中棉所12及其选系配制的杂交棉基因差异表达和胞嘧啶甲基化遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界上主要的经济作物,在80多个国家种植,不仅是世界上主要的天然纤维来源,也是仅次于大豆的重要油料和蛋白作物。棉花作为我国的一个重要经济作物,近十余年来,杂交棉,特别是抗虫杂交棉,在长江流域和黄河流域已大面积推广,杂交棉的推广及应用在提高棉花产量方面起着决定作用。
     中棉所12是我国首次攻克抗病、高产、优质三者不易结合而培育成的优质、抗病、高产品种,具有较强的遗传力、配合力和遗传稳定性。作为棉花育种的种质材料,显示出骨干亲本巨大的应用价值。目前关于中棉所12的大量研究主要集中在遗传育种学和生理生化方面,而从分子水平探讨骨干亲本的研究还没见报道。随着分子生物学研究手段的日益提高和完善,有必要对骨干品种(亲本)中棉所12从分子水平进行深入剖析,了解复杂性状的遗传基础,揭示优良基因型的遗传本质,为骨干亲本在杂种优势中所起重要作用提供理论依据,在理论和生产实践上都具有十分重大的意义。
     本研究以中棉所12及其2个选系为亲本组配的4个杂交棉中棉所28、中棉所29、湘杂棉2号、冀棉18不同生长部位(根和叶),不同生育期(苗期、蕾期、花期)为研究材料,采用cDNA-AFLP技术分析杂交棉与亲本基因差异表达,从分子水平探讨骨干亲本在杂种优势中所起重要作用;同时采用MSAP方法从基因表达调控角度探讨杂交棉与亲本的胞嘧啶甲基化水平和遗传传递模式。结果如下:
     1、杂种优势表现的时空性
     通过对中棉所12及其选系配制的四个杂交棉苗期不同组织部位营养生长杂种优势的表现特性分析发现地上部分叶和地下部分根存在不同的杂种优势,说明杂种优势表现存在组织差异性。
     通过对中棉所12及其选系配制的四个杂交棉的不同生育时期营养生长参数干物质重量的杂种优势分析发现,在苗期,冀棉18、湘杂棉2号、中棉所29三个杂交棉表现出正向超中亲优势,中棉所28杂交棉表现为超亲优势;在蕾期,杂交棉冀棉18和中棉所28表现出正向超中亲优势,中棉所29和湘杂棉2号表现为超亲优势;在花期,杂交棉湘杂棉2号表现出正向中亲优势,冀棉18、中棉所28、中棉所29三个杂交棉表现为超亲优势。表明杂交棉在不同生育时期存在营养生长杂种优势差异;
     在产量上,冀棉18、中棉所28和中棉所29三个杂交棉表现出超亲优势,杂交棉湘杂棉2号表现为中亲优势,说明中棉所12选系配制的四个杂交棉在产量上可以表现出不同的杂种优势;
     四个杂交棉在纤维品质性状上都存在一定的优势现象,但是优势率比较低,其中纤维品质的主要指标比强度只有长江流域棉区品种湘杂棉2号有超亲优势,其余三个组合均无。说明四个杂交棉在纤维品质上的优势表现不是太明显。
     总之,杂种优势可以表现在棉花生长和发育的不同阶段、不同部位和不同性状上,尤其主要表现在营养生长和产量性状上,且不同杂交组合因其选配亲本和环境的影响,杂种优势表现不尽相同。
     2、基因差异表达和杂种优势
     采用cDNA-AFLP技术研究中棉所12及其选系组配的4个杂交棉中棉所28、中棉所29、湘杂棉2号、冀棉18苗期基因差异表达基因差异表达分为4种类型:Ⅰ.杂交种上调表达型;Ⅱ.单亲显性表达型;Ⅲ.单亲下调表达型;Ⅳ.杂交种下调表达型。在根和叶的基因差异表达丰富程度上,叶部差异表达基因数目和比例(29.20%-46.09%)要比根部(15.65%-22.49%)高的多,说明根和叶的基因表达上存在相异性,叶中基因差异表达可能比根中基因差异表达对杂种优势形成作用更大。
     采用cDNA-AFLP技术研究中棉所12选系及其组配的4个杂交棉中棉所28、中棉所29、湘杂棉2号、冀棉18三个主要生育期—苗期、蕾期和花期的基因表达动态。从三个时期各差异表达类型的累计次数分布看,单亲显性表达型比例最高,约为37.26%(其中母本中棉所12显性表达型占19.37%,父本显性表达型占17.89%),其次为单亲下调表达型,约为34.18%(其中母本中棉所12下调表达型约占12.43%,父本下调表达型约占21.75%),杂交种F1上调表达型位居第三(15.03%),杂交种F1下调表达型比例最低(13.53%),后二者相差不大。在生长发育的不同时期,杂交种相对于亲本的各种基因差异类型所占比例有所不同,表明基因的差异表达具有时序表达的特征。
     分析基因表达差异与营养生长和产量性状优势之间的关系表明:在苗期杂交种上调表达有利于营养生长杂种优势的发挥;在蕾期杂交种上调表达和母本下调表达有助于营养生长杂种优势的发挥;在花期杂交种上调表达有利于产量杂种优势发挥,母本下调表达不利于杂交种高产。多种基因差异表达模式的并存说明杂种优势可能是多基因共同作用产生多种效应的结果,杂交种上调表达型与营养生长和产量杂种优势呈显著正相关,推测超显性效应在杂种优势产生中可能起主导作用;母本下调表达不利于产量杂种优势发挥和杂交种高产,暗示了亲本基因尤其是母本基因在杂交种中的抑制不利于杂交种表现杂种优势。
     只有有了好的亲本,才能育成好的杂交棉。中棉所12选系在苗期和蕾期都是冀棉18、中棉所29、中棉所28的高值亲本,干物质积累的营养生长优势,为杂交棉的高产奠定了物质基础。花期基因表达差异与产量性状优势之间的关系表明,母本中棉所12下调表达不利于杂交棉高产,从分子水平说明了中棉所12选系在杂交棉冀棉18、中棉所29和中棉所28的杂种优势产生中起重要作用。
     3、棉花DNA胞嘧啶甲基化水平和遗传模式研究
     采用MSAP技术研究了中棉所12配制的两个杂交棉(湘杂棉2号、中棉所28)苗期、蕾期、花铃期的基因组DNA 5'-CCGG位点胞嘧啶的甲基化水平和甲基化遗传传递模式。研究发现在苗期杂交棉湘杂棉2号组合和中棉所28号组合胞嘧啶甲基化水平为12.41%-18.34%;在蕾期,杂交棉湘杂棉2号组合和中棉所28号组合胞嘧啶甲基化水平为18.35%-20.05%;在花铃期,杂交棉湘杂棉2号组合和中棉所28号组合胞嘧啶甲基化水平为15.94%-17.07%。说明杂交棉不同发育时期的胞嘧啶甲基化水平不同,随着生育期的逐步推进,杂交棉与亲本甲基化水平出现两头低而中间高现象。DNA甲基化具有生育期特异性,这从一定程度可解释不同时期基因的差异表达。
     比较几种不同的甲基化水平可以发现,内侧胞嘧啶的全甲基化的水平(平均值为9.37%)高于外侧胞嘧啶的半甲基化水平(平均值为6.05%)和外侧或内外侧胞嘧啶全(双链)甲基化水平(平均值为1.85%),说明棉花基因组的DNA甲基化模式主要以内侧胞嘧啶的全甲基化为主。在各种胞嘧啶甲基化模式中,杂交棉湘杂棉2号组合和中棉所28组合花铃期的外侧或内外侧胞嘧啶全甲基化水平明显少于苗期和蕾期,说明在花铃期发生了显著的去甲基化,花铃期在DNA的总体甲基化水平比蕾期降低2.77%。
     棉花中绝大多数(96.61%-98.86%) CCGG胞嘧啶甲基化位点是由亲本稳定遗传给杂交种的,杂交棉只有1.14%-3.39%的位点显示了变异,其变异频率在不同亲本组合之间和不同发育时期都存在差异。
     通过对甲基化差异条带测序分析发现,其功能涉及到富含亮氨酸重复、类PDR的ABC转运蛋白、GTP结合蛋白、病程相关蛋白、磷酸激酶、功能未知的蛋白质和反转录酶等,部分差异序列没有产生有意义的匹配。
     比较杂交种与其亲本之间的胞嘧啶甲基化水平发现,三个亲本平均甲基化水平为17.29%,两个杂交棉平均甲基化水平为17.08%,即杂交棉平均甲基化水平略低于亲本平均甲基化水平。结合杂交棉在苗期、蕾期、花期营养生长优势和产量优势表现,发现杂交棉甲基化水平接近于中亲值(双亲平均值)有利于超亲优势发挥。总体上棉花甲基化程度与水稻一样与杂种优势相关性不高。
