann, D. Jager, and Y. Takahashi, "An approach to single optical component antenna base stations for broadband millimeter-wave fiber-radio access systems," IEEE Trans. Microw. Theory Tech.,2000,48:2588-2595.
    [5]C. Lim, D Novak, A. Nirmalathas, and G H. Smith, "Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser," IEEE Trans. Microw. Theory Tech.,2001,49:288-296.
    [6]S. T. Choi, K. S. Yang, S. Nishi, S. Shimizu, K. Tokuda, and Y H. Kim, "A 60-GHz point-to-multipoint millimeter-wave fiber-radio communication system," IEEE Trans. Microw. Theory Tech.,2006,54:1953-1960:
    [7]D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, "Millimeter-wave fibre-wireless transmission systems with reduced effects of fibre chromatic dispersion," Opt. Quantum Electron.,1998,30:1021-1031.
    [8]杨湘云,胡薇薇,徐安士.毫米波ROF光通信系统中信号传输色散影响的研究.北京大学学报(自然科学版).2006,42(3):401-405.
    [9]王海潼,邹涛.光纤色散对基于不同调制方式的ROF系统性能的影响.电视技术.2009,49(4):15-19.
    [10]J. M. Regalado, F. Prati, M. San Miguel, and N. B. Abraham, "Polarization properties of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron.,1997, 33:765-783.
    [11]I. Gatare, M. Sciamanna, A. Locquet, and K. Panajotov, "Influence of polarization mode competition on the synchronization of two unidirectionally coupled vertical-cavity surface-emitting lasers," Opt. Lett.,2007,32; 1629-1631.
    [12]黄旭阳.利用窄带FBG实现ROF系统中SSB调制的研究[硕士论文].北京:北京交通大学,2008年5月.
    [13]沈一春,章献民,陈抗生.基于窄带光纤光栅的微波载波单边带调制.电子学报.2005,33(5),871-874.
    [14]M. Sieben, J. Conradi and D. E. Dodds, "Optical single sideband transmission at lOGb/s using only electrical dispersion compensation," J. Lightwave Technol.,1999,17: 1742-1749.
    [15]P. Laurencio and M.C.R Medeiros, "Dynamic range of optical links employing optical single side band modulation," IEEE Photon. Technol. Lett,2003,15:748-750.
    [16]J. Conradi, B. Davies, M. Sieben, D. Dodds, and S. Walklin, "Optical single sideband (OSSB) transmission for dispersion avoidance and electrical dispersion compensation in microwave subcarrier and baseband digital systems," in Proc. Optical Fiber Commun. Conf.'97, post deadline paper PD-29, Feb.1997.
    [17]S. C. Chan, S. K. Hwang, and J. M. Liu, "Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser," Optics Express,2007,15:14921-14935.
    [18]T. B. Simpson, J. M. Liu, and A. Gavrielides, "Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection," IEEE J. Quantum Electron.,1996,32:1456-1468.
    [19]A. Murakami, K. Kawashima, and K. Atsuki, "Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection," IEEE J. Quantum Electron.,2003,39:1196-1202.
    [1]吴耀东.光纤原理与应用(M].台北:全华科技图书出版公司,1997,30.
    [2]J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell and J. P. de Sandro, "Photonic crystals as optical fibres—physics and applications," Opt. Materials.,1999,11:143-151.
    [3]K. Tsujikawa, K. Tajima and J. Zhou, "Intrinsic loss of optical fibers," Opt. Fiber. Tech.,2005,11:319-331.
    [4]T.H. Marman, "Stimulated optical radiation in ruby laser [J]," Nature.1960,187: 493-497.
    [5]K. C. Kao, G A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies [J],"Proc. IEEE,1966,113:1151-1153.
    [6]J. Park, W. V. Sorin and K.Y. Lau, "Elimination of the fiber chromatic dispersion penalty on 1550nm millimeter-wave optical tramsmission," Electron. Lett.,1997,33: 512-513.
    [7]杨湘云,胡薇薇,徐安士.毫米波ROF光通信系统中信号传输色散影响的研究..北京大学学报(自然科学版).2006,42(3):401-405.
    [8]R. F. Guan, F. L. Zhu and Z. Y. Gan, "Stress birefringence analysis of polarization maintaining optical fibers," Opt. Fiber. Tech.,2005,11:240-254.
    [9]G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems," Electron. Lett.,1997,33:74-75.
    [10]J. X. Ma, J. Yu, C. X. Yu, X. J. Xin, H. Y. Huang and L. Rao, "Generation and transmission of the double-sideband optical millimeter-wave with signal carried only by optical carrier," Opt. Commu.,2008,281:2799-2805.
    [11]J, X. Ma, C. X. YU, Z. Zhou and J. J. Yu, "Optical mm-wave generation by using external modulator based on optical carrier suppression," Opt. Commu.,2006,268:51-57.
    [12]M. J. Wale, R. G. Walker, and C. Edge. Single-sideband modulator in GaAs integrated optics for microwave frequency operation. OSA Tech. Dig. Series,10, Integrated Photon. Res.,1992, postdeadline paper PD-8.
    [13]G. H. Smith, D. Novak, and Z. Ahmed. Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems. Electron. Lett.,1977,33(1):74-75.
    [14]S. T. Blais, J. P. Yao. Optical Single Sideband Modulation Using an Ultranarrow Dual-Transmission-Band Giber Bragg Grating. IEEE Photonics Technology Letters, 2006,18(21):2-3.
    [15]罗江华.基于ROF系统单边带调制理论与技术的研究[硕士论文].湖北:华中科技大学,2008年5月。
    [16]K. I. Kitayama et al, "Dispersion effects of FBG filter and optical SSBfiltering in DWDM millimeter-wave fiber radio systems," J. Lightw. Technol.,2002,20(8):1397-1407.
    [17]K. Tanaka, K. Takano and K. Kondo. "Improved sideband suppression of optical SSB modulation using all-optical Hilbert transformer," Electronics Letters,2002,38: 133-134.
    [18]黄旭阳.利用窄带FBG实现ROF系统中SSB调制的研究[硕士论文].北京:北京交通大学,2008年5月.
    [19]S. C. Chan, S. K. Hwang, and J. M. Liu, "Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser," Optics Express,2007,15:14921-14935.