Leber眼病与先天性白内障的临床与基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Leber眼病包括Leber先天性黑矇(Leber congenital amaurosis,LCA)和Leber遗传视神经萎缩(Leber's hereditary optic neuropathy LHON),先天性白内障(congenitalcataract)是眼科系统内比较重要儿童致盲性的遗传眼病,遗传方式有常染色体显性、常染色体隐性和性连锁遗传等方式。本课题对这两类遗传疾病进行了临床方面研究和分子遗传学研究,涉及家系鉴定,致病基因的定位和基因突变分析。
     第一部分内容对LCA的临床特征及其致病基因RPE65进行突变检测研究。收集分析9例年龄4~28岁的Leber先天性黑蒙先证者临床资料。检查包括最好矫正视力,屈光度,眼底照相,荧光造影和视网膜电图。对其中5例LCA患者提取基因组DNA,应用PCR及变性高效液相色谱分析法(Denaturing High Performance LiquidChromatography,DHPLC)分析RPE65基因十四个外显子,对可能有变异的外显子进行直接测序。结果表明9例患者均在12个月以内出现视力差或对视觉刺激无反应,症状年龄最小在3个月。9例患者最好矫正视力均小于0.2。9例均有眼球震颤。眼底彩照9例均有异常。6例行眼底荧光造影显示异常。2例有家族史并呈常染色体隐性遗传。3例为近亲婚配。ERG锥杆反应重度下降或记录不到波。对5例患者行RPE65基因十四个外显子的检测,未发现突变,5例患者均在第7外显子前发现同一位点单核苷酸多态性改变。
     第二部分对一四代LHON家系NADH基因进行测序分析(ubiquinoneoxidoreductase,ND),对已知发现三个碱基的突变G3640A,G11778A,and T14484C,分别位于ND1,ND4和ND6亚基,在周围设计三对引物,进行PCR扩增,对产物进行直接测序。已知的LHONmtDNA(G3460A,G11778A,and T14484C)三个位点进行突变分析,结果发现所有六个患者T14484C位点处的ND6发生T到C的突变-T14502C,Tle58Val。
     第三部分鉴定中国一先天性白内障家系进行分子遗传连锁分析和致病基因的定位筛选,首先分析22个家系成员中的17个先天性白内障患者的临床资料,确定诊断。每10cM选择一个微卫星标记物,共用382对微卫星标记物对所有家系成员进行全基因组扫描和基因连锁分析,确定致病基因的染色体位点,对候选基因直接测序。结果发现此家系的致病基因定位于染色体20p12.2-p11.23上D20S915和D20S912之间7.4Mb的区域内,在D20S471测得最高LOD值5.15(θ=0)。候选基因BFSP1和CHMP4B中均未检测到突变。推测在染色体20p12.2-p11.23上存在一个新的先天性白内障的致病基因,这有助于进一步对染色体20q位点候选基因进行鉴定,对先天性白内障的发病机制的研究具有指导意义。
Leber Inherited eye diseases include Leber congenital amaurosis(LCA) and Leber's hereditary optic neuropathy(LHON),and congenital cataract,both of them two important autosomal dominant,autosomal recessive and X-linked blinded eye disease in ophthalmology.In the present study,we have employed the molecular genetic technology, including clinical characterization of large families,linkage mapping of the chromosomal location of the disease causing genes,and mutational analysis,to study the two types of diseases.
     First part focus on the LCA,research on the clinic feature and screening the RPE65 mutation on 9 cases we had collected,the age from 4~28.Ocular examination included the:corrected visual acluity,optometry degree,ocular fundus image,fluorescein fundus angiography(FFA),and ERG Of 5 blood DNA samples had been isolated and used Denatuing High Performance Liquid Chromatography(DHPLC) to screen the mutation of all 14 exons of RPE65.If found some positive sign in DHPLC,direct sequencing would be performed for mutation analysis.The results showed the there is no visual stimuli and appear the visual impairment within 12 months after birth in all 9 patients,and the earliest symptom appeared in 3-month-old baby.The best corrected less than 20/100,and companied the nystagmus,ocular fundus images showed abnormal,and FFA also showed the abnormal.Of 2 families had the autosomal recessive inherited history,and of 3 the loop families history.Three patients were form consanguineous mating family.ERG cone and rod responses were markedly reduced or non-recordable in all cases.Mutation in the all fourteen exons of the RPE65 gene was not detected in the collected five patients.But the same single nucleotide polymorphisms(SNP) were found in the collected five patients. Second part analyzed a four generation family with LHON,and screened the NADH gene mutation,we clinically characterized a Chinese family with complete panetrance of LHON symptom.The patients in the family present with variable clinical features.By direct DNA sequence analysis,we identified both T14484C mutation and nearby T to C variant at nucleotide 14502 of mitochondria DNA.The T14502C variant altered I58 to V of the protein ND6,which was present in all patients of the family,but not in four unaffected family members and 200 normal controls.The co-existence of both T14484C mutation and T14502C substitution in all patients from the same LHON family suggests that T14502C may play a synergistic role with the primary mutation,and account for complete penetrance and absence of marked gender bias and visual recovery in the Chinese LHON family.
     The third part we had analyzed a family with autosomal dominant congenital cataract, and maped a gene responsible for infantile cataract in a large four-generation, non-consanguineous Chinese family.Congenital cataract is a clinically diverse and genetically heterogeneous disorder of the crystalline lens,and a leading cause of visual impairment.Twenty two family members including 17 cataract patients in the Chinese family were analyzed clinically.All of family members were genotyped with 382 microsatellite markers that provide genome-wide coverage by every 10 cM.Linkage analysis was carried out to identify the chromosomal location of the infantile cataract gene in the family.Candidate genes were studied by direct DNA sequence analysis.The results showed:Genome-wide linkage analysis provided evidence for a genetic locus for infantile cataract on chromosome 20p12.2-p11.23.The maximum LOD score was 5.15 for marker D20S471 at a recombination fraction of 0.Fine mapping defined the cataract gene within a 7.4 Mb interval between markers D20S915 and D20S912.No mutation was detected in potential candidate genes BFSP1 and CHMP4B.Our results suggest that there is a new gene for infantile cataract on chromosome 20p12.2-p11.23.Our results provide a frame to identify a new gene for infantile cataract by future studies of candidate genes at the 20q locus,which should provide insights into the pathogenic mechanisms of cataracts.
引文
[1] Leber T. Uber retinitis pigmentosa and angeborene amaurosis. GraefesA rchClin Exp Ophthalmol 1869; 15 : 13220.
    
