基于遥感和GIS的上海土地利用变化与土壤碳库研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为陆地生态系统碳库的重要组成部分,土壤碳库在控制温室气体浓度增加和减缓全球变暖方面具有重要的作用。人类活动引起的土地利用变化是影响和控制土壤碳库及其源汇效应的关键因子。认识和掌握区域土壤碳库及动态变化,必须与土地利用利用变化的研究相结合。
     随着城市化的发展,城市用地面积不断增加,城市土壤在全球碳循环中的作用显得日益重要。由于人口的集中和经济活动的频繁,城市是土地利用变化和土壤碳库变化最为典型的区域之一。加强城市区域的土壤碳库、分布特征,及其土地利用变化对城市土壤碳库的影响的估算,不仅可以为城市制定合理的温室气体的减排和增汇措施提供科学依据,同时对于丰富全球土壤碳循环的研究内容和预测全球变化趋势方面也具有十分重要的意义。
     本文以上海作为研究区域,将城市土地利用变化和土壤碳库研究相结合,利用遥感和GIS手段,分析上海1994-2006年的土地利用变化;通过野外实地采样,结合土地利用变化的研究结果,估算了不同时期上海土壤碳库,以及土地利用变化引起的土壤碳库的动态变化,所得的主要结论如下:
     (1)1994-2006期间,上海土地利用变化显著。在各类用地中,农田面积变化最大,从1994-2006年近12年间,农田面积共减少了94007.72 hm~2,年平均减少面积为7833.98 hm~2,而城市绿地的变化幅度最大,12年间的平均动态度为18.76%。工业用地和城镇建设用地是农田流出的主要的转移方向,占农田面积总流出量的54.47%。因此工业和城镇建设用地的快速扩张而占用大量农田,成为本区土地利用变化的主要特征,同时城市绿地的大幅增加也成为上海土地利用变化的一个重要特征。从区域土地利用变化来看,各区的综合土地利用动态度具有明显的差异,表现出由市区-近郊-远郊递减的趋势,其中浦东新区的综合土地利用动态度最大,而崇明最低。土地利用变化程度的差异与各区的区位条件、经济发展状况以及政策等因素密切相关。
     (2)上海不同土地利用方式下的土壤碳氮含量和土壤碳密度差异明显,水稻田固碳能力最高,其SOC密度为3.859 kg/m~2,滩涂固碳能力最低,其SOC密度为1.379 kg/m~2,其他几种土地利用方式的SOC密度的大小依次为旱地(3.173kg/m~2)>林地(3.147 kg/m~2)>撂荒地(2.727 kg/m~2)>城市草坪(2.647 kg/m~2)>园地(2.130 kg/m~2)。
     (3)通过对3种土地利用变化对土壤碳库的影响研究表明:水田转化为旱地,土壤碳氮含量以及碳密度明显降低;农田撂荒后,除表层0-5 cm内的土壤碳氮含量和碳密度增加外,在0-35 cm的深度范围内,撂荒地的碳氮含量以及碳密度总体低于农田,表明在水热条件良好的长三角平原地区,农田撂荒对提高土壤碳氮含量以及碳密度效果不佳;水田转变为林地后,在4-5年内,会引起表层土壤碳氮的损失,从而表明,从较短的时期来看,相对于人工林地,水田具有更好的固碳效果。
     (4)利用实测的各种土地利用类型的土壤碳密度,结合土地利用变化的研究结果,估算了1994年、2000年、2003年、2006年4个时期的上海0-20cm的表层的SOC储量,结果表明:4个时期的0-20 cm的表层土壤的SOC储量分别为1490.47万t、1399.12万t、1283.56万t、1185.80万t,呈逐年递减的趋势;平均SOC密度分别为35.41t/hm~2、35.44 t/hm~2、35.06 t/hm~2、35.15 t/hm~2,呈波动变化;从SOC储量的空间分布来看,表现出明显的由市区-近郊-远郊递增的规律,这与上海土地利用的空间分布格局以及人类活动干扰的程度的区域差异密切相关。其中崇明的SOC储量最高,为305.28万t(2006),市区最低,仅有5.31万t。从各区SOC储量的年际变化趋势来看,各区SOC储量均趋于减少,其中松江区的SOC的损失量最大,为50.90万t,其次是青浦,为40.97万t,市区SOC储量损失量最少,仅为4.94万t。从各类土地利用的SOC储量的变化来看,12年间,农田SOC储量共减少了336.92万t,城市绿地、林地和园地SOC储量分别增加了26.91万t、4.19万t、4.22万t。总体来看,在此期间,由于土地利用变化使得上海SOC储量的损失量达到306.99万t,相当于2000年的化石燃料燃烧所产生的碳排放总量(3981万t)的7.71%。由此可见,人类活动所导致的土地利用变化正在成为影响上海土壤碳库的重要原因。
     (5)采取合理的土地经营管理措施有利于提高土壤的固碳潜力。研究表明,采用增施绿肥、提高秸秆还田比例、有机肥和化肥的配合使用可使农田土壤的固定潜力显著提高;造林对增加城市森林的植被和土壤碳汇效果明显;大力加强城市绿地建设,提高城市绿地管理水平对增加城市土壤碳汇亦具有重要的作用;此外,随着上海滩涂的进一步淤积以及对滩涂的合理利用,滩涂固碳潜力巨大。
As an important component of terrestrial ecosystem carbon pool,soils play ansignificant role in regulating the concentration of carbon dioxide (CO_2) and mitigatingglobal warming.Land use and cover change (LUCC) caused by human activitiesbecomes one of the key factors affecting the soil organic carbon (SOC) pool.With thedevelopment of urbanization and increasing urbanized area,soils adjacent to citiesexperience rapid change.Therefore an assessment of SOC pool in urban area,theirspatial distribution and temporal variation associated with LUCC,can providescientific basis for government to make effective measures to reduce carbon emissionand increase carbon sink.In addition,it can contribute to the research of global SOCcycling research and the prediction of global change in the future.
     On the basis of combined methods involving geographical information system(GIS),remote sensing (RS) and soil carbon analyses,this paper discusses the land usechange of Shanghai during the years 1994-2006,and the associated with soil carbonpool dynamics.
     The main conclusions are as follows:
     During the years 1994-2006,land use change is significant in Shanghai.Amongall types of land use,farmland has the greatest change in area,which has decreased94007.72 hm~2 in total area,at a rate of 7833.98 hm~2 per year.Urban greenland showsthe largest increase in area with dynamic degree of 18.76% in 12 years.Most of thedecreased farmland (54.47%) has been converted to urban construction land(including industrial,traffic and residential use).There is notable spatial differencein comprehensive dynamic degree of land use,which shows declining trend with thedistance from central urban district.The comprehensive dynamic degree of land usechange for Pudong New District is the largest,while that of Chongming County is thesmallest.The difference of LUCC is closely related to the location,economiccondition and policies of each district.
