中国汉族单纯型发作性运动诱发性运动障碍家系的基因定位与克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     本课题共收集了6个中国汉族PKD家系,将其与国内外已报道的PKD家系进行对比研究,深入挖掘中国汉族PKD家系自身特殊的临床特点,并选择具有代表性的家系进行基因定位与克隆研究,定位中国汉族PKD新的致病基因位点,期待克隆出PKD的致病基因。
     方法
     1)临床研究:综合已收集的6个PKD家系和中国已报道的12个PKD家系,与国外的42个PKD家系进行临床分析以及发病年龄、严重程度的配对t检验和wilcoxon符号秩和统计学分析。
     2)基因定位:选择家系结构好、患病人数多的家系A进行基因定位研究。首先选择24个微卫星位点对涵盖EKD1和EKD2的整条16号染色体进行排除定位;在排除了家系与16号染色体的连锁关系后,利用商业化的ABI全基因组连锁试剂盒Linkage Mapping Setv.2.5-MD10进行STR全基因组扫描,并在全扫的阳性区域内进一步增加微卫星位点进行精细定位;为了进一步验证STR扫描的结果,同时更加深入的挖掘该家系所包含的遗传信息,利用全基因组Linkage-12 SNP芯片对家系进行的再次扫描和定位,并采用Genehunter-2-locus软件对阳性区域进行2个致病位点相互作用检验。
     3)候选基因克隆:采用功能-候选克隆的策略,筛选4个已知基因(KCNG3、SLC8A1、PRKCE和FGF12基因)作为候选基因进行测序和突变分析。
     结果
     1)临床表型上,中国单纯型PKD家系存在发病年龄逐代提前和(或)严重程度加重的遗传早现现象:统计学上,中国单纯型PKD家系代与代之间的平均年龄差为5.2岁,有显著的统计学差异(配对t检验和Wilcoxon符号秩检验P值均<0.0001),而复杂型PKD发病年龄并无显著差异(P>0.01)。
     2)参数和非参数分析排除了该家系的致病基因与16号染色体存在连锁关系。STR全基因组扫描在D3S1580处获得了最大的两点LOD值1.75(θ=0),其最大多点LOD值和NPL值分别为1.60和4.64(P=0.004),将这个PKD家系的致病基因位点初步定位于D3S1262和D3S1311之间的区域。进一步的精确定位在D3S3669处得到最大的LOD值2.82(θ=0),NPL值9.83(P<0.0001);单体型分析将致病基因定位于D3S1314和D3S1265之间约10.2 cM大小的区域,对应NCBI的Marshfield图谱,相当于3q28-29的区域。全基因组SNP芯片扫描结果发现除3q28-29外,还存在另一个连锁信号较强的区域2p21-22,其位置分别位于2号染色体rs1509562至rs1016607之间约7.18cM(LOD值为2.35;NPL值为5.30;P<0.00001)和3号染色体rs10937369至rs711995之间约13.78cM(LOD值为2.39;NPL值为5.74;P<0.00001)的区域。两位点相互作用检验结果在基于倍增模型的前提下得到最大的two-locus LOD值3.81,同时最大two-locus NPL值也升至7.81(P=0.0006),提示PKD可能同时存在两个致病基因位点2p21-22和3q28-29。
     3)在对4个候选基因中的测序分析中发现了8个DNA序列变异,其中有两个DNA序列的改变导致所编码的氨基酸发生变化,但未见与该PKD家系的表型发生共分离,说明这8个DNA序列变异均为单核苷酸多态,从而排除了这4个候选基因为该PKD家系致病基因的可能。
     结论
     1)发作性运动诱发性运动障碍可分为单纯型和复杂型两种亚型。中国单纯型发作性运动诱发性运动障碍家系可能存在遗传早现现象。
     2)通过STR和SNP全基因组扫描,获得了中国汉族单纯型PKD家系2个新的致病基因位点,分别位于2p21-22和3q28-29,且这两个位点可能存在一定的相互作用。
     3)基本排除KCNG3、SLC8A1、PRKCE和FGF12基因为新的PKD致病基因的可能。
Objectives
     In this study,We collected six Chinese PKD pedigrees with no other paroxysmal diseases such as epilepsy,migraine,or infantile convulsion. The aim of the study is to deeply research the clinical characteristics of Chinese PKD pedigrees and search for paroxysmal kinesigenic dyskinesia susceptibility gene(s) using a Chinese multiplex family of Pure PKD.
     Methods
     1) Clinical research:we contrasted the onset age and severity of these 6 pedigrees and another 12 reported by others in China with that of 60 PKD pedigrees in other countries on clinical and statistical analysis by using a simple generalized paired t-test and a Wilcoxon signed rank test.
     2) Gene mapping:After excluding the linkage related to chromosome 16 which contains the two known gene loci of PKD(EKD1 and EKD2),two genome-wide screens were performed,using ABI Linkage Mapping Set v.2.5-MD10 and Illumina Infinium Human Linkage-12 panel,in a Chinese multiplex family of Pure PKD with genetic anticipation.Linkage,Merlin and Genehunter-Two-Locus software were used to perform parametric and nonparametric linkage analyses under the modes of single-trait-locus and two-trait-locus linkage analysis.
     3) Candidate genes cloning:we performed a bioinformational inquiry of all known genes in both loci interval and selected 4 genes(KCNG3、SLC8A1、PRKCE and FGF12) as candidate genes for mutation analysis by polymerase chain reaction(PCR) and DNA direct sequencing.
     Results
     1) Clinically,pure PKD families in China showed the phenomenon of progressively earlier and more severe as it is passed on to the next generation.Statistically,the mean difference of disease onset in pure PKD in China group was 5.2 years in both statistical analysis(p<0.0001) but no statistical significance(P>0.01) between parent and offspring generation in complicated PKD.