As a major source of fibers, important oil and albumen plants, cotton is considered to be a high value crop and plays an important role in the global economy. During the past decades, the hybrid cotton, especially pest-resistant hybrid cotton was greatly planted by the Yellow River Valley and the Yangtze River Valley, The extension and application of cotton hybrids have played a decisive role in cotton production
     CRI-12, a Chinese elite Upland cotton variety with high yield, elite fiber quality and disease resistance, is characterized by its high heritability, combining ability and genetic stability. As the germ plasm of cotton breeding, it displays enormous appliance values of Foundation parental. At present, the study of hybrid cotton and CRI-12 is mostly focus on breeding, physiology and biochemistry. It is urgent to go deeply into the genetic mechanism study of CRI-12 as Foundation parent from the molecule level, with molecular biological methods increasingly improvement, it will offer theoretical evidence to study the important role of CRI-12.
     In this research, CRI-12 and its pedigree-derived lines were used to develop high heterosis cotton hybrids such as CRI-28, CRI-29, XZM2 and Jimian18, Leaves and root at seedling stage, leaves at budding stages and flowering stages were picked from these hybrids and their corresponding parents sampled for cDNA-AFLP and MSAP analysis, the gene differential expression patterns and DNA methylation variation level and pattern between hybrids cotton and their parents. The results were listed as the following:
     1、Temporal Spatial expression of heterosis
     The roots and leaves at seedling stage of four hybrids and their corresponding parents were sampled for vegetative growth heterosis analysis. It was found various heterosis at roots and leaves, It suggested vegetative growth heterosis has tissue specification.
     Heterosis analysis was undergone through the dry weight measure of four hybrid and their corresponding parents at three-leaf stage, budding and flowering stages, It was found Jimian 18、CRI-29 and XZM 2 exhibited the positive over-mid-parent heterosis, and CRI-28 exhibited over-parent heterosis at three-leaf stage; CRI-29 and XZM 2 exhibited the positive over-mid-parent heterosis, Jimian 18 and CRI-28 exhibited over-parent heterosis at budding stage; XZM 2 exhibited the positive over-mid-parent heterosis, Jimian 18、CRI-28 and CRI-29 exhibited over-parent heterosis at flower stage. It suggested vegetative growth heterosis has timeliness.
     Yield of four hybrid and their corresponding parents were detected for yield heterosis analysis. It was found Jimian 18, CRI-28 and CRI-29 exhibited over-parent heterosis, XZM 2 exhibited the positive over-mid-parent heterosis. It suggested hybrid cotton by CRI-12 lines could exhibit various heterosis.
     Fiber quality traits have small heterosis of four hybrid cotton, but it is very lower relatively, only XZM 2 exhibited over-parent heterosis in fibre strength. It suggested hybrid cotton heterosis aren't distinctness in fiber quality traits.
     Integrated above results we presumed that heterosis had different temporal and spatial exhibition in various organ and various growth periods with various characterization, It mainly exhibited in vegetative growth and yield aspect.
