地尔硫卓对心脏缺血再灌注后心肌炎症的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:随着冠状动脉再通术(溶栓、PTCA或搭桥术)的广泛应用,心肌缺血再灌注损伤仍是冠脉再通后的一个重要并发症,也是致死原因之一,其防治问题一直为研究者所关注。心肌缺血再灌注损伤由心肌细胞钙超载、心肌炎症反应和大量氧自由基产生等造成,有研究证实钙通道阻滞剂-地尔硫卓对心肌缺血再灌注损伤有保护作用,其机制可能与抑制心肌细胞钙超载有关。最近研究显示钙离子参与炎症细胞的活化、增殖和细胞因子的产生。那么心肌缺血再灌注后炎症活动,与心肌细胞钙超载有无联系,地尔硫卓是否对炎症有抑制作用,这些值得探讨。
     心脏缺血再灌注后炎症反应包括炎症细胞浸润和细胞因子表达。细胞因子是由炎症细胞和非炎症细胞产生。地尔硫卓对炎症细胞产生的细胞因子有无抑制作用?对非炎症细胞产生的细胞因子作用如何?对心脏缺血再灌注后炎症细胞活动有无影响?这些是本研究的重点内容。
     目的:(1)研究单个核细胞(淋巴细胞和单核细胞)的增殖和细胞因子的分泌,及与其胞浆内钙离子浓度的关系,地尔硫卓对单个核细胞的胞浆钙离子浓度和细胞因子的表达有无影响。
     (2)心肌细胞钙超载模型能否诱导心肌细胞因子的表达,地尔硫卓对心肌钙超载所致的细胞因子的表达有无影响。
     (3)地尔硫卓对心脏缺血再灌注后心肌炎症细胞活动和细胞因子表达的影响,及对心脏功能是否具有保护作用。
     方法:(1)采用聚蔗糖-泛影葡胺(ficoll)密度梯度离心法分离大鼠脾脏单个核细胞,设对照组、刀豆凝集素(Con A)处理组和地尔硫卓-Con A处理组。用荧光分光光度计检测单个核细胞内钙离子浓度的变化,ELISA法检测细胞培养液上清的细胞因子肿瘤坏死因子(TNF)-α、白细胞介素(IL)-1β、IL-6、转化生长因子(TGF)-β1和IL-10的分泌。
     (2)采用Langendorff装置对离体大鼠心脏进行钙反常灌流(无钙灌流液5min,立即换正常钙灌流液灌流30min),建立心肌细胞钙超载模型。设立钙超载组、正常对照组、无钙对照组、钙超载给药组(地尔硫卓)和无钙给药组。电镜和光镜观察心肌病理和超微结构的变化。原子分光光度计检测心肌钙离子浓度,RT-PCR和免疫组织化学法测心肌细胞因子TNF-α、IL-1β、IL-6、TGF-β1和IL-10的表达。
     (3)结扎大鼠左前降支30min后恢复血流,建立心肌缺血再灌注模型。设立假手术组、缺血再灌注死组和地尔硫卓组,分别于术后1天、3天、1周、2周和4周做心脏超声后处死,取缺血区(或梗死交界区)心肌组织,用光镜观察心肌炎症细胞活动,RT-PCR和免疫组化法检测上述细胞因子表达。
     结果:(1)与对照组比较,Con A处理组单个核细胞胞浆内钙离子浓度显著增高,其上清液中IL-10、TNF-α、IL-6急剧增高,IL-1β低水平表达,TGF-β1未见明显表达。与Con A处理组比较,地尔硫卓-Con A处理组的单个核细胞内钙离子浓度明显减低,培养液上清中IL-10、TNF-α、IL-6的浓度明显下降。
     (2)钙超载组光镜下未见明显炎症细胞浸润,电镜结果显示心肌细胞膜、细胞核和线粒体明显破坏。与正常对照组比较, TNF-α、IL-1β和IL-6明显增高,而TGF-β1和IL-10无明显变化。钙超载给药组(地尔硫卓)显示心肌损伤明显改善,TNF-α、IL-1β和IL-6明显下降。正常对照组、无钙对照组和无钙给药组心肌光镜和电镜下无明显差异,心肌Ca~(2+)浓度差异无统计学意义,细胞因子的表达差异也无统计学意义。
     (3)缺血再灌注组和地尔硫卓组及假手术组在术后1天、3天、1周和2周超声心动图变化无显著意义。在缺血再灌注后4周,与假手术组比较,缺血再灌注组左室结构明显变化,功能减弱。表现为心脏前壁变薄,后壁明显增厚。左室舒张末期内径稍大,收缩末内径则明显增大。左室射血分数和左室短轴缩短率均明显下降。左室重量明显增加。在地尔硫卓组这些指标均有逆转。
     缺血再灌注组梗死区心肌细胞结构破坏,间质纤维化形成。交界区有大量炎症细胞如中性粒细胞、巨噬细胞、淋巴细胞等浸润。非梗死区可见炎症细胞浸润。地尔硫卓组炎症细胞浸润程度明显减轻。RT-PCR和免疫组化法显示致炎因子IL-1β、IL-6和TNF-α在缺血再灌注后有显著提高,在梗死后1周至2周呈现表达高峰,在第4周仍然有高表达。使用地尔硫卓以后,致炎因子表达明显减弱。抗炎因子IL-10和TGF-β1在缺血再灌注后4周内呈低水平表达,地尔硫卓组未见IL-10和TGF-β1表达有显著意义的改变。
     结论:(1)Con A能刺激单个核细胞内钙离子浓度增加,其细胞因子IL-10、TNF-α、IL-6分泌增多,对TGF-β1没有影响。地尔硫卓能抑制单个核细胞内钙离子浓度增加及其细胞因子IL-10、TNF-α、IL-6分泌。
     (2)心肌钙反常模型诱导心肌表达TNF-α、IL-1β和IL-6,TGF-β1和IL-10无明显表达,地尔硫卓能抑制心肌细胞钙超载诱导的TNF-α、IL-1β和IL-6表达。
     (3)地尔硫卓可抑制心脏缺血再灌注后心肌炎症细胞浸润和致炎因子TNF-α、IL-1β和IL-6的表达,为地尔硫卓的抗炎作用提供了重要的实验依据。