    [2] Koenekoop RK, Traboulsi EI. Leber's congenital amaurosis, Stargardt disease, and pattern dystrophies. In I T raboulsi E I. GeneticDiseasesoftheEye. NewYork:OxfordUniversity Press Inc 1998, 373-387.
    [3] Alstrom CH, Olson O: Heredo-retinopathia congenitalis monohybrida recessiva autosomalis. Hereditas, 1957,43:1~178
    [4] Schappert-Kimmijser J, Henkes HE, Bosch J: Amaurosis Congenital(Leber). Arch Ophthalmol, 1959,61:218.
    [5] Leber T: Uber retinitis pigmentosa und angeborene amaurose. Graefes Arch Clin Exp Ophthalmol, 1869,15:1-25.
    [6] Dharmaraj S, Li Y, Robitaille JM, et al: A novel locus for Leber congenital amaurosis maps to chromosome 6q. Am J Hum Genet, 2000 66:319-326.
    [7] Dryja TP, Adams SM, Grimsby JL, et al: Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet, 2001,68:1295-1298.
    [8] Freund CL, Wang QL, Chen S, et al: De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis. Nat Genet, 1998, 18:311-2.
    [9] Keen TJ, Mohamed MD, McKibbin M, et al: Identification of a locus (LCA9) for Leber's congenital amaurosis on chromosome 1p36. Eur J Hum Genet, 2003,11:420-423.
    [10] Lotery AJ, Jacobson SG, Fishman GA, et al: Mutations in the CRB1 gene cause Leber congenital amaurosis. Arch Ophthalmol, 2001,119:415-420.
    