     2) The STR result identified a suspective locus on chromosome 3q27-q29 with a maximum two-point LOD score of 1.85 at 0=0 and the maximum muliti-point NPL score of 4.64(P=0.004) on D3S1580.Fine mapping showed a maximum two-Lod score of 2.82 atθ=0 on D3S3669. The new pure PKD locus lies with an 10.2cM interval on 3q28-29, between D3S1314 and D3S1265.The SNP data demonstrated two loci with suggestive linkage:one is mapped to a 7.18 cM region on chromosome 2p21-22 between rs1509562 and rs1016607(LOD score of 2.35;NPL score of 5.30;P less than.00001);the other is mapped to the a 13.78 cM region on chromosome 3q28-29 between rs10937369 and rs711995(LOD score of 2.39;NPL score of 5.74;P less than.00001).In addition,an interaction was suggested with joint analyses of these two loci,which gave rise to a 2-locus LOD score of 3.81 under the assumption of a multiplicative model and a 2-locus NPL score of 7.81(P =0.0006).
     3) The mutation analysis result showed that only eight common single nucleotide polymorphisms(SNPs) were detected and they were not the causative variants.
     Conclusions
     1) Paroxysmal kinesigenic dyskinesia would be divided into pure and complicated subtype.
     2) This study provides genetic evidences of two novel loci for Pure PKD with anticipation and suggests that pure PKD is a new clinical subtype of PKD.
     3) Four candidate genes(KCNG3、SLC8A1、PRKCE and FGF12) were ruled out as the causative gene for pure PKD.
引文
[1] KP Bhatia. Familial (idiopathic) paroxysmal dyskinesias: an update. Semin Neurol, 2001, 21(1):69-74.
    [2] Kato N, et al. Paroxysmal kinesigenic choreoathetosis: From first discovery in 1892 to genetic linkage with benign familial infantile convulsions. Epilepsy Res, 2006,70: S174-S184.
    [3] Bruno MK, Hallett M, Gwinn HK, et al. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: New diagnostic criteria. Neurology, 2004, 63: 2280 -2287.
    [4] Tsai WY, Heiman GA, Hodge SE. New simple tests for Age-at-onset anticipation: Application to panic disorder. Genet Epidemiol, 2005, 28:256-260.
    [5] Szepetowski P, Rochette J, Berquin P, et al. Familial infantile convulsion and paroxysmal choreoathetosis: A new neurological syndrome linked to the pericentromeric region of human chromosome 16. Am J Hum Genet, 1997, 61 (4):889-898.
    [6] Lee WL, Agaes T, Ong HT, et al. Association of infantile convulsions with paroxysmal dyskinesias(ICCA syndrome): confirmation of linkage to human chromosomel6pl2-ql2 in a Chinese family.Hum Genet, 1998, 103:608-612.
    [7] Tornita H, Nagamitsu S, et al. Paroxysmal kinesigenic chreoathetosis locus map to chromosome 16p11.2-ql2.LAm J Hum Genet, 1999, 65: 1688-1697.
    [8] Swoboda KJ, Soong BW, et al. Paroxysmal kinesigenic dyskinesia and infantile convulsions: clinical and linkage studies. Neurology, 2000, 55:224-230.
    [9] Ohmori I, Ohtsuka Y, Ogino T, et al. The Relationship between Paroxysmal Kinesigenic Choreoathetosis and Epilepsy. Neuropediatrics, 2002, 33:15-20.
    [10] Spacey SD, Valente EM, Wali GM, et al. Genetic and children heterogeneity in paroxysmal kinesigenic dyskinesia : evidence for a third EKD gene. Mov Disord, 2002,17(4):717-725.
    [11] Cuenca-Leon E, Cormand B, Thomson T, et al.Paroxysmal kinesigenic dyskinesia and generalized seizures: clinical and genetic analysis in a Spanish pedigree. Neuropediatrics, 2002, 33:288-293.
    [12]Bennett LB,Roach ES,Bowcoch AN.A locus for paroxysmal kinesigenic dyskinesia maps to human chromosome 16.Neurology,2000,54(1):125-130.
    [13]李洵桦,陈素琴,田伟,等.发作性运动诱发性运动障碍八个家系临床特点分析.中华神经科杂志,2006,39(11):730-733.
    [14]林宇,吴志英,王柠,等.家族性发作性运动诱发性运动障碍三个家系的临床及遗传特点.中华神经科杂志,2006,39(11):734-737.
    [15]周瑾瑕,李国良,刘鼎等.家族性发作性运动诱发性运动障碍六个家系的临床及遗传特点分析.中华神经科杂志,2006,39(11):726-729.
    [16]Petronis A,Kennedy JL,Paterson AD,et al.Genetic anticipation:fact or artifact,genetics or epigenetics? Lancet,1997,350:1403-1404.
    [17]Snell RG,MacMillan JC,Cheadle JP,et al.Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease.Nat Genet,1993,4:393-397.
    [18]Grattan-Smith PJ,Healey S,Grigg JR,et al.Spinocerebellar ataxia type 7:A distinctive form of autosomal dominant cerebellar ataxia with retinopathy and marked genetic anticipation.J Paediatr Child Health,2001,37(1):81-84.
    [19]Burger J,Hermann M,Paternotte C,et al.Autosomal dominant spastic paraplegia with anticipation maps to a 4-cM interval on chromosome 2p21-p24in a large German family.Hum Genet,1996,98(3):371-375.
    [20]Yhurmon TF,He C,Haskell C,et al.Genetic anticipation in a large family with pure autosomal dominant hereditary spastic paraplegia.Am J Med Genet,1999,83(5):392-396.
    [21]Rosenmann H,Kahana E,Korczyn AD,et al.Preliminary evidence for anticipation in genetic E200K Creutzfeldt-Jakob disease.Neurology,1999,53(6):1328-1329.
    [22]Visscher PM,Yazdi MH,Jackson AD,et al.Genetic survival analysis of age-atonset of bipolar disorder:evidence for anticipation or cohort effect in families.Psychiatric Genet,2001,11(3):129-137.
    [23]Han S,Peschel RE.Father-son testicular tumors:Evidence for genetic anticipation? A case report and review of the literature.Cancer,2000,88(10):2319-2325.
    [24]McFaul CD,Greenhalf W,Earl J,et al.Anticipation in familial pancreatic cancer.Gut,2006,55:252-258.
    [25]Poorkaj P,Moses L,Montimurro JS,et al.parkin mutation dosage and the phenomenon of anticipation:a molecular genetic study of familial parkinsonism.BMC Neurology,2005.5:4.