     Distinct difference exists in SOC density of different land use in Shanghai.SOC density of paddy field (3.859 kg/m~2) is the highest,which indicates that paddyfield has the largest carbon sequestration capacity.SOC density of tidal flat (1.379 kg/m~2)is the smallest,suggesting limited carbon sequestration capacity.SOC densityof the other land use types is 3.173 kg/m~2 (upland),3.147 kg/m~2 (forestland),2.727kg/m~2 (abandoned land),2.647 kg/m~2 (urban lawn) and 2.130 kg/m~2 (garden land),respectively.
     Three types of land use change are studied to assess its impact on soil carbonpool.The conversion of paddy field to upland has resulted in obvious reduce of SOCcontent,total nitrogen content (TN) and SOC density.When farmland has beenabandoned,SOC,TN content and SOC density only increase in the topsoil of 0-5cmbut decrease in the depth of 0-35cm in total.It suggests that abandonment offarmland has poor effect in improving carbon and nitrogen sequestration capacity inthe Yangtze Delta region.SOC,TN content and SOC density of topsoil decrease whenpaddy field is converted into artificial forestland for 4-5 years.Therefore,comparedwith artificial forestland,paddy field has better soil carbon and nitrogen sequestrationcapacity.
     Based on measured SOC density of different land use type,combined with theresult of LUCC in Shanghai,this paper estimates SOC storage of topsoil in depthrange of 0-20 cm in the year of 1994,2000,2003 and 2006.They are 14.9047 Mt(1994),13.9912 Mt (2000),12.8356 Mt (2003) and 11.8580Mt (2006),respectively,showing declining trend with time.The mean SOC density is 35.41 t/hm~2 (1994),35.44 t/hm~2 (2000),35.06 t/hm~2 (2003) and35.15 t/hm~2 (2006),respectively.TheSOC storage of topsoil increases from central urban and suburb areas to the outskirts,which is related closely to the distribution of land use and regional difference ofdisturbance extent by human activities.Among all the administrative districts,theSOC storage of topsoil of Chongming County (3.0528 Mt,2006) is highest,while thatof the central urban district (0.0531 Mt,2006) is the lowest.All districts showdecreased SOC pool with time,with the loss of Songjiang (0.51 Mt) being the largest,and that of Qingpu (0.41 Mt) the second,and that of the central urban district (49.4 Tt)the least.As for different land use,the SOC storage of topsoil of farmland shows areduction of 3.3692 Mt in total,while those of urban greenland,artificial forestlandand garden land display an increase of 0.2691 Mt,41.9 thousand tons and 42.2thousand tons during the period of 1994 to 2006.Generally speaking,the loss of SOC storage of topsoil caused by LUCC in Shanghai amounts to 3.0699 Mt,correspondingto 7.71% of the amount of emission of carbon from fossil fuel combustion (39.81 Mt)in Shanghai in 2000.Therefore,it is concluded that LUCC caused by human activitiesbecomes thekey factor in changing SOC storage of topsoil in Shanghai.
     A number of measures can be taken to improve the carbon sequestration capacityof soil,including increasing the use of green manure,improving the percentage ofstraw returning,fertilizer application combined with organic manure in farmland,afforestation,urban greenland construction and better management.In addition,tidalflat has great potential for carbon sequestration by proper use.
引文
Ayanaba A, Jenkinson D S. Decomposition of carbon-14 labeled Ryegrass and Maize under tropical conditions [J]. Soil Science Society of America Journal, 1990 (54): 112-115.
    