     2、Gene differential expression and heterosis
     The roots and leaves at seedling stage of four hybrids and their corresponding parents were sampled for cDNA-AFLP analysis. The gene differential expression patterns were detected between the hybrid and its parents and were described as follows:I. Up expression in hybrid showed the strong bands expressed only in hybrid but not in both parents; II. Dominant expression in single parent showed the strong bands expressed in one of the parents and hybrid but not in another parent, including the expression pattern in female parent and hybrid without in male parent and the expression pattern in male parent and hybrid without in female parent; III. Down expression in single parent showed the strong bands in one of the parents, including the expression pattern in male parent without in hybrid and female parent and the expression pattern in female parent without in hybrid and male parent; IV. Down expression in hybrids showed the strong bands in both parents but not in F1. Differential expression bands in leaves and roots accounted for 29.20%-46.09% and 15.65%-22.49% in total numbers of detected bands, respectively. The differential expression bands in leaves were more than those in roots, that explained some useful genes associated with heterosis maybe begin to express in seedling leaves.
     The gene differential expression patterns were detected between four hybrid and their parents at three-leaf stage, budding and flowering stages, The result as follows:The percentages of domain expression in single-parent were highest than other patterns, down expression genes in single-parent were higher than up expression in hybrids, down expression in hybrids were lowest of four patterns from three growth stage accumulative total number. The gene differential expression ratio of hybrid and parents was various in three growing stage, It suggested gene differential expression had timeliness.
     Further analysis of the gene differential expression ratio and vegetative growth heterosis and yield correlation revealed that the type of bands expressed only in F1 contributed to heterosis of vegetative growth at seedling and budding stage and it played an important role in yield heterosis occurrence at flowering stage; the type of bands expressed only in Female parent contributed to heterosis of vegetative growth at budding stage, but it possible decreased hybrid yield at flowering stage.
     Differentially expressed genes patterns in the four hybrids were detected, It revealed that many possible modes of gene action were involved in hybrids, with additivity、dominance、over-dominance、under-dominance and low-parent dominance. All possible modes of gene action coexisted supported the hypothesis of multiple molecular mechanisms contributed to heterosis. The up-regulated expression genes in hybrid were showed positive correlation with heterosis of vegetative growth and yield heterosis, over-dominance may play a vital role. The down-regulated expression pattern in female parent was harmful for yield heterosis and high yield in hybrids. It suggested that the inhibition of parental genes, especially female parental genes, was not beneficial to the occurrence of heterosis and formation of hybrid yield.
     Good hybrid cotton was breeding from good parents. CRI-12 was the high value parent of Jimian 18, CRI-29 and CRI-28 at the seedling and budding stage, high-yield of hybrid cotton based on dry weight accumulated heterosis of vegetative growth. Correlation analysis of differentially expression gene and yield heterosis revealed the type of bands expressed only in Female parent possible decreased yield of hybrid at flowering stage, which also provided confident evidence for CIR-12 played a predominant role in the expression of genes responsible for heterosis in CRI-28、CRI-29 and Jimian18 at molecular level.
     3、Variation of DNA methylation level and pattern in Hybrid Cotton
     MS AP (methylation-sensitive Amplified fragment length polymorphism) was used in this study to detect the DNA methylation patterns in the 5'-CCGG sites of two cotton hybrid by CRI-12 and their parents.This study was used to understand the developmental stability and inheritance of cytosine methylation. It was found MSAP ratios in the two cotton hybrids were 12.41%-18.34% at seedling stage,18.35%-20.05% at budding, and 15.94%-17.07% at flowering stage, respectively. cytosine methylation profiles were variable during plant growth and development, DNA methylation experienced from increases to decrease progress throughout cotton development, which can partly explain differential gene expression in different growing stages.
     Compared the level of various DNA methylation,the Full methylation of internal cytosine (6.90%-11.47%) was highest than hemi-methylation of external cytosine and Full methylation of the internal Cs or external Cs. It suggested full methylation of internal cytosine was the dominant in two cotton hybrids. Full methylation of the internal Cs or external Cs at flowering stage distinct less than seedling stage and budding, that showed have demethylation occured at flowering stage, DNA methylation level of flowering stage decreased 2.77% than it at budding stage.
     Meanwhile, The MSAP profiles enable monitoring of inheritance or variation of parental methylation patterns in hybrid progenies. It was found that a great majority (from 96.61% to 98.86%, depending on crosses) of the methylation profiles in cotton inbred lines transmitted to the inter-strain hybrids; however, the otrer sites from 1.14% to 3.39% of the profiles in the hybrids exhibited variation from the expected parental additivity. Both inherited and altered methylation profiles can be divided into distinct groups, and their frequencies were variable among the cross-combinations, and during plant growth and development. In addition, sequencing of differentially methylated fragments and subsequent homology analysis of isolated bands that showed variation in hybrids indicated that diverse sequences were involved, including known-function cellular genes and mobile elements, Such as leucine-rich repeat family protein, PDR-like ABC-transporter, putative oligopeptide transporter, GTP-binding protein, Similar to pathogenesis-related protein, DOMON domain-containing protein, putative adenosine phosphosulfate kinase, putative protein, RNA-directe DNA polymerase et al. The remaining 14 bands showed no homology to the database sequences.
     Compared DNA methylation level of hybrid and parent, the methylation average level of hybrid (17.08%) was lower than methylation average level of parents (17.29%) Combined heterosis of vegetative growth and yield of hybrid at seedling stage, budding and flowering stage, methylation level near mid-parent value may be contributed to over-parent heterosis occurrence. In general, the correlation between methylation level and heterosis of cotton was lowness, like rice.
引文
1. 鲍文奎.机会与风险——40年育种研究的思考[J].植物杂志,1990,4:4-5
    2. 程宁辉,杨金水,高燕萍,等.玉米杂种一代与亲本基因差异的研究[J].科学通报,1996,41(5):451-454
    3. 崔瑞敏,付会期,张香云.杂交种冀棉18的选育[J].中国棉花,1994,21(8):24-25
    4. 方建平,赵左士.中棉所12高产优质的生理基础[J].中国棉花,1990,(3):19-20.