    [26]Gilbert DL,et al.A novel,autosomal dominant,complicated spastic paraplegia in adults with genetic anticipation and severe generalized dystonia in childhood.Mov Disord,2005.20:S30-S30.
    [27]Heiman GA,Hodge SE,Wickramaratne P,et al.Age-at-interview bias in anticipation studies:computer simulations and an example with panic disorder.Psychiatr Genet,1996,6(2):61-66.
    [28]Rabinowitz D,Yang Q.Testing for age-at-onset anticipation with affected parent-child pairs.Biometrics,1999,55(3):834-838.
    [29]Lin,CH,et al.Study of anticipation in Chinese families with schizophrenia.Psychiatry Clin Neurosci,2001.55(2):p.137-40.
    [30]Pearson CE,Edamura KN,Cleary JD.Repeat Instability:Mechanisms of Dynamic Mutations.Nat Genet,2005,6:729-742.
    [31]O'Donovan M,Jones I,Craddock N.Anticipation and repeat expansion in bipolar disorder.Am J Med Genet C Semin Med Genet,2003,123C(1):10-17.
    [32]Vulliamy T,Marrone A,Szydlo R.Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenital due to mutations in TERC.Nat Genet,2004,36:447-449.
    [33]Marrone A,Walne A,Dokal I.Dyskeratosis congenita:telomerase,telomeres and anticipation.Curr Opin Genet Dev,2005,15(3):249-57.
    [34]Petronis A,Kennedy JL,Paterson AD.Genetic anticipation:fact or artifact,genetics or epigenetics? Lancet,1997,350(9088):1403-1404.
    [35]况少青,张宇舟,陈竺.基因组扫描-遗传病相关基因定位的有利工具.中华医学遗传学杂志,1997,14:99-103.
    [36]Dib C,Faure S,Fizames C,et al.A comprehensive genetic map of the human genome based on 5,264 microsatellites.Nature,1996,380:152-154.
    [37]Reich DE,Gabriel SB,Altshuler D.Quality and completeness of SNP databases. Nat Genet, 2003, 33:457-458.
    [38] Abreu PC, Greenberg DA, Hodge SE. Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases. Am J Hum Genet, 1999, 65:847-857.
    [39] Huang SQ, Zhang YZ, Chen Z. A powerful tool for genome scanning and gene mapping of inherited disease. Chin J Med Genet,1997,14: 99-103.
    [40] Sengul H, Weeks D, Feingold E. A survey of affected-sibship statistics for nonparametric linkage analysis. Am.J.Hum.Genet, 2001,69(l):179-190.
    [41] Ke X, Hunt S, Tapper W, et al. The impact of SNP density on fine-scale patterns of linkage disequilibrium. Hum Mol Genet, 2004, 13:577-588.
    [42] Abecasis G, Wigginton JE. Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am J Hum Genet, 2005, 77:754-67.
    [43] Evans DM, Cardon LR. Guidelines fro genetyping in genomewide linkage studies: Single-Nucleotide-Polymorphism maps versus microsatellite maps. Am.J. Hum. Genet, 2004,75:687-692.
    [44] Schaid DJ, Guenther JC, Christensen GB, et al. Comparison of Microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility loci. Am.J.Hum.Genet, 2004, 75:948-965.
    [45] Wilson AF, Sorant AJ. Equivalence of single- and multilocus markers: power to detect linkage with composite markers derived from biallelic loci. Am J Hum Genet, 2000, 66:1610-1615.
    [46] Kruglyak L, Daly MJ, Reeve-Daly MP, et al. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet, 1996, 58:1347-1363.
    [47] John S, Shephard N, Liu G, et al. Whole-genome scan, in a complex disease, using 11,245 single-nucleotide polymorphisms: comparison with microsatellites. Am J Hum Genet, 2004, 75:54-64.
    [48] Middleton FA, Pato MT, Gentile KL, et al. Genomewide linkage analysis of bipolar disorder by use of a high-density singlenucleotide-polymorphism (SNP) genotyping assay: a comparison with microsatellite marker assays and finding of significant linkage to chromosome 6q22. Am J Hum Genet ,2004,74:886-897.
    [49] Strauch K, Fimmers R, Kurz T, et al. Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization. Am J Hum Genet, 2000, 66:1945-1957.
    [50] Strauch K, Fimmers R, Baur MP, et al. How to model a complex trait. 1. General considerations and suggestions. Hum Hered, 2003, 55:202-210.
    [51] Li W, Reich J. A complete enumeration and classification of two-locus disease models. Hum Hered, 2000, 50:334-349.
    [52] Coon H, Myers RH, Borecki IB, et al. Replication of linkage of familial combined hyperlipidemia to chromosome lq with additional heterogeneous effect of apolipoprotein A-Ⅰ/C-Ⅲ/A-Ⅳ locus. The NHLBI Family Heart Study.Arterioscler Thromb Vase Biol, 2000, 20(10):2275-2280.
    [53] Al-Kateb H, Bahring S, Hoffmann K, et al. Mutation in the ARH gene and a chromosome 13q locus influence cholesterol levels in a new form of digenic- recessive familial hypercholesterolemia. Circ Res, 2002, 90 (9):951-958.
    [54] Berger M, Mattheisen M, Kulle B, et al. High factor Ⅷ levels in venous thromboembolism show linkage to imprinted loci on chromosomes 5 and 11.Blood,2005,105(2): 638-644.
    [55] Abou Jamra R, Fuerst R, Kaneva R, et al. The first genome wide interaction and locus-heterogeneity linkage scan in bipolar affective disorder: Strong evidence of epistatic effects between loci on chromosomes 2q and 6q. Am J Hum Genet,2007, 81(5):974-986.
    [56] Wei Du, Jocelyn F Bautista, Huanghe Yang,et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet, 2005, 37: 733-738.
    [57] Kikuchi T, Nomura M, Tomita H , et al. Paroxysmal kinesigenic choreoathetosis (PKC): confirmation of linkage to 16p11-q24, but unsuccessful detection of mutations among 157 genes at the PKC-critical region in seven PKC families. J Hum Genet, 2007, 52(4) :334-341.
    [58] Du T, Feng B, Wang X, et al. Localization and mutation detection for paroxysmal kinesigenic choreoathetosis.J Mol Neurosci, 2008, 34:101-107.