Backgroup: Coronary artery recanalizations including thrombolysis, percutaneous transluminal coronary angioplasty (PTCA), and coronary artery bypass graft (CABG), have been used extensively in patient with acute myocardial infarction in recent decades. But myocardial ischemia reperfusion injury has been the vital complication, even the death factor, after recanalization and the mechanism remains unclear. Myocardial ischemia reperfusion injury results from cardiac cell Ca~(2+) overload, myocardial inflammation, the production of oxygen free radical, et al. Previous studies have demonstrated that diltiazem (one class of calcium channel blocker) could contributed to the protection of myocardial ischemia reperfusion injury underlying the mechanism that diltiazem could inhibit the cardiac cell Ca~(2+) overload. Resent studies demonstrate that Ca~(2+) participate in inflammatory cells activation, proliferation, and their cytokines production. So it may be interesting to investigate whether inflammation is correlated with intracellular [Ca~(2+)]i in myocardium post ischemia reperfusion and whether there is additional mechanism of benefit in patients with myocardial ischemia reperfusion by using diltiazem?
     Objective: (1) To investigate the relationship among proliferation of mononuclearcells, their cytokines secretion and the intracellular [Ca~(2+)]i, and whether diltiazem inhibits mononuclearcell intracellular [Ca~(2+)]i and the cytokines expression.
     (2) To explore whether the rat model of myocardial calcium overload induces cardiac cytokines expression, and whether diltiazem could inhibit the cardiac cytokines expression induced by the cardiac cells intracellular Ca~(2+) overload.
     (3) To study the effect of diltiazem on heart function and myocardial inflammatory cells infiltration as well as the cytokines expression in myocardium post ischemia reperfusion.
     Method: (1) The mononuclearcells were detached from rat spleen by the ficoll density gradient centrifugation method. There were three groups in the study, including control group, Con A group, and diltiazem–Con A group. The concentration of mononuclearcell intracellular [Ca~(2+)]i were detected by spectrofluorimeter. Cytokines involved in TNF-α, IL-1β, L-6, TGF-β1, and IL-10 in supernatant of cell culture fluid were detected by ELISA method.