    5. 郭香墨,谭联望,刘正德.中棉所12的种质资源价值评估[J].中国棉花,2002,29(12):12-14
    6. 胡建广,杨金水,陈金婷.作物杂种优势的遗传学基础[J].遗传,1999,21(2):47-50
    7. 胡建广,袁自强,赵相山,等.一个编码玉米转译起始因子新基因的克隆[J].遗传,1998,20:118
    8. 黄滋康.中国棉花品种及其系谱[M].中国农业出版社.2007
    9. 蒋建雄,张天真.利用CTAB酸酚法提取棉花组织总RNA[J].棉花学报,2003,15(3):166-167
    10.金骏培,武耀廷,张天真.皖杂40杂交棉产量与品质性状的杂种优势表现及遗传分析[J].中国农业科学,2004,37(10):1428-1433
    11.靖深蓉,邢朝柱,袁有禄,等.中杂028的选育及应用[J].中国棉花,1995,22(12):22-23
    12.李雪林,杨书化,张泽民,等.植物杂种优势遗传机制的分子遗传学研究进展[J].河南科技大学学报(农学版),2003,23(3):62-65
    13.李育强,曾昭云,金林,等.湘杂棉2号的选育与应用[J].作物研究,1997,(04)27-29
    14.刘芦苇,祝水金.转基因抗虫棉产量性状的遗传效应及其杂种优势分析[J].棉花学报,2007,19(1):33-37
    15.潘家驹.棉花育种学[M].北京:中国农业出版社,1998
    16.潘玉欣,马骏,张桂寅,等.棉纤维次生壁加厚期cDNA-AFLP表达谱剖析和转录组图谱构建[J].科学通报,2007,52(12):1425-1429
    17.潘学标,蒋国柱,刘明孝.中棉12光合生理特性研究[J].棉花学报,1988,(2):88-108
    18.谭联望,刘正德.中棉所12的选育及种性研究[J].中国农业科学,1990,23(3):12-19
    19.谭远德.杂种优势的一种可能的分子机理-杂合酶系统效应[J].南京师大学报(自然科学版),1998,21(3):80-87
    20.田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势[J].科学通报,2002,47(18):1412-1416
    21.田曾元,戴景瑞.玉米杂种与亲本穗分化期功能叶基因差异表达与杂种优势[J].遗传学报,2003,30(2):154-162
    22.汪保华,武耀廷,黄乃泰,等.陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J].作物学报,2007,33(11):1755-1762
    23.汪炳良,李水凤,曾广文,等.5-azaC对萝卜茎尖DNA甲基化和开花的影响[J].核农学报,2005,19(4):265-268
    24.王娟,郭旺珍,张天真.渝棉1号优质纤维QTL的标记与定位[J].作物学报,2007,33(12):1915-1921
    25.王学德,潘家驹.棉花亲本遗传距离与杂种优势间的相关性研究[J].作物学报,1990,16(1):32-38
    26.王章奎,倪中福,孟凡荣,等.小麦杂交种与亲本拔节期根系基因差异表达与杂种优势关系的初步研究[J].中国农业科学,2003,36(5):473-479
    27.吴利民,倪中福,王章奎,等.小麦杂种及其亲本苗期叶片家族基因差异表达及其与杂种优势关系的初步研究[J].遗传学报,2001,28(3):256-266
    28.吴敏生,高志环,戴景瑞.利用cDNA-AFLP技术研究玉米基因的差异表达[J].作物学报,2001,27(3):339-342
    29.武耀廷,张天真,朱协飞,等.陆地棉遗传距离与杂种F1,F2产量及杂种优势的相关分析[J].中国农业科学,2002,35(1):22-28
    30.谢小东,倪中福,孟凡荣,等.小麦杂交种与亲本发育早期种子的基因表达差异及其与杂种优势关系的初步研究[J].遗传学报,2003,30(3):260-266
    31.邢朝柱,靖深蓉,邢以华.中国棉花杂种优势利用研究回顾和展望[J].棉花学报,2007a,19(5):337-345
    32.邢朝柱,靖深蓉,袁有禄,等.抗虫杂交棉-中棉所29[J].中国棉花,1998,25(7):23-26
    33.邢朝柱,喻树迅,郭立平,等.不同环境下抗虫陆地棉杂交种优势表现及经济性状分析[J].棉花学报,2007b,19(1):3-7
    34.邢朝柱,喻树迅,郭立平,等.不同生态环境下陆地棉转基因抗虫杂交棉遗传效应及杂种优势分析[J].中国农业科学,2007c,40(5):1056-1063
    35.邢朝柱,喻树迅,赵云雷,等.不同优势抗虫棉杂交组合不同生育期基因表达差异初探[J].作物学报,2007d,33(3):507-510
    36.杨金水.杂种优势机理探讨.作物雄性不育及杂种优势研究进展[I].北京:中国农业出版社,1996:1-12
    37.仪治本,孙毅,牛天堂,等.高粱基因组DNA胞嘧啶甲基化在杂交种和亲本间差异研究[J].作物学报,2005,31(9):1138-1143
    38.喻树迅,郭香墨,邢朝柱.我国棉花现代育种技术应用与育种展望[J].中国农业信息,2008,3:19-22
    39.袁有禄,张天真,郭旺珍,等.陆地棉优异纤维品系的铃重和衣分的遗传及杂种优势分析[J].作
    物学报,2002b,(2):196-202
    40.袁有禄,张天真,郭旺珍,等.棉花高品质纤维性状的主基因与多基因遗传分析[J].遗传学报,2002a,29(9):827-834
    41.张一,倪中福,孙其信,等.小麦杂交种与亲本之间穗下节间基因差异表达分析[J].作物学报,2008,34(5):770-776
    42.张军,武耀廷,郭旺珍,等.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12(5):267-269
    43.张培通,朱协飞,郭旺珍,等.陆地棉衣分及相关性状的遗传和QTL分子标记[J].江苏农业学报,2005,21(4):264-271
    44.张天真主编.作物育种学总论[M].北京:中国农业出版社,2003
    45.张正圣,李先碧,刘大军,等.陆地棉高强纤维品系和Bt基因抗虫棉的配合力与杂种优势研究[J].中国农业科学,2002,35(12):1450-1455
    46.朱军,季道藩,许馥华.作物品种间杂种优势遗传分析的新方法[J].遗传学报,1993,20(3):262-271
    47.朱军.作物杂种后代基因型值和杂种优势的预测方法[J].生物数学学报,1993,8(1):32-44
    48. Adams K L, Evolution of duplicate gene expression in polyploid and hybrid plants[J]. J. heredity, 2007,98(2):136-141
    49. Adams S, Vinkenoog R, Spielman M, et al. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation[J]. Development,2000,127(11):2493-2502
    50. Allard R W. Genetic basis of the evolution of adaptedness in plants[J]. Euphytica,1996,92:1-11
    51. Ashikawa I. Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars[J]. Plant Mol Biol.,2001,45:31-39