    [59] Shirley R, Donald T, Debra T, et al. Myofbrillogenesis regulator 1 gene mutations cause paroxysmal choreosthetosis .Arch Neurol, 2004,61(7):1025-1029.
    [60] Chen DH, Matsushita M, Rainier S, et al.Presence of alanine-to-valine substitutions in myofibrillogenesis regulator 1 in paroxysmal nonkinesigenic dyskinesia .Arch Neurol, 2005, 62:597-600.
    [61] Lee HY, XU Y, et al. The gene for paroxysmal non-kinesigenic dyskinesia encodes an enzyme in a stress response pathway. Human Molecular Genetics,2004,13:3161-3170.
    [62] Auburger G, Ratzlaff T, Lunkes A, et al. A gene for autosomal dominant paroxysmal choreoathetosis/spasticity (CSE) maps to the vicinity of a potassium channel gene cluster on chromosome lp, probably within 2 cM between D1S443 and D1S197. Genomics, 1996, 31: 90-94.
    [63] Du W, Bautista JF, Yang H, et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet, 2005, 37: 733-738.
    [64] Munchau A, Valente EM, Shahidi GA, et al. A new family with paroxysmal exercise induced dystonia and migraine: a clinical and genetic study. J Neurol Neurosurg Psychiatry, 2000, 68: 609-614.
    [65] Bing F, Dananchet Y, Vercueil L. A family with exercise-induced paroxysmal dystonia and childhood absence epilepsy. Rev Neurol (Paris),2005,161: 817-822.
    [66] Kamm C, Mayer P, Sharma M, et al . New family with paroxysmal exercise-induced dystonia and epilepsy. Mov Disord, 2007, 22: 873-877.
    [67] Sules A, Dedeken P, Goffin K, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUTI.Brain,2008,6:1-14.
    [68] Weber YG, Storch A, Wuttke TV, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest ,2008,118: 2157-2168.
    [69] Guerrini R, Bonanni P, Nardocci N, et al. Autosomal recessive rolandic epilepsy with paroxysmal exercise-induced dystonia and writer's cramp: delineation of the syndrome and gene mapping to chromosome 16p 12-11.2. Ann Neurol, 1999,45:344-352.
    [70] Smallwood PM, IM S, Tong P, et al. Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. PNAS, 1996, 93(18): 9850-9857.
    [71] Dono R. Fibroblast growth factors as regulators of central nervous system development and function. Am J Physiol Regul Integr Comp Physiol, 2003, 284(4): R867-R881.
    [72] Goldfarb M, Schoorlemmer J, Williams A, et al. Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage- gated sodium channels. Neuron, 2007, 55(3): 449-463.
    [73] Hubert T, Bourane S, Venteo S, et al. Fibroblast growth factor homologous factor 1 (FHF1) is expressed in a subpopulation of calcitonin gene-related peptide-positive nociceptive neurons the murine dorsal root ganglia. J Comp Neurol, 2008, 507 (4): 1588-1601.
    [74] Andreas D,Jassemien A, Friedmar RK, et al. Mutation analysis in the fibroblast growth factor 14 gene: frameshift mutation and polymorphisms inpatients with inherited ataxias. Eur J Hum Genet ,2005,13:118-120.
    [75] Qing W, Donald GM, David MO. Subcellular and developmental expression of alternatively spliced forms of fibroblast growth factor 14. Mech Develop ,2000, 90 :283-287.
    [76] van Kolen K, et al. Nociceptive and behavioural sensitization by protein kinase C epsilon signalling in the CNS. J Neurochem, 2008, 104(1): 1-13.
    [77] Zhu W, Xu P, Cuascut FX, et al. Activin acutely sensitizes dorsal root ganglion neurons and induces hyperalgesia via PKC-mediated potentiation of transient receptor potential vanilloid I. J Neurosci, 2007, 27(50):13770-13780.
    [78] Burgos M, Pastor MD, Gonzalez JC, et al. PKC epsilon upregulates voltage- dependent calcium channels in cultured Astrocytes. Glia, 2007,55(14):1437-1448.
    [1]Bhatia KP.Familial(idiopathic) paroxysmal dyskinesias:an update.Semin Neurol,2001,21(1):69-74.
    [2]Demirkiran M,Jankovic J.Ann Neurol,1995,38:571.
    [3]Jankovic J,Demirkiran M.Classification of Paroxysmal dyskinesias and ataxias.Adv Neurol,2002,89:387-400.
    [4]Bruno MK,Hallett M,Gwinn HK,et al.Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia:New diagnostic criteria.Neurology,2004,63:2280-2287.
    [5]Bruno MK,Lee HY,Auburger GW.Genotype-phenotype correlation of paroxysmal nonkinesigenic dyskinesia.Neurology,2007,68:1782-1789
    [6]Suls A,Dedeken P,Goffin K.Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1,encoding the glucose transporter GLUT1.Brain,2008,6:1-14
    [7]Provini F,Plazzi G,Lugaresi E,et al.From noctumal paroxysmal dystonia to nocturnal frontal lobe epilepsy.Clin Neurophysiol,2000,111:S2-S8.
    [8]Valente EM,Spacey SD,Wali GM,et al.A second paroxysmal kinesigenic choreoathetosis locus(EKD2) maps to 16q13-q22.1:indicates a family of genes which give rise to paroxysmal disorders on human chromosome 16.Brain,2000,123(10):2040-2045
    [9]周瑾瑕,李国良,刘鼎,等.家族性发作性运动诱发性运动障碍六个家系的临床及遗传特点分析.中华神经科杂志,2006,39(11):726-729.
    [10]李洵桦,陈素琴,田伟,等.发作性运动诱发性运动障碍八个家系临床特点分析.中华神经科杂志,2006,39(11):730-733.
    [11]林宇,吴志英,王柠,等.家族性发作性运动诱发性运动障碍三个家系的临床及遗传特点.中华神经科杂志,2006,39(11):734-737.
    [12]Yornita H,Nagamitsu S,et al.Paroxysmal kinesigenic chreoathetosis locus map to chromosome 16p11.2-q12.1.Am J Hum Genet,1999,65:1688-1697.
    [13]Bennett LB,Roach ES,Bowcoch AN.A locus for paroxysmal kinesigenic dyskinesia maps to human chromosome 16.Neurology,2000,54(1):125-130.