    [11] Marlhens F, Bareil C, Griffoin JM: Mutations in RPE65 cause Lebers congenital amaurosis. Nat Genet, 1997,17:139-141.
    [12]Perrault I,Rozet JM,Calvas P,et al:Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis.Nat Genet,1996,14:61-64.
    [13]Sohocki MM,Bowne SJ,Sullivan LS,et al:Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis.Nat Genet,2000,24:79-83.
    [14]Stockton DW,Lewis RA,Abboud EB:A novel locus for Leber congenital amaurosis on chromosome 14q24.Hum Genet,1998,103:328-33.
    [15]Robert K.Koenekoop:An overview of Leber congenital amaurosis:A model to understand human retinal development.Survey of Ophthalmology,2004,49:379-398.
    [16]Porto FB,Perrault I,Hicks D,et al:Prenatal human ocular degeneration occurs in Leber congenital amaurosis(LCA2).J Gene Med,2002,4:390-396.
    [17]Sullivan TJ,Heathcote JG,Brazel SM,Musarella MA:The ocular pathology in Lebers congenital amaurosis.Aust NZ J Ophthalmol,1994,22:25-31.
    [18]Milam AH,Barakat MR,Gupta N,et al:Clinicopathologic effects of mutant GUCY2D in Leber congenital amaurosis.Ophthalmology,2003,110:549-58.
    [19]Franceschetti A,Dieterle' P:Die Differentaldiagnostische Bedeutung des ERG's bei tapeto-retinalen Degenerationen:Elektroretinographie.Bibl Ophthalmol,1956,48:61.
    [20]Waardenburg PJ:Does agenesis or dysgenesis neuroepithelialis retina,whether or not related to keratoglobus,exist Ophthalmologica,1957,133:454-61.
    [21]Alstrom CH,Olson O:Heredo-retinopathia congenitalis monohybrida recessiva autosomalis.Hereditas,1957,43:1-178.
    [22]Henkes HE,Verduin PC:Dysgenesis or abiotrophy? A differentiation with the help of the electroretinogram(ERG) and electrooculogram(EOG) in Leber congenital amaurosis.Ophthalmologica,1963,145:144-60.
    [23]Elisa fazzi,Sabrina Giovanna,et,al:Leber congenital amaurosis:an update.Eur J Of Paediatric Neurology,2003,7;13-22.
    [24]Foxman,S.G.,Heckenlively,J.R.,Bateman,J.B.and Wirtschafter,J.D. Classification of congenital and early onset retinitis pigmentosa. Arch. Ophthalmol, 1985,103:1502-06.
    
    [25] Weiss AH, Biersdorf WR: Visual sensory disorders in congenital nystagmus. Ophthalmology, 1989,96:517-523.
    [26] LaVail MM, Yasumura D, Matthes MT: Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci, 1998, 39:592-602..
    [27] Heher KL, Traboulsi EI, Maumenee IH: The natural history of Lebers congenital amaurosis. Age-related findings in 35 patients. Ophthalmology, 1992,99:241-245.
    [28] Fulton AB, Hansen RM, Mayer DL: Vision in Leber congenital amaurosis. Arch Ophthalmol ,1996,114:698-703
    [29] Brecelj J, Stirn-Kranjc B: ERG and VEP follow-up study in children with Lebers congenital amaurosis. Eye, 1999,13:47-54.
    [30] Koenekoop RK, Loyer M, Dembinska O, Beneish R: Visual improvement in Leber congenital amaurosis and the CRX genotype. Ophthalmic Genet, 2002, 23:49-59
    [31] Perrault I, RosetJM, CalvaS P, et al. Retinal—specific guanylate cyclase gene mutations in Leber's congenital amaurosis. Nat Genet, 1996,14: 461-464.
    [32] Marlhens F, Bareil C, Griffoin JM , et al. Mutations in RPE65 cause Leber's congenital amaurosis. Nat Genet, 1997, 17: 139-141.
    [33] Freund CL, Wang QL, Chen S, et al. De novo mutations in the CRX homeobox gene associated with Leher congenital amaurosis. Nat Genet, 1998, 18: 311-312.
    [34] Sohoeki MM , Bowne SJ, Sullivan LS. et al. Mutations in a new Photoreceptor pineal gene on 17p cause Leber congenital amaurosis. Nat Genet, 2000, 24: 79-83.
    [35] Dryja TP, Adams SM , Grimsby JL, et al. Null RPGRIP1 alleles in patients with Leber congenital amanrosis. Am J Hum Genet, 2001, 68: 1295-1298.
    [36] den Hollander AI, Heckenlively JR, van den Born LI, et al. Leber congenital am aurosis and retinitis pigmentosa with Coatwlike exudative vase ulopathy are asso ciated with mutations in the crurNbs homologue l(CRB1)gene. Am J Hum Genet, 2001, 69: 198-203.
    [37] Cremers FP, van den Hurk JA, den HoHander AL Molecular genetics of Leber congenital amaurosis. Hum Mol Genet, 2002, 11: 1169-1176
    [38] Cam uzat A, DoUfus H, Rozet JM, et al. A gene for Leber's congenital amaurosis maps to chromosome 17p. Hum Mol Genet, 1995, 4: 1447-1452.
    [39] Tucker CL, RamamurthyV, PinaAL, etal. Functional analyses of mutant recessive GUCY2D alleles identified in Leber cong enital am—aurosis patients: protein domain comparisons and dominan t negative effects. Mol Vis, 2004, 10: 297-303.
    [40] Dharmaraj S, Silva E, Li YY, et al. Mutational analysis in one hundred consecutive patients with Leher cong enital am aurosis. Invest Ophthalmol Vis Sci, 1999, 40: 565
    