    Batjes N H.Total carbon and nitrogen in the soils of the world. European Journal of Soil Science,1996(47): 151-163.
    
    Bernoux M, Conceicao Santana Carvalho M, Volkoff B, et al.. Brazil's soil carbon stock [J]. Soil Science Society of America Journal, 2002 (66): 888-896.
    
    Bird M, Santruckova H, Lloyd J, et al..The isotope composition of soil organic carbon on a north-south transect in western Canada [J].European Journal of oil Science, 2002 (53):393-403.
    
    Bockheim J G, Walker D A, Everett L R. Soil carbon distribution in nonacidic and acidic tundra of Arctic Alaska [A]. Lal R, et al.Soil Processes and the Carbon Cycle [C]. Boca Raton: CRC Press, 1997:143-155.
    
    Bohn H L. Estimate of organic carbon in world soils [J]. Soil Science Society of America Journal,1982(46): 1118-1119.
    
    Bouwman A F. Globe distribution of the major soils and land cover types [M]. New York: John Wiley and Sons, 1990:33-59.
    
    Dixon R K, Solomon A M, Brown S, et al..Carbon pools and flux of global forest ecosystem [I].Science, 1994(263): 185-190.
    
    Eswaran H, Van Den Berg E, Reich P. Organic carbon in soils of the world [J]. Soil Science Society of America Journal, 1993 (57): 192-194.
    
    Guo L B, Gfford R M. Soil carbon stocks and land use change: ameta analysis [J]. GlobalChange Biology, 2002 (8): 345-360.
    
    Houghton R A. Changes in the storage of terrestrial carbon since 1850 [M]. Soil and Global Change. Boca Raton, Florida: CRC Press, 1995:45-65.
    
