脑功能成像对早期帕金森病感觉功能损害和感觉—运动整合缺陷的神经机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:
     帕金森病(PD)患者存在着不同程度的感觉加工障碍以及感觉-运动整合的缺陷,这些缺陷体现在PD的早、中和晚期,有人认为其发生机制与认知和行为在较高层次上的连接不协调有关。大量的研究表明,运动的精确性依赖于本体感受器的有效传输与编码,而PD患者的运动障碍被归结为从基底节到运动皮层的功能不全、外周感受输入的异常或它们在中枢神经系统的异常处理干扰了运动程序的输出,其病理生理学基础则被认为是皮层-纹状体环路在某种程度上的中断或额叶多巴胺的缺乏。感觉-运动整合即正确地利用感觉信息来协调运动执行的过程。PD作为最常见的运动障碍疾病,一个重要症状即是在很大程度上依赖外部的感觉信息来辅助他们的运动启动和运动执行过程。例如,当PD运动迟缓者在执行一系列的运动任务时,需不断地依靠外部的视觉、听觉或其它线索,试图改善和提高其运动效率。因此,在PD患者的症状中,感觉-运动整合障碍可能扮演着重要角色。除此之外,一些研究者认为感觉.运动整合的发生是在皮层-皮层下-皮层环路中进行的,包括基底节、运动前区和辅助运动区。躯体感觉诱发电位(SEPs)试验显示出早期PD患者的额叶对感觉刺激的反应性显著降低。迄今为止,正电子发射断层扫描(PET)和功能磁共振成像(fMRI)已经广泛应用于PD的研究。上述研究通过完成相关的任务或观察静息状态下的大脑的激活状况,来探索PD的病理生理学和脑功能的变化。这些研究发现,在执行运动任务时,相对于正常人,PD患者的辅助运动区(SMA)通常激活减弱,而顶叶皮层存在着过度激活现象。此外,大量的证据也显示出PD患者的认知和行为能力的缺陷。据文献报道,他们的认知和行为受损可能与多个系统的功能降低有关。
     研究脑的运动功能的一个首要问题是人脑如何进行运动计划和感觉反馈。之前的研究已显示出不同的感觉体系处理运动计划是分开进行的,例如:触觉、视觉和听觉。为了恰当地准备和精确地完成一个动作,上述多个感觉体系必须在某种程度上进行信息整合,用以指导和完成运动。对于PD患者而言,在此感觉-运动整合过程中可能存在缺陷,解剖学定位也许在前额叶。感觉-运动整合究竟涉及那些脑区?在这些脑区中正常人和PD患者是否有不同的激活模式?目前国内外均无此相关研究。因此,我们采用了一个多任务设计的脑功能磁共振成像技术来探究以上问题。
     材料和方法:
     21名早期PD患者,右利手,其中女11名,男10名,年龄范围43~81岁(平均年龄60.43±9.65岁);实验前均停止服用治疗帕金森病相关药物15小时以上。实验前,进行统一帕金森病等级评定量表,Hoehn and Yahr残疾量表和简易精神量表测试。健康对照组为22名神经学检查正常的右利手者,其中女11名,男11名,年龄范围42~75岁(平均年龄59.23±11.12岁)。任务编码采用组块设计,包括被动触觉刺激、简单右手运动任务和感觉.运动整合任务。图像采集包括高分辨三维容积解剖T1加权像和血氧水平依赖(BOLD)平面回波T2加权像。fMRI数据分析采用SPM2软件,进行第一和第二水平的数据分析。在第一水平数据分析中,采用一般线性模型(general linear model,GLM)得到每个被试各条件下的平均参数激活图,然后将得到的对比数据用来进行第二水平的随机效应分析(random effects analyses)。在组内分析中,采用单样本t-检验来判定每个任务的激活脑区(P<0.001,非校正),每个簇聚块取≥20个体素。在组间分析中,采用两样本t-检验来判定两组被试在每个条件下的不同激活区(P<0.01,非校正)。不同条件下的脑激活区分别叠加在MNI(蒙特利尔神经病学研究所)模板上,并通过Talairach空间转换得到精确坐标定位。
     结果:
     执行单纯感觉任务时,正常对照组比早期PD组激活增强的脑区有:两侧初级躯体感觉区,两侧顶后区,左侧辅助运动区,左侧扣带回中部及右侧纹状体外视觉皮层(BA19)。而早期PD组比正常对照组激活增强的脑区有:两侧前额叶及右侧壳核。
     执行单纯运动任务时,正常对照组比早期PD组激活增强的脑区有:左侧扣带回前部,右侧尾状核及右侧纹状体外视觉皮层(BA18,20)。而早期PD组比正常对照组激活增强的脑区有:右侧前额叶及右侧丘脑。
     在正常对照组执行感觉-运动整合任务时,有一个广泛的皮层及皮层下神经网络参与,包括:躯体感觉皮层,顶下小叶,额中回,运动前区,纹状体外视觉皮层和两侧小脑半球。而PD患者相应的功能网络主要包括前额叶,运动前区和纹状体外视觉皮层。较之正常对照组,PD患者组在执行感觉到运动整合任务时,纹状体外视觉皮层有显著的激活降低,而两侧前额叶却显示出额外激活。
     结论:
     PD患者和正常人参与感觉、运动和感觉-运动整合的神经网络是不同的。纹状体外视觉皮层可能不仅仅处理视觉信息,还是一些多重感觉处理区域,并在感觉、运动和感觉-运动整合过程中担任重要角色。在早期PD患者,由于黑质纹状体和皮层下的多巴胺缺失,可能会导致纹状体外视觉皮层的激活减弱,为了完成感觉和运动的信息整合,需借助两侧前额叶的高级整合中枢来代偿其不足。迄今为止,纹状体外视觉皮层参与感觉-运动整合的现象及PD患者此区域的激活异常还未曾被报道过,我们的研究第一次揭示出以上发现。
Introduction:
     It is long known that sensory and sensory-motor integrations are deficient in patients with Parkinson's diseases(PD).These deficits are found in early,as well as in moderate and advanced patients,and appear to pertain to a high level linkage between perception and action.A body of studies have identified the accuracy of movements depends to a large extent on the availability of proprioceptive information.Current knowledge