    52. Bachem C W, Brugmans B, Visser R G, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development. Plant J[J],1996,9(5):745-753
    53. Bachem C W, Oomen R J, Visser R G, et al. Transcript imaging with cDNA-AFLP:a step-by-step protocol. Plant Molecular Biology Reporter[J],1998,16:157-173
    54. Bao J Y, Lee S G, Chen C, et al. Serial Analysis of Gene Expression Study of a Hybrid Rice Strain(LYP9) and Its Parental Cultivars[J]. Plant Physiology,2005,138(7):1216-1231
    55. Bauer D, Muller H, Reich J, et al. Identification of differentially expressed mRNA species by an improved display technique(DDRT-PCR) [J]. Nucleic acids research,1993,21:4272-4280
    56. Birchler J A, Auger D L, Riddle N C. In search of the molecular basis of heterosis[J]. The Plant Cell,2003,15(10):2236-2239
    57. Birchler J A, Yao H, Chundalayandi S. Unraveling the genetic basis of hybrid vigor[J]. Proc Natl Acad Sci USA,2006,103(35):12957-12958
    58. Bird A P.CpG-rich island and the function of DNA methylation[J]. Nature,1986,321(2):209.
    59. Bowle L D. Representational difference analysis of cDNA [J]. Methods Mol Med,2004,9(4):49-66.
    60. Breyne P, Dreesen R, Cannoot B, et al. Quantitative cDNA-AFLP analysis for genome-wide expression studies[J]. Mol Genet Genomics,2003,269(2):173-179
    61. Bruce A B. The Mendelian theory of heredity and the augmentation of vigor[J]. Science,1910,32: 627-628
    62. Cervera M T, Ruiz-Garcia L, Martinez-Zapater J M. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers[J]. Mol Genet Genomics,2002,268: 543-552.
    63. Cheverud J M, Routman E J. Epistasis and its contribution to genetic variance components[J]. Genetics,1995,139:1455-1461
    64. Crow J F. Dominance and overdominance[M]. Heterosis, edited by JW Gowen. Iowa State College Press, Ames,1952:282-297
    65. Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry[J]. Nature,1999,401:157-161
    66. Curradi M, Izzo A, Badaracco G, et al. Molecular Mechanisms of Gene Silencing Mediated by DNA Methylation[J]. Mol Cell Biol,2002,22:3157-3173
    67. Daniel Zilberman.The evolving functions of DNA methylation[J]. Current Opinion in Plant Biology, 2008,11:1-6
    68. Diatchenko L, Chris Lau Y F, Campbell A P, et al. Suppression subtractive hybridization:A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci. USA,1996,93:6025-6030
    69. Dong Z Y, Wang Y M, Zhang Z J, et al. Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania Griseb[J]. Theor.Appl. Genet, 2006,113,196-205
    70. Ewing R M, Kahla A B, Poirot O, et al. Large-scale statistical analysis of rice ESTs reveal correlated patterns of gene expression[J]. Genome Res,1999,9:950-959
    71. Finnegan E J, Brettell R I, Dennis E S. The role of DNA methylation in the regulation of plant gene expression. In Jost J P, Saluz H P, eds, DNA Methylation:Molecular Biology and Biological Significance, Basel, Switzerland:Birkhauser Verlag.1993,64:218-61
    72. Finnegan E J, Genger R K, Kovac K, et al. DNA methylation and the promotion of flowering by vernalization[J], Proc Natl. Acad.Sci. USA,1998,95:5824-5829
    73. Finnegan E J, Peacock W J, Dennis E S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development[J]. Proc Natl. Acad. Sci.,1996,93:8449-8454
    74. Finnegan E J, Peacock W J, Dennis E. DNA methylation, a key regulation of plant development and other processes[J]. Curr. Opinion. Genet Dev,2000,10:217-223.