    Jonas Ardo and Lennart Olsson. Assessment of soil organic carbon in semi-arid Sudan using GIS and the CENTURY model [J]. Journal of Arid Environments, 2003 (54): 633-651.
    
    Lacelle B. Canada's soil organic carbon database. Lal R, et al .Soil Processes and the Carbon Cycle .Boca Raton: CRC Press, 1997: 93-102.
    Lal R, Follett R F, Kimble J M, et al.. Managing U.S. cropland to sequester carbon in soil [J].Soil and Water Conservation, 1999 (54): 374-381.
    
    LI Changsheng, Frolking S, Crocker G J , et al.. Simulating trends in soil organic carbon in long-term experiments using the DNDC model [J]. Geoderma, 1997 (81): 45-60.
    
    Lugo A E, Sanchez A J, Brown S. Land use and organic carbon content of some subtropical soils [J]. Plant Soil, 1986 (96): 185 -196.
    
    Meersmans J, Ridder F D, Canters F, et al..A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma,2008(43): 1-13.
    
    Oechel W C, Hastings S J, Vourlitis G, et al.. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to source[J].Nature, 1993 (361): 520-523.
    
    Pan Genxing, Li Lianqing, Wu Laosheng et al. Storage and sequestration potential of topsoil organic carbon in China's paddy soils [J]. Global Change Biology, 2003 (10): 79-92.
    
    Post W M, Emanuel W R, Zinke P, et al.. Soil carbon pools and world life zones[J]. Nature, 1982,298(8): 156-159.
    
    Rubey and William V..Gelogic history of sea water: an attempt to state the problem[J]. Geological Society of America Bulletin, 1951 (62): 1111-1148.
    
    Schiffman P M, Johnson W C. Phytomass and de-tritus storage during forest regrowth in the southeastern United States Piedmont[J].Canadian Journal of Forest Research, 1990 (19): 69-78.
    
    Scott N A, Tate K R, Giltrap D J, et al..Monitoring land-use effects on soil carbon in New Zealand:quantifying baseline soil carbon stocks [J]. Environmental Pollution, 2002 (116): 167-186.
    
    Seiichi Nishimura, Seiichiro Yonemura, et al.. Effect of land use change from paddy rice cultivation to upland crop cultivation on soil carbon budget of a cropland in Japan [J]. Agriculture,Ecosystems and Environment ,2008 (125): 9-20.
    
    Sims Z R, Nielsen G A. Organic carbon in Montana soils as related to clay content and climate [J].Soil Science Society of America Journal, 1986 (50): 1269-1271.
    
    Singh S K, Singh A K, et al..Carbon stock and organic carbon dynamics in soils of Rajasthan,India [J]. Journal of Arid Environments ,2007 (68): 408-421.
    