    [14]Swoboda KJ,Soong BW,et al.Paroxysmal kinesigenic dyskinesia and infantile convulsions:clinical and linkage studies.Neurology,2000,55:224-230
    [15]Cuenca-Leon E,Cormand B,Thomson T,et al.Paroxysmal kinesigenic dyskinesia and generalized seizures:clinical and genetic analysis in a Spanish pedigree.Neuropediatrics,2002,33:288-293.
    [16]Spacey SD,Valente EM,Wali GM,et al.Genetic and children heterogeneity in paroxysmal kinesigenic dyskinesia:evidence for a third EKD gene.Mov Disord,2002,17(4):717-725.
    [17]Szepetowski P,Rochette J,Berquin P,et al.Familial infantile convulsions and paroxysmal choreoathetosis:A new neurological syndrome linked to the pericentromeric region of human chromosome 16.Am J Hum Genet,1997,61:889-898.
    [18]Lee WL,Tay A,Ong HT,et al.Association of infantile convulsions with paroxysmal dyskinesias(ICCA syndrome):confirmation of linkage to human chromosome 16p12-q12 in a Chinese family.Hum Genet,1998,103(5):608-612.
    [19]Caraballo R,Pavek S,Lemainque A,et al.Linkage of benign familial infantile convulsions to chromosome 16p12-q12 suggests allelism to the infantile convulsions and choreoathetosis syndrome.Am J Hum Genet,2001,68(3): 788-794.
    [20] Weber YG, Berger A, Bebek N, et al. Benign familial infantile convulsions: linkage to chromosome 16pl2-ql2 in 14 families. Epilepsia ,2004, 45(6): 601-609.
    [21] Callenbach PM, Coo RF, Vein AA, et al. Benign familial infantile convulsions: a clinical study of seven Dutch families. European Journal of Paediatric Neurology, 2002,6(5):269-283
    [22] Sethi KD, Hess DC, Huffnagle VH, et al. Acetazolamide treatment of paroxysmal dystonia in central demyelinating disease. Neurology, 1992,42:919-921.
    [23] Verheul GM, Tyssen CC. Multiple sclerosis occurring with paroxysmal unilateral dystonia. Mov Disord,1990 ,5:352-353.
    [24] Blakeley J, Jankovic J. Secondary causes of paroxysmal dyskinesias. Adv Neurol, 2002, 89:401-420.
    [25] Shibasaki H, Kuroiwa Y. Painful tonic seizures in multiple sclerosis. Arch Neurol, 1974,30:47-51.
    [26] Consetino C, Torres L, Flores M, et al. Paroxysmal kinesigenic dystonia and spinal cord lesion. Mov Disord, 1996,11:453-455.
    [27] Roos R, Wintzen AR, Vielvoye G, et al: Paroxysmal kinesigenic choreoathetosis as presenting symptom of multiple sclerosis. J Neurol Neurosurg Psychiatry, 1991, 54: 657-658.
    [28] Matthews WB. Tonic seizures in disseminated sclerosis.Brain, 1958, 81:193 -206.
    [29] Waubant E, Alize P, Tourbah A, et al. Paroxysmal dystonia (tonic spasm) in multiple sclerosis. Neurology, 2001, 57:2320-2321.
    [30] Demirkiran M, Jankovic J. Paroxysmal dyskinesias: Clinical features and a new classification. Ann Neurol, 1995, 38:571-579.
    [31] Waubant E, Alize P, Tourbah A, et al. Paroxysmal dystonia (tonic spasm) in multiple sclerosis. Neurology, 2001, 57: 2320-2321.
    [32] DeSeze J, Stojkovic T, Destee M, et al. Paroxysmal kinesigenic choreoathetosis as a presenting symptom of multiple sclerosis. J Neurol, 2000,247:478-480.
    [33] Berger JR, Sheremata WA, Melamed E. Paroxysmal dystonia as the initial manifestation of multiple sclerosis. Arch Neurol, 1984, 41:747-750.
    [34]Osterman PO,Westerberg CE.Paroxysmal attacks in multiple sclerosis.Brain,1975,98:189-202.
    [35]Whitty CWN,Lishman WA,Fitzgibbon JP.Seizures induced by movement:a form of reflex epilepsy.Lancet,1964,1:1403-1406.
    [36]Robin JJ.Paroxysmal choreoathetosis following head injury.Ann Neurol,1977,2:447-448.
    [37]Drake ME,Jackson RD,Miller CA:Paroxysmal choreoathetosis after head injury.J Neurol Neurosurg Psychiatry,1986,49:837-843.
    [38]Richardson JC,Howes JL,Celinski MJ,et al:Kinesigenic choreoathetosis due to brain injury.Can J Neurol Sci,1987,14:626-628.
    [39]Ko CH,Kong CK,Ngai WT,et al.Ictal(99m)Tc ECD SPECT in paroxysmal kinesigenic choreoathetosis.Pediatr Neurol,2001,24:225-227.
    [40]Drake ME Jr,Jackson RD,Miller CA.Paroxysmal choreoathetosis after head injury.J Neurol Neurosurg Psychiatry,1986,49:837-843.
    [41]Biary N,Singh B,Bahou Y,et al.Posttranmatic paroxysmal nocturnal hemidystonia.Mov Disord,1994,9:98-99.
    [42]Jankovic J,Vander LC.Dystonia and tremor induced by peripheral trauma:Predisposing factors.J Neurol Neurosurg Psychiatry,1988,51:1512-1519.
    [43]Schott GD.Induction of involuntary movements by peripheral trauma:An analogy with causalgia.Lancet,1986,2:712-716.
    [44]Cardoso F,Jankovic J.Peripherally induced tremor and parkinsonism.Arch Neurol,1995,52:263-270.
    [45]Jankovic J.Can peripheral trauma induce dystonia and other movement disorders? Mov Disord,2001,16:7-12.
    [46]Sankhla C,Lai EC,Jankovic J.Peripherally induced oromandibnlar dystonia.J Neurol Neurosurg Psychiatry,1998,65:722-728.
    [47]Weimer WJ.Can peripheral trauma induce dystonia? Mov Disord,2001,16:13-22.