    [41] 1. Lotery AJ, Na mperumalsamy P, Jacobson SG, et al. Mutation analysis of 3 genes in patients with Leber congenital am aurosis . Arch Ophthalmol, 2000, 1 (18) : 538-553.
    [42] Redmond TM , Yu S, Lee E, et al. Rpe65 is necessary for production of 11 -cis-vitam in A in the retinal visual cycle. Nat Genet, 1998,20: 344-351.
    [43] Morimura H , Fishman GA, Grover SA, et al. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. Proc Natl Acad Sci USA, 1998, 95: 3088-3093.
    [44] Perrault I, Rozet JM , Ghazi I, et al. Different functional outcome of retGC1 an d RPE65 gene mutations in Leber congenital amaurosis. Am J Hum Genet, 1999, 64: 1225-1228.
    [45] Freund CL, Gregory. Evans CY, FurukawaT, et al. Cone-rod dystrophy due to mutations in a novel photoreceptor—specific homeobox gene(CRX)essential for maintenance of the photoreceptor. CO ll, 1997, 91: 543-553.
    
    [46] Swaroop A, Wang QL, Wu W , et al. Leber congenital amaurosis caused by a homozygous mutation(R90W)in the homeodomain of the retinal transcription factor CRX: direc t evidence for the involvement of CRX in the development of photoreceptor function. Hunl Mol Genet, 1999, 8: 299-305.
    
    [47] Ma Q, W hitloek JP Jr. A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the tran scriptional response to 2, 3, 7, 8. tetrachlorodibenz~p-dioxin. J Biol Chem, 1997, 272: 8878-8884.
    
    [48] van der Spuy J, Kim JH, Yu YS, et al. The expression of the Leber congenital amaurosis protein AIPL1 co incides with rod and cone photoreceptor development. Invest Ophthalmol Vis Sci, 2003, 44: 5396-5403.
    
    [49] 2. Kan aya K, Sohoeki M M , Kam itan i T. Abolished interaction of NUB1 with mutant AIPL1 involved in Leher cong enital am aurosis. Biochem Biophys Res Commun, 2004, 317: 768~773.
    
    [50] Hong DH, Yue G, Adamian M . et al. Retinitis pigmentosa GTPase regulator(RPGRr) — interacting protein is stably associated with the photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium. J Biol Chem, 2001, 276: 12091-12099.
    
    [51] Gerher S. Perrauh I, Hanein S, etal. Complete exonintron structure of the RPGR-interacting protein(RPGRIP1)gene allows the identification of mutations underlying Leber congenital amaumsis. Eur J Hum Genet, 2001, 9: 561-571.
    
    [52] PellikkaM , TanentzapfG, Pinto M , et al. Crumbs, the Drosophila homologue of human CRB1 / RP12, is essential for photoreceptor morphogenesis. Nature, 2002, 416: 143-149.
    