    Spackman L K, Munn L C. Genesis and morphology of soils asso2ciated with formation of Larance Basin (Mima-Like) mounds in Wyoming [J]. Soil Science Society of America Journal, 1984(48): 1382-1384.
    Tan Zhengxi,Rattan Lal.Carbon sequestration potential estimates with changes in land use and tillage practice in Ohio,USA [J].Agriculture,Ecosystems and Environment,2005(111): 140-152.
    Trumbore S E,Chadwick O A,Amundson R.Rapid exchanges between soil carbon and atmospheric carbon dioxide driven by temperature [J].Science,1996,272(19): 393-396.
    Yang X M,Kay B D.Rotation and tillage effects on soil organic carbon sequestration in a typic Hapludalf in southern Ontario [J].Soil &Tillage Research,2001(59): 107-114.
    陈泮勤,孙成权.国际全球变化研究核心计划(一).北京:气象出版社,1992.
    陈泮勤,孙成权.国际全球变化研究核心计划(二).北京:气象出版社,1994.
    陈庆美,王绍强,于贵瑞.内蒙古自治区土壤有机碳、氮蓄积量的空间特征[J].应用生态学报,2003,14(5):699-704.
    邓劲松,李君,余亮,王珂.快速城市化过程中杭州市土地利用景观格局动态[J].应用生态学报,2008,19(9): 2003-2008.
    杜月键,巫绪英.稻草还田对青泥土的改良培肥作用及其增产效果.土壤肥料1983,14(3):29-31.
    段晓男,王效科,逯非,欧阳志云.中国湿地生态系统固碳现状和潜力,生态学报,2008,28(2): 463-469.
    方海兰,陈玲,黄懿珍,等.上海新建绿地的土壤质量现状和对策[J].林业科学,2007,43(增刊1): 89-94.
    方精云,刘国华,徐嵩龄.中国陆地生态系统的碳循环及其全球意义[M].中国环境科学出版社,1996: 129-139.
    方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    方运霆,莫江明,SandraBrown,等.鼎湖山自然保护区土壤有机碳贮量和分配特征[J].生态学报,2004,24(1): 135-142.
    甘海华,吴顺辉,范秀丹.广东省土壤有机碳储量及空间分布特征[J].应用生态学报,2003,14(9): 1499-1502.
    高峻.上海自然植被的特征、分区与保护[J].地理研究,1997,16(3): 83-88.
    高鲁鹏,梁文举,姜勇,闻大中.利用CENTURY模型研究东北黑土有机碳的动态变化·自然状态下土壤有机碳的积累[J].应用生态学报,2004,15(5): 772-776.
    葛全胜,赵名茶,郑景云.20世纪中国土地利用变化研究[[J].地理学报,2000,55(6):698-706.
    耿元波,董云社,孟维奇.陆地碳循环研究进展[J].地理科学进展,2000,19(4):297-306.
    郭李萍.农田温室气体排放通量与土壤碳汇研究[D].中国农业科学院博士后研究工作报告,2000.
    韩冰,王效科.中国东北地区农田生态系统中碳库的分布格局及其变化[J].土壤通报,2004,35(4):401-407.
    洪军,葛剑平,江南.上海市1985-2000年土地利用时空变化分析[J].北京师范大学学报(自然科学版),2003,40(6): 814-819.
    侯传庆主编.上海土壤[M].上海:上海科学技术出版社,1992.
    侯鹏程,徐向东,潘根兴.不同土地利用方式对农田表土有机碳库的影响—以太湖地区吴江市为例[J].南京农业大学学报,2007,30(2):68-72.
    IPCC2007报告.中国环境与发展国际合作委员会.http://www.china.com.cn/tech/zhuanti/wyh/2008-02/26/content_10796464.htm
    经济学网.上海城市化进程中离土农民的安置和保障问题研究(上篇).http://www.gjmy.com/html/jingjixuelunwen/2008/08/14351.html
    李长生.土壤碳储量减少:中国农业之隐患-中美农业生态系统碳循环对比研究[J].第四纪研究,2000,20(4): 345-350.
    李海波,韩晓增,王风,乔云发.不同土地利用下黑土密度分组中碳、氮的分配变化[J].土壤学报,2008,45(1):112-119.
    李家永,袁小华.红壤丘陵区不同土地资源利用方式下有机碳储量的比较研究[J].2001,23(5):73-76.