    [48]ohen LG,Bandinelli S,Findley TW,et al:Motor reorganization after upper limb amputation in man:A study with focal magnetic stimulation.Brain,1991,114:615-627.
    [49]Braune S,Schady W.Changes in sensation after nerve injury or amputation:The role of central factors.J Nenrol Neurolsurg Psychiatry,1993,56:393-399.
    [50]Tabaee MJ,Frame B,Kapphahn K.Kinesigenic choreoathetosis and idiopathic hypoparathyroidism. J Neurol Neurosurg Psychiatry, 1972,286:762-763.
    [51] Yen DJ, Shan DE, Lu SR. Hypothyroidism presenting as recurrent short paroxysmal kinesigenic dyskinesia. Mov Disord, 1998,13:361-363.
    [52] Tabaee-Zadeh MJ, Frame B, Kapphahn K. Kinesiogenic choreoathetosis and idiopathic hypoparathyroidism. N Engl J Med , 1972, 286:762-763.
    [53] Yamamoto K, Kawazawa S. Basal ganglia calcifications in paroxysmal dystonic choreoathetosis. Ann Neurol, 1988,24: 585.
    [54] Kaot H, Kobayashi K, Kohari S, et al. Paroxysmal kinesigenic choreoathetosis and paroxysmal dystonic choreoathetosis in a patient with familial idiopathic hypoparathyroidism. Tohoku J Exp Med, 1987,151:233-239.
    [55] Micheli F, Fernandez PM, Casas PI, et al. Sporadic paroxysmal dystonic choreoathetosis associated with basal ganglia calcifications. Ann Neurol, 1986,20:750.
    [56] Mirsattari SM, Berry ME, Holden JK, et al. Paroxysmal dyskinesias in patients with HIV infection. Neurology, 1999, 52:109-114.
    [57] Nijssen PCG, Tijssen CC. Stimulus-sensitive paroxysmal dyskinesias associated with thalamic infarct. Mov Disord, 1992, 7:364-366.
    [58] Camac A, Greene P, Khanndji A. Paroxysmal kinesigenic choreoathetosis associated with a thalamic infarct. Mov Disord, 1990, 5:235-238.
    [59] Merchut MP, Brumlik J. Painful tonic spasms caused by putamenal infarction. Stroke, 1986,17:1319-1321.
    [60] Riley DE. Paroxysmal kinesigenic dystonia associated with a medullary lesion.Mov Disord, 1996, 11:738-740.
    [61] Bennet DA, Fox JH. Paroxysmal dyskinesia secondary to cerebral vascular disease-reversal with aspirin. Clin Neuropharmacol, 1989, 12:215-216.
    [62] Yanagihara T, Piepgras DG, Klass DW. Repetitive involuntary movement associated with episodic cerebral ischemia. Ann Neurol, 1985, 18:244-250.
    [63] Baquis GD, Pessin MS, Scott RM. Limb shaking: A carotid TIA. Stroke, 1985,16:444-448.
    [64] Shaw C, Haas L, Miller D, et al. A case report of paroxysmal dystonic choreoathetosis due to hypoglycemia induced by an insnlinoma. J Neuol Neurosurg Psychiatry, 1996, 61:194-195.
    [65] Newman RP, Kinkel WR. Paroxysmal choreoathetosis due to hypoglycemia. Arch Neural, 1984,41:341-342.
    [66] Schmidt B J, Pillay N. Paroxysmal dyskinesia associated with hypoglycemia. Can J Neurol Sci, 1993, 20:151-153.
    [67] Winer JB, Fish DR, Marsden CD, et al. A movement diosrder as a presenting feature of recurrent hypoglycemia. Mov Disord , 1990, 5:176-177.
    [68] Aquino A, Gabor AJ: Movement induced seizures in non-ketotic hyperglycinemia. Neurology, 1980, 30:600-604.
    [69] Hennis A, Corbin D, Fraser H. Focal seizures in nonketotic hyperglycinemia. J Neurol Neurosurg Psychiatry, 1992, 55: 195-197.
    [70] Haan J, Kremer HH, Padberg G. Paroxysmal choreoathetosis as a presenting symptom of diabetes mellitus. J Neurol Neurosurg Psychiatry , 1989, 52:133.
    [71] Clark JD, Pathwa R, Roller WC. Diabetes mellitus presenting as paroxysmal kinesigenic dystonic choreoathetosis, Mov Disord , 1995,10:354-355.
    [72] Gilroy J. Abnormal computed tomograms in paroxysmal kinesigenic choreoathetosis. Arch Neurol, 1982, 39:779-780.
    [73] Kinsat M, Erenberg G, Rothner AD. Paroxysmal choreoathetosis: Report of five cases and review of the literature. Pediatrics, 1980, 65:74-77.
    [74] Demirkiran M, Jankovic J. Paroxysmal dyskinesias: clinical features and classification. Ann Neurol, 1995, 38(4) :571-579.
    [75] Falconer M, Driver M, Serafetinides E. Seizures induced by movement: Report of case relieved by operation.Neurol Neurosurg Psychiatry, 1963,26:300-307.
    [76] Nagamitsu S, Matsuishi T, Hashimoto K, et al. Multicenter study of paroxysmal dyskinesias in Japan: clinical and pedigree analysis. Mov Disord,1999, 14 (4) :658-663
    [77] Lombroso CT. Paroxysmal choreoathetosis : an epileptic or nonepileptic disorder? Ital J Neurol Sci ,1995 ,16(5): 271-277.
    [78] Tan LS, Tan AY, Tjia H. Paroxysmal kinesigenic choreoathetosis in Singapore and its relationship to epilepsy. Clin Neurol Neurosurg, 1998,100:187-92.
    [79] HG Wieser. Reflex epilepsy and reflex seizures of the visual system: a clinical review. Adv neurol, 1998, 75: 69-85
    [80] Pauletti G, Berardelli A, Cruccu G, et al . Blink reflex and the masseter inhibitory reflex in patients with dystonia. Mov Disord, 1993, 8(4):495-500.
    [81] Berardelli A, Rothwell JC, Hallett M, et al . The pathophysiology of primary dystonia. Brain, 1998, 121 .-(7)1195-212.