    75. Gardiner G M and Frommer M. CpG island in vertebrate genomes[J]. J Mol Biol.,1987,196:261-282
    76. Gitan R S, Shi H, Chen C, et al. Methylation specific oligonucleotide microarray:a new potential for high-throughput methylation analysis[J]. Genome Res,2002,12:158-164
    77. Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems[J]. Aust. J Biol. Sci.,1956,9:463-493
    78. Gruenbaum Y, Naveh-Many T, Cedar H, et al. Sequence specificity of methylation in higher plant DNA[J]. Nature,1981,292:860-862
    79. Guo M, Rupe M A, Yang X, et al. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis[J]. Theor. Appl. Genet.2006,113(5):831-845
    80. Guo W, Cai C, Zhang T, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium[J]. Genetics,2007,176:527-541
    81. Guo W, Ma G, Zhang T, et al. Molecular Tagging and Mapping of Quantitative Trait Loci for Lint Percentage and Morphological Marker Genes in Upland Cotton[J]. Journal of Integrative Plant Biology,2006,48:320-326
    82. Gutierrez A, Basu S, Saha S, et al. Genetic Distance among Selected Cotton Genotypes and Its Relationship with F2 Performance[J]. Crop Sci.,2002,42:1841-1847
    83. Hoecker N, Keller B, Muthreich N, et al. Comparison of maize(Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends[J]. Genetics,2008,179(3):1275-1283
    84. Hoecker N, Keller B, Piepho H P, et al. Manifestation of heterosis during early maize(Zea mays L.) root development[J]. Theor. Appl. Genet,2006,112(3):421-429
    85. Hollick J B, Chandler V L. Epigenetic allelic states of a maize transcriptional regulatory locus exhibit over-dominant gene action[J]. Genetics,1998,150:891-897
    86. Horvath E, Szalai G. Effect of vernalization and 5-azacytidine on the methylation level of DNA in wheat [J]. Plant Sci.,2003,165:689-692
    87. Hsieh C L. Evidence that protein binding specifies sites of DNA demethylation[J]. Mol Cell Biol., 1999,19(1):46
    88. Hua J, Xing Y, Wu W, et al. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid[J]. Proc Natl. Acad.Sci. USA,2003,100:2574-2579
    89. Hua J, Xing Y, Xu C, et al. Genetic Dissection of an Elite Rice Hybrid Revealed That Heterozygotes Are Not Always Advantageous for Performance[J]. Genetics,2004,162:1885-1895
    90. Hubank M, Bryntesson F, Schatz D G. Cloning of apoptosis-related genes by representational difference analysis of cDNA [J]. Methods Mol Biol.,2004,28(2):255-273
    91. Jeffrey C Z, Scheffler B E, Elizabeth D, et al. Toward Sequencing Cotton(Gossypium) Genomes[J]. Plant Physiology,2007,145:1303-1310
    92. Jiang C, Wright R, Woo S, et al. QTL analysis of leaf morphology in tetraploid Gossypium(Cotton) [J]. Theor. Appl. Genet,2000,100:409-418
    93. Johnston J W, Harding K, Bremner D H, et al. HPLC analysis of plant DNA methylation:a study of critical methodological factors[J]. Plant Physiol. Biochem.,2005,43:844-853
    94. Jones D F. Dominance of linked factors as a means of accounting for heterosis[J]. Genetics,1917,2: 223-238
    95. Joyce S M, Cassells A C. Variation in potato microplant morphology in vitro and DNA methylation[J]. Plant Cell Tiss.2002,70:125-137
    96. Kakutani T, Jeddeloh J A, Flowers S K, et al. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations[J]. Proc Natl. Acad. Sci. USA,1996,93: 12406-12411
    97. Keyte A L, Percifield R, Liu B, et al. Infraspecific DNA methylation polymorphism in cotton(Gossypium hirsutum L.) [J]. J Hered.,2006,97:444-450
    98. Kilby N J, Leyser H M, Furner I J. Promoter methylation and progressive transgene inactivation in Arabidopsis[J]. Plant Mol Biol.,1992,20(1):103-12
    99. Klose R J and Bird A P. Genomic DNA methylation:the mark and its mediators[J]. Trends Biochem. Sci.,2006,31(2):89-97
    100. Kojima T, Habu Y, Lida S, et al. Direct isolation of differentially expressed genes from a specific chromosome region of common wheat-Application the amplified fragment length polymotphism based messenger-RNA fingerprinting(Amf) method in combination with a deletion line of wheat[J]. Mol Gen Genet,2000,263(4):635-641
    101.Kovarik A, Matyasek R, Leitch A, et al. Variability in CpNpG methylation in higher plant genomes[J]. Gene,1997,204(1-2):25-33
    102. Kusterer B, Muminovic J, Utz H F, et al. Analysis of a Triple Testcross Design With Recombinant Inbred Lines Reveals a Significant Role of Epistasis in Heterosis for Biomass-Related Traits in Arabidopsis[J]. Genetics,2007,175:2009-2017
    103. Lacape J M, Nguyen T B, Courtois B, et al. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum×Gossypium barbadense backcross generations[J]. Crop Sci.,2005,45: 123-140
    104. Laurent V, Risterucci A M, Lanaud C. Variability of nuclear ribosomal genes within Theobroma cacao[J]. Heredity,1993,71(1):96-103
    105. Li G, Gao M, Yang B, et al. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping[J]. Theor. Appl. Genet,2003,107(1):168-180
    106. Li Z K, Luo L J, Mei H W, et al. Over-dominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Ⅰ.Biomass and grain yield[J]. Genetics,2001,158: 1737-1753
    107. Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J]. Science,1992,257:967-971
    108. Liang P, Zhu W M, Zhang X Y, et al. Differential display using one-base anchored oligo-dT primers[J]. Nucleic acid research.1994.22:5763-5764
    109. Liu B, Brubaker C L, Mergeai G, et al. Polyploid formation in cotton is not accompanied by rapid genomic changes[J]. Genome,2001,44:321-330
    110. Liu B and Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids[J]. Molecular Phylogenetics and Evolution.2003,29:365-379
    111. Liu Z L, Wang Y M, Shen Y, et al. Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia[J]. Plant Mol Biol.2004,54:571-582
    112. Livak K J and Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method. Methods(San Diego, Calif.) [J],2001,25(4):402-408