    李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学(D辑),2003,33(1):72-80.
    李忠佩.低丘红壤有机碳库的密度及变异[J].土壤,2004,36: 292-297.
    李忠佩,吴晓晨,陈碧云.不同利用方式下土壤有机碳转化及微生物群落功能多样性变化[J].中国农业科学,2007,40(8):1712-1721.
    李晓曼,康文星.广州市城市森林生态系统碳汇功能研究[J].中南林业科技大学学报,2008,28(1):8-13.
    李晓文,方精云,朴世龙.上海城市土地利用形成、变化及其空间作用机制[J].长江流域资源与环境,2006,15(1): 34-40.
    廖利平,高洪,汪思龙,等.外加氮源对杉木叶凋落物分解及土壤养分淋失的影响[J].植物生态学报,2000,24(1):34-39.
    刘国华,傅伯杰,吴钢,段桂兰.环渤海地区土壤碳库及空间分布格局的研究[J].应用生态学报,2003,14(9): 1489-1493.
    刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,
    20(5):733-740.
    刘纪远.中国资源环境遥感宏观调查与动态研究[M].北京:中国科学技术出版社,1996:158-188.
    刘纪远,刘明亮,庄大方等.中国近期土地利用变化的空间格局分析[J].中国科学(D辑),
    2002,32(12):1031-1039.
    刘纪远,王绍强,陈镜明,等.1990-2000年中国土壤碳氮蓄积量与土地利用变化[J].地理
    学报,2004,59(4): 483-496.
    刘江.中国可持续发展战略研究[M].北京:中国农业出版社,2001: 431-442.
    刘子刚,张坤民.黑龙江省三江平原湿地土壤碳储量变化[J].清华大学学报(自然科学版)
    2005,45(6):788-791.
    毛彦成,张勃.基于Markov过程的张掖绿洲土地利用预测[J].干旱地区农业研究,2007,
    25(1):11-14.
    门明新,彭正萍,刘云慧,宇振荣.基于SOTER的河北省土壤有机碳、氮密度的空间分布
    [J].土壤通报,2005,36(4):469-473.
    孟飞.上海土地利用覆被变化过程、机制与环境效应[D].华东师范大学博士学位论文,2006.
    孟磊,蔡祖聪,丁维新.长期施肥对土壤碳储量和作物固定碳的影响[J].土壤学报,2005,
    42(5):769-776.
    潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进
    展,2005,20(4): 384-393.
    邱建军,王立刚,唐华俊,等.东北三省耕地土壤有机碳储量变化的模拟研究[J].中国农业
    科学,2004,37(8): 1166-1171.
    钱杰,俞立中.上海化石燃料排放二氧化碳贡献量的研究[J].上海环境科学,2003,22(11):
    836-839.
    齐雁冰,黄标,顾志权,等.长江三角洲典型区农田土壤碳氮比值的演变趋势及其环境意义[J].矿物岩石地球化学通报,2008,27(1):50-56.
    人口世界,2000.http://www.popinfo.gov.cn/popinfo/pop_docrkxx.nsf/v._dzzzwd/5A25575F6A7BBF9448256C2B002BE207.上海政府网.
    上海政府网.http://www.shanghai.gov.cn/shanghai/node2314/node2315/node4411/userobj ect21 ai 12153.html上海地方志.
    上海地方志.http://www.shtong.gov.cn/node2/node2245/node4460/node57804/node57875/node57881/userobje ctlai45071.html
    上海统计公报,1995-2007.
    上海统计年鉴,1995-2007.
    史军,刘纪远,高志强,崔林丽.造林地对陆地碳汇的影响研究进展[J].地理科学进展,2004,23(2):58-67.
    石培礼,于贵瑞.拉萨河下游河谷不同土地利用方式下土壤有机碳储量格局[J].资源科学,2003,25(5):96-102.
    苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-228.
    田玉强,欧阳华,徐兴良,等.青藏高原土壤有机碳储量与密度分布[J].土壤学报,2008,45(5):933-942.
    童成立,吴金水,向万胜,等.长江中游稻田土壤有机碳计算机模拟[J].长江流域资源与环境,2002,11(3): 229-233.
    《文汇报》,2003.
    王绍强,刘纪远.土壤碳蓄积量变化的影响因素研究现状[J].地球科学进展,2002,17(4):528-534.
    王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544.
    王小利,苏以荣,黄道友,等.土地利用对亚热带红壤低山区土壤有机碳和微生物碳的影响[J].中国农业科学,2006,39(4):750-757.