     (2) The intracellular Ca~(2+) overload was induced by the isolated rat heart subjected to 5 min Ca~(2+) depletion and 30 min Ca~(2+) repletion (Ca~(2+) paradox) by the Langendorff technique. There were five groups in this study, including Ca~(2+) overload group, normal control group, Ca~(2+) depletion control group, Ca~(2+) overload-diltiazem group, and Ca~(2+) depletion-diltiazem group. The views of myocardial pathology and ultrastruction were observed by electron microscope and light microscope respectively. The cardiac intracellular [Ca~(2+)]i was detected by atom spectrophotometer. The expression of TNF-α, IL-1β, L-6, TGF-β1, and IL-10 was detected by RT-PCR and immunohistochemical method.
     (3) The myocardial ischemia reperfusion model in rat was caused by ligating the left anterior descending coronary artery 30 min and then reperfused. There were three groups in this study, including sham operation group, ischemia reperfusion group, and diltiazem group. The heart function was reflected by the data of echocardiography. The rats were sacrificed at 1d, 3d, 1w, 2w, and 4w post operation. The light microscope was used to observe the inflammatory cells infiltration in myocardium. The cytokines expression mentioned above was detected by RT-PCR and immunohistochemical method.
     Result: (1) Compared with control group, the intracellular [Ca~(2+)]i of mononuclearcell from spleen increased significantly in Con A group. IL-10, TNF-α, IL-6 in supernate of mononuclearcells culture fluid increased markedly, whereas IL-1βincreased with low level and TGF-β1 did not be found nearly in Con A group. Compared with Con A group, the intracellular [Ca~(2+)]i of mononuclearcell and the concentration of IL-10, TNF-α, IL-6 decreased significantly in diltiazem-Con A group.
     (2) In Ca~(2+) overload group, few inflammatory cells were found in myocardium under the light microscope. And the views of electron microscope presented that cardiocyte membranes, nucleolus, and mitochondria were disorganized obviously. Compared with normal control group, the inflammatory cytokines as TNF-α, IL-1β, and IL-6 were increased significantly whereas there was nearly no change to the expression of TGF-β1 and IL-10 in Ca~(2+) overload group. Results from Ca~(2+) overload-diltiazem group showed that TNF-α, IL-1β, and IL-6 were decreased significantly and diltiazem could contribute to myocardium injury prevention. There were no statistics differences to the structure of myocardium, intracellular [Ca~(2+)]i , and cardiac cytokines expressions in the three control groups, including normal control group, Ca~(2+) depletion control group and Ca~(2+) depletion-diltiazem group.
     (3) There were no differences to the data of echocardiography at 1d, 3d, 1w, and 1w post operation in three groups, including ischemia reperfusion group, diltiazem group, and sham operation group. However, the data of echocardiography at 4w post operation suggested that heart function was attenuated post ischemia reperfusion and diltiazem could contribute to injury prevention.
     The views of light microscope presented that the structure of myocardial cell was disorganized and interstitial fibrosis was formed in the infarct area. And a lot of inflammatory cells, including neutrophil, macrophage, lymphocyte, infiltrated in ischemia myocardium of ischemia reperfusion group whereas diltiazem could reduce the number of inflammatory cells infiltration. The results from RT-PCR and immunohistochemistry showed that the inflammatory cytokines as IL-1β, IL-6, and TNF-αincreased significantly in myocardium, and up to peak at 1w and 2w post ischemis reperfusion. Diltiazem could inhibit the expression of these inflammatory cytokines. The anti-inflammatory cytokines as IL-10 and TGF-β1 were increased with low level at 4w in myocardium post ischemia reperfusion, and diltiazem did not affect their expression.
     Conclusion: (1) Irritated by Con A, the intracellular [Ca~(2+)]i and expression of IL-10, TNF-α, and IL-6 in mononuclearcells increase significantly, which could be inhibited by diltiazem.
     (2) Instead of TGF-β1 and IL-10, the expression of TNF-α, IL-1β, and IL-6 are increase obviously in myocardium of calcium paradox model. Diltiazem could inhibit the cardiac expression of TNF-α, IL-1β, and IL-6 induced by myocardial calcium overload.