    [53] LoteryAJ, Jacobson SG, Fishman GA, etal. Mutations in the CRB1 gene cause Leber congenital amaurosis. Arch Ophthalmol, 2001, 119: 415-20.
    
    [54] den Hollander AI, Koenekoop RK, Yzer S, Lopez I, Arends ML, Voesenek KE, Zonneveld MN, Strom TM, Meitinger T, Brunner HG, et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet. 2006,79:556-561.
    
    [55] Perrault I, Hanein S, Gerber S, Barbet F, Ducroq D, Dollfus H, Hamel C, Dufier JL, Munnich A, Kaplan J, et al. Retinal dehydrogenase 12 (RDH12) mutations in leber congenital amaurosis. Am J Hum Genet. 2004, 75:639-646.
    
    [56] Hanein S, Perrault I, Gerber S, Tanguy G, Barbet F, Ducroq D, Calvas P, Dollfus H, Hamel C, Lopponen T, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat. 2004, 23:306-317.
    
    [57] Zernant J, Kulm M, Dharmaraj S, den Hollander AI, Perrault I, Preising MN, Lorenz B, Kaplan J, Cremers FP, Maumenee I, et al. Genotyping microarray(disease chip) for Leber congenital amaurosis: detection of modifier alleles. Invest Ophthalmol Vis Sci. 2005,46:3052-3059.
    
    [58] Yzer S, Leroy BP, De Baere E, de Ravel TJ, Zonneveld MN, Voesenek K, Kellner U, Ciriano JP, de Faber JT, Rohrschneider K, et al. Microarray-based mutation detection and phenotypic characterization of patients with Leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2006,47:1167-1176.
    
    [59] Lorenz B, Gyurus P, Preising M, Bremser D, Gu S, Andrassi M, Gerth C, Gal A. Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. Invest Ophthalmol Vis Sci. 2000,41:2735-2742.
    [60]Dharmaraj S,Leroy BP,Sohocki MM,Koenekoop RK,Perrault I,Anwar K,Khaliq S,Devi RS,Birch DG,Do Pool E,et al.The Phenotype of Leber Congenital Amaurosis in Patients With AIPL1 Mutations.Arch Ophthalmol.2004,122:1029-1037.
    [61]Jacobsen SG,Cideciyan AV,Aleman TS,Pianta MJ,Sumaroka A,Schwartz SB,Smilko EE,Milam AH,Sheffield VC,Stone EM.Crumbs homolog 1(CRB1) mutations result in a thick human retina with abnormal lamination.Hum Mol Genet.2003,12:1073-1078.
    [62]Galvin JA,Fishman GA,Stone EM,Koenekoop RK.Evaluation of genotype-phenotype associations in leber congenital amaurosis.Retina.2005,25:919-929.
    [63]Dharmaraj SR,Silva ER,Pina AL,et al:Mutational analysis and clinical correlation in Leber congenital amaurosis.Ophthalmic Genet,2000,1:135-50.
    [64]Li LX,Turner JE:Transplantation of retinal pigment epithelial cells to immature and adult rat hosts:short-and long-term survival characteristics.Exp Eye Res,1988,7:771-785.
    [65]van den Brand H,Dieleman S J,Soede NM,Kemp B:Dietary energy source at two feeding levels during lactation of primiparous sows,I.Effects on glucose,insulin,and luteinizing hormone and on follicle development,weaning-to-estrus interval,and ovulation rate.Acta Ophthalmol Stand,2000,78:396-404.
    [66]Kaplan HJ,Tezel TH,Berger AS:Human photoreceptor transplantation in retinitis pigmentosa.A safety study.Arch Ophthalmol,1997,115:1168-1172.
    [67]Ghosh F,Bruun A,Ehinger B:Graft-host connections in long-term full-thickness embryonic rabbit retinal transplants.Invest ophthalmol Vis Sci,1999,40:126-132
    [68]Milam AH,Li ZY,Fariss RN:Histopathology of the human retina in retinitis pigmentosa.Prog Retin Eye Res,1998,17:175-205.
    [69]Mohand-Said S,Deudon-Combe A,Hicks D:Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse. Proc Natl Acad Sci USA, 1998,95: 8357-8362.
    [70] Mohand-Said S, Hicks D, Dreyfus H, Sahel JA: Selective transplantation of rods delays cone loss in a retinitis pigmentosa model. Arch Ophthalmol, 2000, 118:807-811.
    [71] Lalwani AK, Goldstein JA, Kelley MJ, et al. Human nonsyndromic hereditary deafness DFNA17 is due to a mutation in nonmuscle myosin MYH9. Am J Hum Genet, 2000,67(5): 1121-1128
    