    王小利,郭胜利,马玉红,等.黄土丘陵区小流域土地利用对土壤有机碳和全氮的影响[J].应用生态学报,2007,18(6):1281-1285.
    王小利.黄土高原和亚热带丘陵区典型生态景观单元土壤有机碳对比研究[D].西北农林科技大学博士学位论文,2006.
    王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展,1999,18(1): 81-87.
    王秀兰.土地利用/土地覆盖变化中的人口因素分析[J].资源科学,2000,22(3): 39-43.
    汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志,1999,18(5): 29-35.
    王义祥,翁伯琦.福建省土壤有机碳密度和储量的估算[J].福建农业学报,2005,20(1):42-45.
    解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5): 687-699.
    解修平,周杰,张海龙,等.基于景观生态和马尔可夫过程的西安地区土地利用变化分析[J].资源科学,2006,28(6): 175-181.
    徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002.
    许泉,芮雯奕,何航,等.不同利用方式下中国农田土壤有机碳密度特征及区域差异[J].中国农业科学,2006,39(12):2505-2510.
    徐小锋,田汉勤,万师强.气候变暖对陆地生态系统碳循环的影响[J].植物生态学报,2007,31(2): 175-188.
    杨桂山.长江三角洲近50年耕地数量变化的过程与驱动机制研究[J].自然资源学报,2001,16(2): 121-127.
    杨景成,韩兴国,黄建辉,潘庆民.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报,2003,14(8):1385-1390.
    杨玉盛,谢锦升.中亚热带山区土地利用变化对土壤有机碳储量和质量的影响[J].地理学报,2007,62(11): 1123-1131.
    姚政,王树红,汪寅虎,蒋小华.上海郊区秸秆还田现状与对策初探.农业环境与发展,2001,(3):40-41.
    于东升,史学正,孙维侠,等.基于1: 100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16(12):2279-2283.
    于建军,杨锋.河南省土壤有机碳储量及空间分布[J].应用生态学报,2008,19(5): 1058-1063.
    宇万太,姜子绍,李新宇,丁怀香.不同土地利用方式对潮棕壤有机碳含量的影响[J].应用生态学报,2007,18(12): 2760-2764.
    于永强,黄耀,张稳.华东地区农田土壤有机碳动态模拟研究—模型的验证与灵敏度分析[J].地理与地理信息科学,2006,22(6):83-88.
    袁芳,赵小敏,乐丽红,贾学铭.江西省表层土壤有机碳库储量估算与空间分布特征[J].生态环境,2008,17(1):268-272.
    园林在线,2002.http://www.lvhua.com/chinese/news/newsdetail.asp?newsno=N00000000050.
    曾永年,冯兆东.黄河源区土地沙漠化及其对土壤碳库的影响研究[J].中国沙漠,2008,8(2):208-212.
    张城,王绍强,于贵瑞,等.中国东部地区典型森林类型土壤有机碳储量分析[J].资源科学,2006,28(2):97-103.
    张国盛,黄高宝,YIN Chan.农田土壤有机碳固定潜力研究进展[J].生态学报,2005,25(2):351-357.
    张敬.长江口及邻近海域沉积速率比较研究[D].2008,华东师范大学硕士论文.
    张平良,李小刚,李银科,尹萍.高寒农牧交错带植被恢复对土壤有机碳、全氮含量的影响[J].甘肃农业大学学报,2007,42(2): 98-102.
    张琪,李恋卿,潘根兴,等.近20年来宜兴市域水稻土有机碳动态及其驱动因素[J].第四纪研究,2004,24(2): 236-242.
    张永强,唐艳鸿,姜杰.青藏高原草地生态系统土壤有机碳动态特征[J].中国科学(D辑地球科学),2006,36(12): 1140-1147.
    张于光,张小全,肖烨.米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响[J].应用生态学报,2006,17(11):2029-2033.
    赵鑫,宇万太,李建东,姜子绍.不同经营管理条件下土壤有机碳及其组分研究进展[J].应用生态学报,2006,17(11):2203-2209.
    中国气候变化信息网,2002.http://www.cechina.gov.cn/cn/NewsInfo.asp?NewsId=3987.
    周广胜,全球碳循环[M].北京:气象出版社,2003.
    周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    周涛,史培军.土地利用变化对中国土壤碳储量变化的间接影响[J].地球科学进展,2006,21(2):138-143.
    朱同相,段云,胡修岭.麦秸回田对土壤肥力的影响[J].山东农业科学,1988,1: 12-14