     (3) Diltiazem could inhibit the infiltration of inflammatory cells and expression of TNF-α, IL-1β, and IL-6 in myocardium post ischemia reperfusion.
引文
1. Kannan KB, Barlos D, Hauser CJ. Free cholesterol alters lipid raft structure and function regulating neutrophil Ca~(2+) entry and respiratory burst: correlations with calcium channel raft trafficking. J Immunol, 2007, 178(8):5253-61.
    2. Luik RM, Lewis RS. New insights into the molecular mechanisms of store- operated Ca~(2+) signaling in T cells. Trends Mol Med, 2007, 13(3):103-7.
    3. Inada H, Iida T, Tominaga M. Different expression patterns of TRP genes in murine B and T lymphocytes. Biochem Biophys Res Commun, 2006, 350(3):762-7.
    4. Degasperi GR, Zecchin KG, Borecky J, Cruz-Hofling MA, Castilho RF, Velloso LA, Guimaraes F, Vercesi AE. Verapamil-sensitive Ca~(2+) channel regulation of Th1-type proliferation of splenic lymphocytes induced by Walker 256 tumor development in rats. Eur J Pharmacol, 2006, 549(1-3):179-84.
    5. Zhou X, Yang W, Li J. Ca~(2+)- and protein kinase C-dependent signaling pathway for nuclear factor-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha production in lipopolysaccharide -stimulated rat peritoneal macrophages. J Biol Chem, 2006, 281(42):31337-47.
    6. Obata T. Diltiazem, a L-type calcium channel antagonist, suppresses ouabain- enhanced dopamine efflux by 1-methyl-4-phenylpyridinium ion (MPP+) in rat striatum. Biochim Biophys Acta, 2006, 1760(5):721-3.
    7. Satoh E, Edamatsu H, Omata Y. Acute restraint stress enhances calcium mobilization and proliferative response in splenic lymphocytes from mice. Stress, 2006, 9(4):223-30.
    8. Wang GL, Qian Y, Qiu QY, Lan XJ, He H, Guan YY. Interaction between Cl- channels and CRAC-related Ca~(2+) signaling during T lymphocyte activation and proliferation. Acta Pharmacol Sin, 2006, 27(4):437-46.
    9. Grant A, Palzer S, Hartnett C, Bailey T, Tsang M, Kalyuzhny AE. A cell detach- ment solution can reduce background staining in the ELISPOT assay. Methods Mol Biol, 2005, 302:87-94.
    10. Conti P, Youinou P, Theoharides TC. Modulation of autoimmunity by the latest interleukins (with special emphasis on IL-32). Autoimmun Rev, 2007, 6(3):131-7.
    11. Magaki S, Mueller C, Dickson C, Kirsch W. Increased production of inflammatory cytokines in mild cognitive impairment. Exp Gerontol, 2007, 42(3):233-40.
    12. Kolkowski EC, Fernandez MA, Pujol-Borrell R, Jaraquemada D. Human intestinal alphabeta IEL clones in celiac disease show reduced IL-10 synthesis and enhanced IL-2 production. Cell Immunol, 2006, 244(1):1-9.
    13. Goukassian DA, Qin G, Dolan C, Murayama T, Silver M, Curry C, Eaton E, Luedemann C, Ma H, Asahara T, Zak V, Mehta S, Burg A, Thorne T, Kishore R, Losordo DW. Tumor necrosis factor-alpha receptor p75 is required in ischemia-induced neovascularization. Circulation, 2007, 115(6):752-62.
    14. Denning TL, Granger S, Mucida D, Graddy R, Leclercq G, Zhang W, Honey K, Rasmussen JP, Cheroutre H, Rudensky AY, Kronenberg M. Mouse TCR alphabeta CD8alphaalpha intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. J Immunol, 2007, 178(7):4230-9.
    15. Fliegert R, Glassmeier G, Schmid F, Cornils K, Genisyuerek S, Harneit A, Schwarz JR, Guse AH. Modulation of Ca~(2+) entry and plasma membrane potential by human TRPM4b. FEBS J, 2007, 274(3):704-13.
    16. Luik RM, Lewis RS. New insights into the molecular mechanisms of store-operated Ca~(2+) signaling in T cells. Trends Mol Med, 2007, 13(3):103-7.