    [72] 3. Lem J, Flannery JG, Li T: Retinal degeneration is rescued in transgenic rd mice by expression of the cGMP phosphodiesterase beta subunit. Proc Natl Acad Sci USA, 1992,89:4422-4426
    [73] Travis GR, Groshan KR, Lloyd MB, Bok D: Complete rescue of photoreceptor dysplasia and degeneration in transgenic retinal degeneration slow (rds) mice. Neuron, 1992,9:113-119.
    [74] Ali RR, Sarra GM, Stephens C, et al: Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet, 2000,25:306-310.
    [75] V Acland GM, Aguirre GD, Ray J, et al: Gene therapy restores vision in a canine model of childhood blindness. Nat Genet, 2001,28:92-95
    [76] Flannery JG, Drenser K, Lewin A, et al: Ribozyme rescue of photoreceptor cells in a transgenic model of P23H autosomal dominant retinitis pigmentosa. Proceedings of the Second International EU Meeting on New Therapeutic Approaches in Hereditary Eye Diseases. Munster: Institute of Human Genetics, Westfalische Wilhelms-Universitat, 1997,48-58
    [77] Flannery JG, Drenser K, Lewin A, et al: Ribozyme rescue of photoreceptor cells in a transgenic model of P23H autosomal dominant retinitis pigmentosa. Proceedings of the Second International EU Meeting on New Therapeutic Approaches in Hereditary Eye Diseases. Munster: Institute of Human Genetics, Westfalische Wilhelms-Universitat, 1997,48-58
    [78] Van Hooser JP, Aleman TS, He YG, et al: Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. Proc Natl Acad Sci USA, 2000,97:8623-8628.
    [79] Faktorovich EG, Steinberg RH, Yasumura D, et al: Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature, 1990,347:83-86
    [80] LaVail MM, Yasumura D, Matthes MT: Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci, 1998, 39:592-602,.
    [81] Frasson M, Sahel JA, Fabre M: Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat Med, 1999,5:1183-1187.
    [82] Bush RA, Kononen L, Machida S, Sieving PA: The effect of calcium channel blocker diltiazem on photoreceptor degeneration in the rhodopsin Pro213His rat. Invest Ophthalmol Vis Sci, 2000,41:2697-2701.
    [83] Bai, Y.D., Attardi, G., 1998. The mtDNA-encoded ND6 subunit of mitochondrial NADH dehydrogenase is essential for the assembly of the membrane arm and the respiratory function of the enzyme. EMBO. J,17, 4848-4858.
    [84] Lem J, Flannery JG, Li T: Retinal degeneration is rescued in transgenic rd mice by expression of the cGMP phosphodiesterase beta subunit. Proc Natl Acad Sci USA, 1992,89:4422-4426.
    [85] Ali RR, Sarra GM, Stephens C, et al: Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet, 2000,25:306-310.
    [86] Brown, M.D., Torroni, A., Reckord, L.C., Wallace, D.C. Phylogenetic analysis of Leber's hereditary optic neuropathy mitochondrial DNA's indicates multiple independent occurrences of the common mutations. Hum. Mut, 1995,6,311-325.
    [87] Cardol, P., Matagne, R.F., Remacle, C. Impact of mutations affecting ND mitochondria-encoded subunits on the activity and assembly of complex I in Chlamydomonas. Implication for the structural organization of the enzyme. J. Mol. Biol, 2002,319,1211-1221.
    [88] Chinnery, P.F., Brown, D.T., Andrews, R.M., Singh-Kler, R., Riordan-Eva, P., Lindley, J., Applegarth, D.A., Turnbull, D.M., Howell, N.,.The mitochondrial ND6 gene is a hot spot for mutations that cause Leber's hereditary optic neuropathy. Brain, 2001,124:209-218.
    