    [82] Lee MS, Kim WC, Lyoo CH, et al. Reciprocal inhibition between the forearm muscles in patients with paroxysmal kinesigenic dyskinesia. J Neurol Sci, 1999,168:57-61.
    [83] Hallet M. Physiology of dystonia. Adv Neurol, 1998, 78:11-18.
    [84] Tinazzi M, Rosso T, Fiaschi A. Ⅱ ruolo del feedback sensorialenella distonia: Valutazione psicofisica e neurofisiologica mediante potenziali evocati somato-sensitivi (PESS). Neurol Sci, 2000, 21:S509-13.
    [85] Frasson E, Priori A, Bertolasi L, et al. Somatosensory disinhibition in dystonia. Mov Disord, 2001, 16(4):674-82.
    [86] Zorzi G, Conti C, Erba A, et al. Paroxysmal dyskiesias in childhood. Pediatr Neurol, 2003,28(3): 168-172.
    [87] Kato N, et al. Paroxysmal kinesigenic choreoathetosis: From first discovery in 1892 to genetic linkage with benign familial infantile convulsions. Epilepsy Res, 2006,70: S174-S184.
    [88] Roos RC, Wintzen AR, Vielvoye G, et al. Paroxysmal kinesigenic choreoathetosis as presenting symptom of multiple sclerosis. J Neurol Neurosurg Psychiatry, 1991, 54(7): 657-658.
    [89] Barabas G, Tucker SM .Idiopathic hypoparathyroidism and paroxysmal dystonic choreoathetosis.Ann Neurol, 1988,24(4): 585.
    [90] Camac A, Greene P, Khandji A. Paroxysmal kinesigenic dystonic choreoathetosis associated with a thalamic infarct. Mov Dis, 1990, 5(3):235-238.
    [91] Hamano S, Tanaka Y, Nara T, et al. Paroxysmal kinesigenic choreoathetosis associated with prenatal brain damage. Acta Pediatr Jpn, 1995, 37(3):401-404.
    [92] ayashi R, Hanyu N, Yahikozawa H, et al. Ictal muscle discharge pattern and SPECT in paroxysmal kinesigenic choreoathetosis. Electromyogr Clin Neurophysiol, 1997, 37(2): 89-94.
    [93] Kitagawa N, Hayashi M, Akiguchi I, et al. Ictal 99mTC-HMPAO-SPECT in a case of paroxysmal kinesigenic choreoathetosis. Rinsho Shinkeigaku, 1998,38(8): 767-770
    [94] Shirane S, Sasaki M, Kogure D, et al. Increased ictal perfusion of the thalamus in paroxysmal kinesigenic dyskinesia. J Neurol Neurosurg Psychiatry, 2001,71(3): 408-410.
    [95] Loong SC, Ong YY. Paroxysmal kinesigenic choreoathetosis: report of a case relieved by L-dopa. J Neurol Neurosurg Psychiatry, 1973, 36(6): 921-924.
    [96] Busard HL, Renier WO, Gabreels FJ, et al. Autosomal dominant paroxysmal kinesigenic choreoathetosis: An electroneurophysiological study. Clin Neurol Neurosurg, 1984, 86(4): 281-289.
    [97] Hamann M, Richter A. Striatal increase of extracellular dopamine levels during dystonic episodes in a genetic model of paroxysmal dyskinesia. Neurobiol Dis, 2004,16(l):78-84.
    [98] McGeer EG, Gibson S, McGeer PL. Some characteristics of brain tyrosine hydroxylase. Can J Biochem, 1967, 45(10): 1557-1563.
    [99] Rehders HJ , Loscher W , Richter A . Evidence for striatal dopaminergic overactivity in paroxysmal dystonia indicated by microinjections in a genetic rodent model. Neuroscience, 2000, 97(2): 267-277.
    [100] Nobrega JN, Gernert M, Loscher W, et al. Tyrosine hydroxylase immunoreactivity and [3H]WIN 35,428 binding to the dopamine transporter in a hamster model of idiopathic paroxysmal dystonia. Neuroscience, 1999, 92(1): 211-217.
    [101] Fredow G, Loscher W. Effects of pharmacological manipulation of GABAergic neurotransmission in a new mutant hamster model of paroxysmal dystonia. Eur J Pharmacol,1991, 192(2): 207-219.
    [102] Loscher W, Horstermann D. Abnormalities in amino acid neurotransmitters in discrete brain regions of genetically dystonic hamsters. J Neurochem, 1992, 59(2): 689-694
    [103] Burgunder JM, Richter A, Loscher W. Expression of cholecystokinin, somatostatin, thyrotropin-releasing hormone, glutamic acid decarboxylase and tyrosine hydroxylase genes in the central nervous motor systems of the genetically dystonic hamster. Exp Brain Res, 1999,129(1): 114-120.
    [104] Gernert M, Richter A, Loscher W. Alterations in spontaneous single unit activity of striatal subdivisions during ontogenesis in mutant dystonic hamsters. Brain Res, 1999, 821(2): 277-285.
    [105] Gernert M, Richter A, Loscher W. In vivo extracellular electrophysiology of pallidal neurons in dystonic and nondystonic hamsters. J Neurosci Res, 1999, 57(6): 894-905.
    [106] Hamann M, Richter A. Effects of striatal injections of GABA(A) receptor agonists and antagonists in a genetic animal model of paroxysmal dystonia.Eur J Pharmacol, 2002,443(1-3): 59-70.
    [107] Chun-hung K, Chi-keung K, Wai-tat N, et al. Ictal 99m Tc SPECT in paroxysmal kinesigenic choreoathetosis. Pediatr Neurol, 2001,24(3):225-7.
    [108] Sanger TD. Pathophysiology of pediatric movement disorder. J Child Neurol, 2003,18:S9-24.
    [109] Richter A, Loscher W. Pathophysiology of idiopathic distonia: finding from genetical animal models. Prog Neurobiol, 1997, 54:633-77.
    [110] Ptacek LJ, Tawil R, Griggs RC, et al. Sodium channel mutations in acetazolamide- responsive myotonia congenita, paramyotonia congenita, and hyperkalemic periodic paralysis. Neurology, 1994, 44(8): 1500-1503.
    [111] owne DL, Gancher ST, Nutt JG, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene,KCNA1. Nat Genet, 1994, 8(2): 136-140.