    113. Lizal P and Relichova J. The effect of day length, vernalization and DNA demethylation on the flowering time in Arabidopsis thaliana[J]. Plant Physiol.,2001,113:121-127
    114. Lukens L N, Pires J C, Leon E, et al. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassicanapus allopolyploids[J]. Plant Physiol.,2006,140: 336-348
    115. Madlung A, Masuelli R W, Watson B, et al. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids[J]. Plant Physiol.,2002,129: 733-746
    116. Marfil C F, Masuelli R W, Davison J, et al. Genomic instability in Solanum tuberosum×solanum kurtzianum interspecific hybrids[J]. Genome,2006,49:104-113
    117. Martienssen R A and Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi[J]. Science,2001,293:1070-1074
    118. Matthes M, Singh R, Cheah SC, et al. Variation in oil palm(Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes[J]. Theor. Appl. Genet.2001,102:971-979
    119. McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyl-transferases[J]. Nucleic Acids Res,1994,22: 3640-3659
    120. Meng F R, Ni Z F, Wu L M, et al. Differential gene expression between cross-fertilized and self-fertilized kernels during the early stages of seed development in maize[J]. Plant Sci.,2005,168: 23-28
    121. Meredith W R. Quantitative genetics in cotton. Edited by Kohel R J, Agron. Mongr,1984,24: 131-150
    122. Messeguer R, Ganal M W, Stevens J C, et al. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA[J]. Plant Mol Biol.,1991,16:753-70
    123. Meyer S, Pospisil H and Scholten S. Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern[J]. Plant Mol Biol,2007, 63(3):381-391
    124. Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton(Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis[J]. Plant Molecular Biology Report,1993,11(2): 122-127
    125. Peraza-Echeverria S, Herrera-Valencia VA, Kay A. Detection of DNA methylation changes in micropropagated banana plants using methylation sensitive amplification polymorphism(MSAP) [J]. Plant Sci.,2001,161:359-367
    126. Pestsova E, Roder M. Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal in heritance in pedigrees of breeding programmes[J]. Theor. Appl. Genet.2002,106: 84-91
    127. Portis E, Acquadro A, Comino C, et al. Analysis of DNA methylation during germination of pepper(Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP) [J]. Plant Sci.,2003,166:169-178
    128. Ragsdale P I and Wayne S C. Germplasm Potential for Trait Improvement in Upland Cotton: Diallel Analysis of Within-Boll Seed Yield Components[J]. Crop Sci.,2007,47:1013-1017
    129. Reinisch A J, Dong J M, Brubaker C L, et al. A detailed RFLP map of cotton, Cossypium hirsutum xGossypium barbadense :chromosome organization and evolution in a disomic polyploid[J]. genome,1994,138:829-847
    130. Richards E J. DNA methylation and plant development [J]. Trends Genet,1997,13(8):293-295
    131. Riddle N C and Richards E J Genetic variation in epigenetic inheritance of ribosomal RNA gene
    methylation in Arabidopsis[J]. Plant J,2005,41:524-532
    132. Rieseberg L H, Sinervo B, Linder C R, et al. Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids[J]. Science,1996,272:741-745
    133. Romagnoli S, Maddaloni M, Livini C, et al. Relationship between gene expression and hybrid vigor in primary root tips of young maize(Zea mays L.) plantlets[J]. Theor. Appl. Genet,1990,80: 767-775
    134. Rong J, Abbey C, Bowers J E, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton(Gossypium) [J]. Genetics,2004,166:389-417
    135. Rong J, Paterson Bowers J E, Schulze S R, et al. Comparative genomics of Gossypium and Arabidopsis:unraveling the consequences of both ancient and recent polyploidy[J]. Genome Res, 2005,15:1198-1210
    136. Ruiz-Garcia L, Cervera M T, Martinez-Zapater J M. DNA methylation increases throughout Arabidopsis development[J]. Planta,2005,222:301-306
    137. Salmon A, Ainouche M L, Wendel J F. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina(Poaceae) [J]. Mol Ecol.2005,14:1163-1175
    138. Sambrook J, Fritsh E F, Maniatis T. Molecular Clone Experimental Manual(Translated by Jin D Y, Li M F) [M]. Beijing:Science Press,1998.(in Chinese)
    139. Santi D V, Garrett C E, Barr P J. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs [J]. Cell,1983,33:9
    140. Shaked H, Kashkush K, Ozkan H, et al. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat[J]. Plant Cell,2001,13:1749-1759
    141. Shen X L, Guo W Z, Lu Q X, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton[J]. Euphytica,2007,155:371-380
    142. Shen X L, Guo W Z, Yu J, et al. Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR marker[J]. Mol Breed,2005,15(2):169-181
    143. Shen X L, Zhang T Z, Guo W Z, et al. Mapping fiber and yield QTLs with main, epistatic, and QTL X Environment interaction effects in recombinant inbred lines of Upland cotton[J]. Crop Sci.,2006, 46:61-66
    144. Sherman J D and Talbert L E. Vernalization-induced changes of the DNA methylation pattern in winter wheat[J]. Genome,2002,45(2):253-8
    145. Shiraishi M, Sekiguchi A, Oates A J, et al. Methyl-CpG binding domain column chromatography as a tool for the analysis of genomic DNA methylation [J]. Ana Biochem,2004,329(1):1-10
    146. Shirin M, Sushmita S, Vivek K. Suppression subtractive hybridization coupled with microarray analysis to examine differential expression of genes in virus infected cells Biol[J]. Proced On line, 2004,6(1):94-104
    147. Shull G H. The composition of a field of maize[J]. Ann. Breed. Assn.,1908,4:296-301
    148. Song R, Messing J.Gene expression of a gene family in maize based on noncollinear haplotypes[J]. Proc. Natl. Acad. Sci. USA,2003,22; 100(15):9055-60
    149. Sprague G F, Tatum L A. General versus specific combining ability in single crosses of corn[J]. Jour Amer. Soc Agron.,1942,34:923-932
    150. Springer N M, Stupar R M. Allelic variation and heterosis in maize:How do two halves make more than a whole? [J]. Genome Res,2007,17:264-275