    17. Nishida M, Urushidani T, Sakamoto K, Nagao T. L-cis diltiazem attenuates intracellular Ca (2+) overload by metabolic inhibition in guinea pig myocytes. Eur J Pharmacol, 1999, 385(2-3):225-30.
    18. Chen YL, Chen YS, Lin HH, Chan CW, Chen SC, Chen CH. Immunostimulatory flagellin from Burkholderia pseudomallei effects on an increase in the intracellular calcium concentration and up-regulation of TNF-alpha by mononuclear cells. Microbiol Immunol, 2007, 51(1):81-6.
    19. Imani S, Jusko WJ, Steiner R. Diltiazem retards the metabolism of oral prednisone with effects on T-cell markers. Pediatr Transplant, 1999, 3(2):126-30.
    20. Briede J, Daija D, Bisenieks E, Makarova N, Uldrikis J, Poikans J, Duburs G. Effects of some 1,4-dihydropyridine Ca antagonists on the blast transformation of rat spleen lymphocytes. Cell Biochem Funct, 1999, 17(2):97-105.
    1. Li B, Liao YH, Cheng X, Ge H, Guo H, Wang M. Effects of carvedilol on cardiac cytokines expression and remodeling in rat with acute myocardial infarction. Int J Cardiol, 2006,111(2):247-55.
    2. Steppich BA, Moog P, Matissek C, Wisniowski N, Kuhle J, Joghetaei N, Neumann FJ, Schomig A, Ott I. Cytokine profiles and T cell function in acute coronary syndromes. Atherosclerosis, 2007, 190(2):443-51.
    3. Frangogiannis NG. Targeting the inflammatory response in healing myocardial infarcts. Curr Med Chem, 2006, 13(16):1877-93.
    4. Frangogiannis NG. The mechanistic basis of infarct healing. Antioxid Redox Signal, 2006, 8(11-12):1907-39.
    5. Valgimigli M, Ceconi C, Malagutti P, Merli E, Soukhomovskaia O, Francolini G, Cicchitelli G, Olivares A, Parrinello G, Percoco G, Guardigli G, Mele D, Pirani R, Ferrari R. TNF-alpha receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction: the cytokine-activation and long-term prognosis in myocardial infarction (C-ALPHA) study. Circulation, 2005, 111(7):863-70.
    6. Monden Y, Kubota T, Tsutsumi T, Inoue T, Kawano S, Kawamura N, Ide T, Egashira K, Tsutsui H, Sunagawa K. Soluble TNF receptors prevent apoptosis in infiltrating cells and promote ventricular rupture and remodeling after myocardial infarction. Cardiovasc Res, 2007, 73(4):794-805.
    7. Tamas P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG, Cantrell DA. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca~(2+) in T lymphocytes. J Exp Med, 2006, 203(7):1665-70.
    8. Kannan KB, Barlos D, Hauser CJ. Free cholesterol alters lipid raft structure and function regulating neutrophil Ca~(2+) entry and respiratory burst: correlations with calcium channel raft trafficking. J Immunol, 2007, 178(8):5253-61.
    9. Zhou X, Yang W, Li J. Ca~(2+)- and protein kinase C-dependent signaling pathway for NF-kappaB activation, inducible nitric-oxide synthase expression, and TNF-alphaproduction in lipopolysaccharide-stimulated rat peritoneal macro- phages. J Biol Chem, 2006, 281(42):31337-47.
    10. Nishida M, Urushidani T, Sakamoto K, Nagao T. Diltiazem attenuates intracellular Ca(2+) overload by metabolic inhibition in guinea pig myocytes. Eur J Pharmacol, 1999, 385(2-3):225-30.
    11. Fansa I, Gol M, Nisanoglu V, Yavas S, Iscan Z, Tasdemir O. Does diltiazem inhibit the inflammatory response in cardiopulmonary bypass? Med Sci Monit, 2003, 9(4):PI30-6.
    12. Degasperi GR, Zecchin KG, Borecky J, Cruz-Hofling MA, Castilho RF, Velloso LA, Guimaraes F, Vercesi AE. Verapamil-sensitive Ca~(2+) channel regulation of Th1-type proliferation of splenic lymphocytes induced by Walker 256 tumor development in rats. Eur J Pharmacol, 2006, 549(1-3):179-84.