    [89] Fauser, S., Leo-Kottler, B., Besch, D., Luberichs, J. Confirmation of the 14568 mutation in the mitochondrial ND6 gene as causative in Leber's hereditary optic neuropathy. Ophthalmic Genetics, 2002,23,191-197.
    
    [90] Gropman, A., Chen, T.J., Perng, C.L., Krasnewich, D., Chernoff, E., Tifft, C., Wong, L.J. Variable clinical manifestation of homoplasmic G14459A mitochondrial DNA mutation. Am.J.Med Genet, 2004,124, 377-382.
    
    [91] Howell, N. Leber hereditary optic neuropathy: mitochondrial mutations and degeneration of the optic nerve. Vision. Res, 1997, 37,495-507.
    
    [92 ] Howell, N., Bogolin, C., Jamieson, R., Marenda, D.R., Mackey, D.A. mtDNA mutations that cause optic neuropathy: how do we know? Am.J.Hum.Genet, 1998,62:196-202.
    
    [93] Howell, N., Oostra, R.J., Bolhuis, P.A., Spruijt, L., Clarke, L.A., Mackey, D.A., Preston, G., Herrnstadt, C. Sequence analysis of the mitochondrial genomes from Dutch pedigrees with Leber hereditary optic neuropathy. Am. J.Hum.Genet, 2003, 72:1460-1469.
    
    [94] Jenson, B.K. Nelson textbook of pediatrics. Philadelphia:W.B.Mackey DA, Oostra RJ, Rosenberg T, Nikoskelainen E, Bronte-Stewart J, Poulton J, Harding AE, Govan G, Bolhuis PA, Norby S, 1996. Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy. Am J Hum Genet. 2000,9(2):481-485.
    
    [95] Man, P.Y., Howell, N., Mackey, D.A., Norby, S., Rosenberg ,T., Turnbull, D.M., Chinnery, P.F. Mitochondrial DNA haplogroup distribution within Leber hereditary optic neuropathy pedigrees. J. Med. Genet, 2004,41:41.
    