    151. Srivastava H K. Heterosis and intergenomic complementation mitochondria, chloroplast and nucleus. In:Frankel, R.(ed), Heterosis-reappraisal of theory and practice[M]. New York:Springer Berlin Heidelberg,1983:260-286
    152. Srivastava H K. Intergenomic interaction, heterosis, and improvement of crop yield[J]. Adv. Agron., 1981,34:117-195
    153. Stuber C W, Lincoln S E, Wolff D W, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers[J]. Genetics,1992, 132:823-839
    154. Stuber C W. Mapping and manipulating quantitative trait in maize[J]. Trends in Genetics,1995,11: 477-481
    155. Stupar R M, and Springer N M, Cis-transcriptional variation in maize inbred lines B73 and Mo 17 leads to additive expression patterns in the F1-hybrid[J]. Genetics,2006,173(4):2199-2210
    156. Sun Q X, Ni Z F, Liu Z Y. Differential gene expression between wheat hybrids and their parental inbreds in seedling leaves[J]. Euphytica,1999,106:117-123
    157. Sun Q, Wu L, Ni Z, et al. Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross[J]. Plant Sci.,2004,166: 651-657
    158. Swanson-Wagner R A, Jia Y, DeCook R, et al., All possible modes of gene action are observed in a global comparison of gene expression in a maize F1-hybrid and its inbred parents[J]. Proc Natl. Acad. Sci. USA,2006,103(18):6805-6810
    159. Tate P H and Bird A P. Effects of DNA methylation on DNA-binding proteins and gene expression[J]. Cancer Opin. Genet. Dev,1993,3(2):226-231
    160. Tsaftaris A S and Kafka M. Mechanisms of heterosis in crop plants Journal of Crop Production[J], 1998,1:95-111
    161.Tsaftaris A S. Molecular aspects of heterosis in plants[J]. Physiology Plantarum,1995,94(2): 362-370
    162. Vanyushin B F. DNA methylation in plants[J]. Curr Top Microbiol. Immunol.,2006,301:67-122
    163. Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Res 1995,23:4407-4414
    164. Waghmare V N, Rong J K, Rogers C J, et al. Genetic mapping of a cross between Gossypium hirsutum(cotton)and the Hawaiian endemic, Cossypium tomentosum[J]. Theor. Appl. Genet,2005, 111:665-76
    165. Wang B, Wu Y, Guo W, et al. QTL Dissection of Fiber Qualities in an Elite Cotton Hybrid Grown Analysis and Epistasis Effects in Second Generation[J]. Crop Sci.2007,47:1384-1392
    166. Wang C L, Paterson A H. Assessment of DNA pooling strategies for mapping of QTLs[J]. Thero. Appl. Genet.,1994,88:355-361
    167. Wang Z K, Ni Z F, Wu H, et al. Heterosis in root development and differential gene expression between hybrids and their parental inbreds in wheat(Triticum aestivum L.) [J]. Thero. Appl. Genet., 2006,113(7):1283-1294
    168. Wu L M, Ni Z F, Meng F R, et al. Cloning and characterization of leaf cDNAs that are differentially expressed between wheat hybrids and their parents[J]. Mol Gen Genomics,2003,270: 281-286
    169. Xiao J H, Li J M, Yuan L P, et al. Dominance is the major genetic basis of heterosis in rice as released by QTL analysis using molecular markers[J]. Genetics,1995,140:745-754
    170. Xiao J, Li J, Yuan L, et al. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers[J]. Theor. Appl. Genet,1996,92:637-643
    171. Xing C Z, Zhao Y L, Yu S X, et al. Relationship between leaves gene differential expression in full opening flower stages of hybrids & their parents and heterosis in Pest-resistant cotton[J]. Acta Genetica Sinica,2006,33(10):948-956
    172. Xiong L Z, Xu C G, Saghai Maroof M A, et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines detected by a methylation sensitive amplification polymorphism technique[J]. Mol Gen Genet,1999,261:439-446
    173. Xiong L Z, Yang G P, Xu C G. Relationship of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross[J]. Mol Breed,1998,4:129-136
    174. Xiong Z, Laird P W. COBRA:a sensitive and quantitative DNA methylation assay[J]. Nucleic Acids Res.,1997,25:2532-2534
    175. Xu M L, Li X Q, Korban S S. AFLP-based detection of DNA methylation[J]. Plant Mol Biol. Rep, 2000,18:361-368
    176. Yang J S. Molecular basis of heterosis in hybrid rice and hybrid maize revealed by mRNA amplification[J]. IRRI,1996,21(1):12-13
    177. Yao Y, Ni Z, Zhang Y, et al. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction[J]. Plant Mol Biol.,2005,58:367-384
    178. Yegnasubramanian S, Lin X, Haffner M C, et al. Combination of methylated-DNA precipitation and methylation sensitive restriction enzymes(COMPARE-MS) for rapid, sensitive and quantitative detection of DNA methylation [J]. Nucleic Acids Res,2006,34(3):e19
    179. Yu J W, Yu S X, Lu C R, et al. A high-density linkage map of cultivated allotertrapoid cotton based on SSR, TRAP, SRAP and AFLP markers[J]. J Integrated Plant Biol.,2007,49:716-724
    180. Yu S, Li J X, Xu C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid[J]. Proc Natl. Acad.Sci. USA,1997,94:9226-9231
    181. Zhang M R, Yan H Y, Liu B, et al. Endosperm-specific hypomethylation, and meiotic inheritance and variation of DNA methylation level and pattern in sorghum(Sorghum bicolor L.) inter-strain hybrids[J]. Theor. Appl. Genet.2007,115:195-207
    182. Zhang T Z, Pan J J. Hybrid seed production in cotton. In Basra A S(ed.), Heterosis and Hybrid Seed Production in Agronomic Crops[M]. New York:Food Production Press,1999,149-184
    183. Zhang X Q, Wang X D, Jiang P D, et al. Relationship between molecular marker heterozygosity and hybrid performance in intra-and interspecific hybrids of cotton[J]. Plant Breeding,2007,126: 385-391
    184. Zhang X, Yazaki J., Sundaresan A., et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell,2006,126:1189-1201
    185. Zhao X X, Cai Y, Liu B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids[J]. Plant sci.2007,172:930-938
    186. Zhao Y, Yu S, Xing C, et al. Analysis of DNA Methylation in Cotton Hybrids and Their Parents[J]. Mol. Biol(MOSK), Russian.2008,42(2):195-205.