    13. Yoo SA, Park BH, Park GS, Koh HS, Lee MS, Ryu SH, Miyazawa K, Park SH, Cho CS, Kim WU. Calcineurin is expressed and plays a critical role in inflammatory arthritis. J Immunol, 2006, 177(4):2681-90.
    14. Hoffman JW Jr, Gilbert TB, Poston RS, Silldorff EP. Myocardial reperfusion injury: etiology, mechanisms, and therapies. J Extra Corpor Technol, 2004, 36(4):391-411.
    15. Gissel H. The role of Ca~(2+) in muscle cell damage. Ann N Y Acad Sci, 2005, 1066:166-80.
    16. Guerini D, Coletto L, Carafoli E. Exporting calcium from cells. Cell Calcium, 2005, 38 (3-4):281-9.
    17. Piper HM, Abdallah Y, Schafer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res, 2004, 61(3):365-71.
    18. Zhang M, Xu YJ, Saini HK, Turan B, Liu PP, Dhalla NS. TNF-alpha as a potential mediator of cardiac dysfunction due to intracellular Ca~(2+)-overload. Biochem Biophys Res Commun, 2005, 327(1):57-63.
    19. Xie Y, Zhu WZ, Zhu Y, Chen L, Zhou ZN, Yang HT. Intermittent high altitude hypoxia protects the heart against lethal Ca~(2+) overload injury. Life Sci, 2004, 76(5):559-72.
    20. Alto LE, Elimban V, Lukas A, Dhalla NS. Modification of heart sarcolemmal Na+/ K+-ATPase activity during development of the calcium paradox. Mol Cell Biochem, 2000, 207(1-2):87-94.
    21. Persad S, Gupta KK, Dhalla NS. Status of Ca(2+)-channels in hearts perfused with Ca(2+)-free medium as well as upon reperfusion (Ca(2+)-paradox). J Mol Cell Cardiol, 1995, 27(1):513-22.
    22. Schouten VJ, Los GJ, Kuypers PD, Brinkman CJ, Huysmans HA. Paradox of enhanced contractility in postischemic rat hearts with depressed function. Am J Physiol, 1991,260(1-2):H89-99.
    23. Arnould T, Michiels C, Alexandre I, Remacle J. Effect of hypoxia upon intracellular calcium concentration of human endothelial cells. J Cell Physiol, 1992, 152(1):215-21.
    24. Tribulova N, Slezak J, Ravingerova T, Okruhlicova L. Effect of calcium antagonists on the Ca2(+) paradox. Bratisl Lek Listy, 1990,91(6):437-45.
    25. Ravingerova T, Ziegelhoffer A, Tribulova N, Slezak J, Tregerova V. Calcium paradox in the isolated rat-heart--the effects of diltiazem. Physiol Bohemoslov, 1990,39 (3): 253-6.
    1. Di Lisa F, Bernardi P. Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res, 2006, 70(2):191-9.
    2. Hoffman JW Jr, Gilbert TB, Poston RS, Silldorff EP. Myocardial reperfusion injury: etiology, mechanisms, and therapies. J Extra Corpor Technol, 2004, 36 (4):391-411.
    3. Hoffman JW Jr, Gilbert TB, Poston RS, Silldorff EP. Myocardial reperfusion injury: etiology, mechanisms, and therapies. J Extra Corpor Technol, 2004, 36(4):391-411.
    4. Gissel H. The role of Ca~(2+) in muscle cell damage. Ann N Y Acad Sci, 2005, 1066:166-80.
    5. Guerini D, Coletto L, Carafoli E. Exporting calcium from cells. Cell Calcium, 2005, 38(3-4):281-9.
    6. Piper HM, Abdallah Y, Schafer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res, 2004, 61(3):365-71.
    7. Cheng X, Liao YH, Zhang J, Li B, Ge H, Yuan J, Wang M, Lu B, Liu Y, Cheng Y. Effects of Atorvastatin on Th polarization in patients with acute myocardial infarction. Eur J Heart Fail, 2005, 7(7): 1099-1104.