    [96] Mashima Y, Yamada K, Wakakura M, Kigasawa K, Kudoh J, Shimizu N, Oguchi Y. Spectrum of pathogenic mitochondrial DNA mutations and clinical features in Japanese families with Leber's hereditary optic neuropathy. Curr Eye Res, 1998,17(4):403~408
    [97] Ozawa, T., Tanaka, M., Sugiyama, S., Ino, H., Ohno, K., Hattori, K., Ohbayashi, T., Ito, T., Deguchi, H., Kawamura, K., Nakane, Y., Hashiba, K., Patients with idiopathic cardiomyopathy belong to the same mitochondrial DNA gene family of Parkinson's disease and mitochondrial encephalomyopathy. Biochem. Biophys. Res. Commun, 1991,177,518~525.
    [98 ] Palanichamy MG, Sun C, Agrawal S, Bandelt HJ, Kong QP, Khan F, Wang CY, Chaudhuri TK, Palla V, Zhang YP. Phylogeny of mitochondrial DNA macrohaplogroup N in India, based on complete sequencing: implications for the peopling of South Asia. Am J Hum Genet,2004,75(6):966~978.
    [99] Rahi JS, Dezateux C. Measuring and interpreting the incidence of congenital ocular anomalies: lessons from a national study of congenital cataract in the UK. Invest Ophthalmol Vis Sci, 2001,42:1444-1448.
    [ 101 ] SanGiovanni JP, Chew EY, Reed GF et al. Infantile cataract in the collaborative perinatal project: prevalence and risk factors. Arch Ophthalmol, 2002,120:1559-1565.
    [102] Wirth MG, Russell-Eggitt IM, Craig JE et al. Aetiology of congenital and paediatric cataract in an Australian population. Br J Ophthalmol, 2002,86:782-786.
    [103] Vanita, Singh JR, Singh D. Genetic and segregation analysis of congenital cataract in the Indian population. Clin Genet, 1999,56:389-93.
    [104] Francis PJ, Berry V, Hardcastle AJ et al. A locus for isolated cataract on human Xp. J Med Genet, 2002,39:105-109.
    [105] Shiels A, Hejtmancik JF. Genetic origins of cataract. Arch Ophthalmol, 2007, 125: 165-73.
    [106] Ionides A, Francis P, Berry V et al. Clinical and genetic heterogeneity in autosomal dominant cataract. Br J Ophthalmol, 1999, 83:802-808.
    [107] Ke T, Wang QK, Ji B et al. Novel HSF4 mutation causes congenital total white cataract in a Chinese family. Am J Ophthalmol, 2006,142:298-303.
    [108] Gu F, Zhai H, Li D et al. A novel mutation in major intrinsic protein of the lens gene(MIP) underlies autosomal dominant cataract in a Chinese family.Mol Vis,2007,13:1651-1656.
    [109]Khan AO,Aldahmesh MA,Meyer B.Recessive congenital total cataract with microcomea and heterozygote carder signs caused by a novel missense CRYAA mutation(R54C).Am J Ophthalmol 2007,144:949-952.
    [110]Hejtmancik JF,Smaoui N.Molecular genetics of cataract.Dev Ophthalmol,2003,37:67-82
    [111]Francis P,Berry V,Moore A,et al.Lens biology,development and human cataractogenesis.Trends Genet,1999,15:191-196
    [112]Pras E,Frydman M,Levy-Nissenbaum E,et al.A nonsense mutation(W9X)in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family.Invest Ophthalmol Vis Sci,2000,41:3511-3515
    [113]Litt M,Kramer P,LaMorticella D,et al.Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA.Hum Mol Genet,1998,7:471-475
    [114]Pande A,Pande J,Asherie N,et al.Crystal cataracts:human genetic cataract caused by protein crystallisation[J].Proc NatI Acad Sci,2001,98:611-620
    [115]Burdon KP,Wirth MG,Mackey DA,et al.Investigation ofcrystallin genes in familial cataract,and report of two disease associated mutations.Br J Ophthalmol,2004,88:2-3.
    [116]Zenteno JC,Morales ME,Moran-Barroso V,et al.CRYGD gene analysis in a family with autosomal dominant congenital cataract:evidence for molecular homogeneity and intrafamilial clinical heterogeneity in aculeiform cataract.Mol Vis.2005,11:438-442.
    [117]Mackay DS,Andley UP,Shiels A.A missense mutation in the gammaD crystallin gene(CRYGD) associated with autosomal dominant "coral-like"cataract linked to chromosome 2q.Mol Vis,2004,10:155-162.
    [118]Sun H,Ma Z,Li Y,et al.Gamma-S crystallin gene(CRYGS) mutation causes dominant progressive cortical cataract in humans.J Med Genet,2005,42:706-710.
    [1191]Mackay DS,Boskovska OB,Knopf HL,et al.A nonsenses mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome 22q.Am J Hum Genet,2002,71:1216-1221
    [120]Narita M,Wang Y,Kita A,et al.Genetic analysis of Nakano cataract and its modify genes in mice.Exp Eye Res,2002,75:745-751.
    [121]Jakobs P,Hess J,Fitzgerald P,et al.Autosomal dominant congenital cataract associated with a deletion mutation in the human beaded filament protein gene BFSP2.Am J Hum Genet,2000,66:1432-1436.
    [122]Lonides A,Francis P,Berry V,et al.Clinical and genetic heterogeneity in autosomal dominant congenital cataract.Br J Ophthalmol,1999,83:802-808.
    [123]Francis P,lonides A,Berry V,et al.Visual outcome in patiants with isolated autosomaldominant congenitalcataract.Ophthalmology,2001,108:1104-1108.
    [124]Heon E,Priston M,Schorederet D,et al.The gamma-crystallins and human cataracts:a puzzle made clearer[J].Am J Hum Genet,1999,65:1261-1267.
    [124]Gill D,Klose R,Munier F,et al.Genetic heterogeneity of the Coppock-like cataract:a mutation in CRYBB2 on chromosome 22q11.2.Invest Ophthalmol Vis Sci,2000,41:159-165.
    [125]Nandrot E,Slingsby C,Basak A,et al.Gamma-D crystallin gene(CRYGD)mutation causes autosomal dominant congenital cerulean cataracts.J Med Genet,2003,40:262-267.
    [126]Santhiya ST,Shyam MM,Rawlley D,et al.Novel mutations in the gamma-crystallin genes cause autosomal dominant congenital cataracts.J Med Genet,2002,39:352-358.