    [112] Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca ~(2+) channel gene CACNL1A4. Cell, 1996, 87(3): 543-552.
    [113] Singh NA, Westenskow P, Charlier C ,et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain, 2003, 126(12): 2726-2737.
    [114] Bulman DE, Scoggan KA, Oene V, et al. A novel sodium channel mutation in a family with hypokalemic periodic paralysis. Neurology, 1999,53:1932-1937.
    [115] Singh R, Macdonell RA, Scheffer IE, et al. Epilepsy and paroxysmal movement disorders in families: evidence for shared mechanisms. Epileptic Disord, 1999, 1:93-99.
    [116] Jaishri Bl, Joseph J. Secondary paroxysmal dyskinesias. Mov Disord, 2002, 17 (4):726-734.
    [117] Singh NA, Westenskow P, Charlier C. benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain, 2003, 126(12):2726 -2737
    [118] Du W, Bautista JF, Yang H,, et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder.Nat Genet,2005,37:733-738.
    [119]Suhara T,Fukuda H,Inoue O,et al.Age-related changes in human D1dopamine receptors measured by positron emission tomography.Psychopharmacology,1991,103:41-45.
    [120]Margari L,Perniola T,Illiceto G,et al.Familial paroxysmal exercise-induced dyskinesia and benign epilepsy:a clinical and neurophysiological study of an uncommon disorder.Neurol Sci,2000,21(3):165-172.
    [121]Sules A,Dedeken P,Goffin K,et al.Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1,encoding the glucose transporter GLUTI.Brain,2008,6:1-14.
    [122]Weber YG,Storch A,Wuttke TV,et al.GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak.J Clin Invest,2008,118:2157-68.
    [123]Auburger G;Ratzlaff T,Nelles HW,et al.A Gene for Autosomal Dominant Paroxysmal Choreoathetosis/Spasticity(CSE) Maps to the Vicinity of a Potassium Channel Gene Cluster on Chromosome 1p,Probably within 2 cM between D1S443 and D1S197.Genomics,1996,31(1):90-94.
    [124]Houser MK,Soland VL,Bhatia KP,et al.Paroxysmal kinesigenic choreoathetosis:a report of 26 patients.J Neurol,1999,246(2):1432-1459.
    [125]Jaishri B1,Joseph J.Secondary paroxysmal dyskinesias.Mov Disord,2002,17(4):726-734.
    [126]Masaya S.Development of the nigrostriatal dopamine neuron and the pathways in the basal ganglia.Brain Dev,2000,22:S1-S4.
    [127]Mattay VS,Fera F,Tessitore A,et al.Neurophysiological correlates of age-related changes in human motor function.Neurology,2002,58:630-635.
    [128]Suhara T,Fukuda H,Inoue O,et al.Age-related changes in human D1dopamine receptors measured by positron emission tomography.Psychopharmacology(Berl) 1991;103:41-45.
    [129]周瑾瑕,李国良,陈婵娟等.单纯型家族性发作性运动诱发性运动障碍二家系基因连锁分析.中华神经科杂志,2008,41(3):159-163.
    [130] Lance JW. Familial paroxysmal dystonic choreoathetosis and its differentiation from related syndromes. Ann Neurol, 1977,2:285-293.
    [131] Plant GT, Williams AC, Earl CJ, et al. Familial paroxysmal dystonia induced by exercise. J Neurol Neurosurg Psychiatry, 1984, 47:275-279.
    [132] Hwang WJ, Lu CS, Tsai JJ. Clinical manifestations of 20 Taiwanese patients with paroxysmal kinesigenic dyskinesia. Acta Neurol Scand, 1998, 98:340-345.
    [133] Bhatia KP, Soland VL, Bhatt MH, et al. Paroxysmal exerciseinduced dystonia: eight new sporadic cases and a review of theliterature. Mov Disord, 1997,12:1007-1012.
    [134] Jung S, Chen KM, Brody JA. Paroxysmal choreoathetosis. Neurology, 1973, 23: 749-755.
    [135] Jonathan MW. Paroxysmal dyskinesias. Curr Opin Pediatr,2007,19(6): 652-656.
    [136] Plant GT, Williams AC, Earl CJ, et al. Familial paroxysmal dystonia induced by exercise. J Neurol Neurosurg Psychiatry, 1984, 47:275-279.
    [137] Sadamatsu M, Masui A, Sakai T, et al. Familial paroxysmal kinesigenic choreoathetosis: an electrophysiologic and genotypic analysis. Epilepsia, 1999,40:942-949.
    [138] Koch C, Bednarek N, Motte J. Benign epileptic seizures in infancy followed by paroxysmal choreoathetosis during adolescence. Epileptic Disord, 1999,1:141-142.
    [139] Echenne B, Rivier F, Humbert CV, et al. Benign familial infantile convulsions. Arch Pediatr, 1999,6:54-58.
    [140] Singh R, Macdonnel RL, Sheffer IE, et al. Epilepsy and paroxysmal movement disorders in families: evidence for shared mechanisms. Epileptic Disord, 1999, 1:93-99.
    [141] Chillag KL, DeRoos ST. Oxcarbazepine Use in Paroxysmal Kinesigenic Dyskinesia: Report on Four Patients. Pediatr Neurol, 2009,40(4):295-297.
    [142] Gokcay A, Gakcay F. Oxcarbazepine therapy in paroxysmal kinesigenic choreoathetosis. Acta Neurol Scand, 2000,101:344-5.
    [143] Tsao CY. Effective treatment with oxcarbazepine in paroxysmal kinesigenic choreoathetosis. J Child Neurol, 2004,19:300-301.
    [144] Iglesias-GS, et al. Oxcarbazepine in the treatment of kinesigenic paroxysmal choreoathetosis. Rev Neurol, 2005,41: 314-316.
    [145] Huang YG, Chen YC, Du F, et al. Topiramate Therapy for Paroxysmal Kinesigenic Choreoathetosis. Mov Disord, 2005,20:75-77.
    [146] Pereira AC, Loo WJ, Bamford M, et al. Use of lamotrigine to treat paroxysmal kinesigenic choreoathetosis. J Neurol Neurosurg Psychiatry, 2000, 68:796-797.