    8. Cheng X, Liao YH, Ge H, Li B, Zhang J, Yuan J, Wang M, Liu Y, Guo Z, Chen J, Zhang J, Zhang L. TH1/TH2 functional imbalance after acute myocardial infarction: coronary arterial inflammation or myocardial inflammation. J Clin Immunol, 2005, 25(3): 246-253.
    9. Saeed SA, Waqar MA, Zubairi AJ, Bhurgri H, Khan A, Gowani SA, Waqar SN, Choudhary MI, Jalil S, Zaidi AH, Ara I. Myocardial ischaemia and reperfusion injury: reactive oxygen species and the role of neutrophil. J Coll Physicians Surg Pak, 2005,15(8):507-14.
    10. Seal JB, Gewertz BL. Vascular dysfunction in ischemia-reperfusion injury. Ann Vasc Surg, 2005,19(4):572-84.
    11. Schramm R, Thorlacius H. Neutrophil recruitment in mast cell-dependent inflammation: inhibitory mechanisms of glucocorticoids. Inflamm Res, 2004,53 (12): 644-52.
    12. Ren G, Dewald O, Frangogiannis NG. Inflammatory mechanisms in myocardialinfarction. Curr Drug Targets Inflamm Allergy, 2003,2(3):242-56.
    13. Jugdutt BI. Nitric oxide and cardioprotection during ischemia-reperfusion. Heart Fail Rev, 2002,7(4):391-405.
    14. Conti P, Youinou P, Theoharides TC. Modulation of autoimmunity by the latest interleukins (with special emphasis on IL-32). Autoimmun Rev, 2007, 6(3):131-7.
    15. Magaki S, Mueller C, Dickson C, Kirsch W. Increased production of inflammatory cytokines in mild cognitive impairment. Exp Gerontol, 2007, 42(3):233-40.
    16. Kolkowski EC, Fernandez MA, Pujol-Borrell R, Jaraquemada D. Human intestinal alphabeta IEL clones in celiac disease show reduced IL-10 synthesis and enhanced IL-2 production. Cell Immunol, 2006, 244(1):1-9.
    17. Goukassian DA, Qin G, Dolan C, et al. Tumor necrosis factor-alpha receptor p75 is required in ischemia-induced neovascularization. Circulation, 2007, 115(6):752-62.
    18. Gullestad L, Aukrust P. Review of trials in chronic heart failure showing broad-spectrum anti-inflammatory approaches. Am J Cardiol, 2005,95 (11A) :17C- 23C.
    19. Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol, 2007,7(1):31-40.
    20. Winkelman C, Higgins PA, Chen YJ, Levine AD. Cytokines in chronically critically ill patients after activity and rest. Biol Res Nurs, 2007,8(4):261-71.
    21. Khan R, Sheppard R. Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology, 2006,118(1):10-24.
    22. Wan S, LeClerc JL, Vincent JL. Cytokine responses to cardiopulmonary bypass: lessons learned from cardiac transplantation. Ann Thorac Surg, 1997,63(1):269-76.
    1.金满文.钙通道阻滞剂.见:陈维洲主编.心血管病治疗学.浙江:浙江科学技术出版社2001,20-41.
    2.刘英,廖玉华,程翔等.大鼠心肌梗塞后心肌炎症反应和细胞因子表达.中国免疫学杂志. 2004,20 (12):858-861.
    3.黄峻.现代循证心脏病学.江苏:江苏科学技术出版社,2002,711-721.
    4.蔡忠生,宗先祯,张毅.冠心病中西医诊疗学.北京:中国中医药出版社,1998,537-545.
    5. Gyorgy P, Zoltan V, Rezso G. Ion channels and lymphocyte activation. Immunology Letters, 2004,92: 55-66.
    6. Chikako T, Mamoru N. Quantitative and realtime correlation between receptor aggregation and intracellular calcium signal transduction. Immunology letters, 1996,49: 169-174.
    7. Ferenc B, Timea B, Attila M et al. Effect of hyperglycemia on the basal cytosolic free calcium level, calcium signal and tyrosine-phosphorylation in human T-cells. Immunology Letters, 2002,82: 159-/164.
    8. Elie B, Marek R P, Marcel D P et al. Protein kinase C inhibits the transplasma membrane influx of Ca~(2+) triggered by 4-aminopyridine in Jurkat T lymphocytes. Biochimica et Biophysica Acta, 2003,1622: 89– 98.
    9.程翔,廖玉华,李彬等.心肌梗死后心功能不全患者辅助性T细胞功能失衡及意义.中华心血管病杂志,2005,33 (6):526-528.
    10. Adnan T, Marcel J, Ester F. Changes in the inhibitory responses to electrical field stimulation of intestinal smooth muscle from trichinella spiralis infected rats. Life Sciences, 2002,71: 3121–3136.
    11. Holden C P, Haughey N J, Nath A et al. Role of Na1/H1 exchangers, excitatory amino acid receptors and voltage-operated Ca~(2+) channels in human immunodeficiency virustype 1 gp120-mediated increase in intracellular Ca~(2+) in human neurons and astrocytes. Neuroscience, 1999,91: 1369-1378.
    12. Yvonne R P, Elena S V, Juan J O et al. P-glycoprotein in autoimmune diseases. Autoimmunity Reviews, 2004,3:188–192.
    13. Elimor B S, Peter W. Calcium channel blockers ameliorate disease in a mouse model of multiple sclerosis. Experimental Neurology, 2004,189: 5-9.
    14. Liu M Y, Lai H Y, Yang B C et al. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sciences, 2001,68: 849-859.
    15. Atherfold P A, Norris M S, Robinson P J et al. Calcium-induced ERK activation in human T lymphocytes. Molecular Immunology, 1999,36: 543-549.
    16. Melissa A C, Gregory J B, Steven M E. Calcium currents of embryonic and adult neurons in serum-free culture. Brain Research Bulletin, 1999,48:73–78.
    17. Shekoufeh N, Mohammad A, Farid S et al. Interaction between calcium channel blockers and sweetening agents on morphine-induced analgesia in mice by formalin test. gen. Pharmac, 1998,31, 431–435.
    18. Alvaro D, Anthony H D. Blockade of spinal N- and P-type, but not L-type, calcium channels inhibits the excitability of rat dorsal horn neurons produced by subcutaneous formalin inflammation. Pain, 1997,69: 93-100.
    19. Brewer G J. Neuronal plasticity and stressor toxicity during aging. Experimental Gerontology, 2000,35: 1165-1183.
    20. Kenji A, Toshiyuki K, Kazuyuki M et al. A-eudesmol, a P/Q-type Ca channel blocker, inhibits neurogenic vasodilation and extravasation following electrical stimulation of trigeminal ganglion. Brain Research, 2000,873: 94-101.
    21. Furberg C D, Psaty B M, Meyer J V. Nifedipine: dose related increase in mortality in patients with coronary heart disease. Circulation, 1995,92: 1326-1331.
    22. Hanssen L, Hedner T, Lund-Johansen P et al. Randomised trial of effects of calcium antagonist compared with diuretics andβ-blockers on cardiovascular morbidity and mortality in hypertension:the nordic diltiazem (NORDIL) study. Lancet, 2000,356:359-365.
    23. Hansson L, Zanchetti A, Carruthers S G et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension:principal results of the hypertension optimal treatment (HOT) randomised trial. Lancet, 1998,351: 1755-1762.
    24. Hansson L, Lindholm L H, Ekbom T. Randomised trial of old new antihypertensive drugs in elderly patients:cardiovascular mortality and morbidity the Swedish trial in old patients with hypertension-2 study. Lancet, 1999,354:1751-1756.
    25. Brown M, Palmer C, Castaigne A et al. Morbidity and Mortality in patients randomised to double-blind treatment with a long-acting calcium channel blocker or diuretic in the international nefedipine GITS study:intervention as a goal in hypertension treatment (INSIGHT). Lancet, 2000,356:366-372.
    26. Poole-Wilson P A, Lucobus J, Kirwan B A et al. Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with stable angina requiring treatment (ACTION trial):randomized controlled trial. Lancet, 2004,364:849-857.
    27. Nissen S E, Tuzcu E M, Libby P et al. Effect of antihpertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure. The CAMLOT Study:A randomized controlled trial. JAMA, 2004,292:2217-2226.