attributes movement disorders of Parkinson's disease to a dysfunction of the basal ganglia-motor cortex circuits,abnormalities in the peripheral afferent inputs or in their central processing may interfere with motor program execution,and its pathophysiological mechanisms have been proposed:disruptions in cortico-striatal circuits or a deficiency in frontal dopamine.Sensorimotor integration,that is,the processing to use sensory information properly for assisting motor program execution. Patients with the most common movement disorders --- Parkinson's disease --- rely strongly on external sensory information for their motor ability(movement initiation and execution).For example,motor execution of PD patients depends largely on a deficiency in the internal cueing mechanisms used to release successive stages of a movement sequence providing external,visual or auditory,cues,appreciably improves specific features of parkinsonian bradykinesia.Hence,defective sensorimotor integration may have an important role in PD patients' symptoms.Moreover,some researchers have mentioned a cortico-subcortico-cortical loop about sensorimotor integration that includes the basal ganglia as well as the premotor and supplementary motor areas,and it has been demonstrated that PD patients- especially in the early stages of the disease--- show a severely depressed frontal responsiveness to sensory stimuli as tested via SEPs(sensory evoked potential).By now,some positron emission tomography(PET) and functional magnetic resonance imaging(fMRI) has been extensively used on PD research.These investigations have focused on task-related or resting state brain activity,and found some pathophysilogical and functional changes in PD.For example,the supplementary motor area(SMA) is commonly found hypoactivated,and some other cortical motor regions,like the cerebellum,premotor area(PMA),and parietal cortex are hyperactivated in patients with PD compared to normal controls during performing motor tasks.Also,there is ample evidence that direct and indirect to explain the cognitive and behavioral deficits of PD.As is frequently reported in the literature,patients with PD cognitive and behavioral impairments may be attributed to dysfunction of multiple systems associated with the disease process in Parkinson's disease that are not necessarily related to motor symptoms.A fundamental question in motor research relates to how motor planning operations and sensory feed-back are implemented in the human brain.Prior studies have shown that there were several sensory systems separate processing of motor planning,for example:haptics, vision,and auditory.In order to prepare and accomplish an action punctually,the information from these systems must somehow be integrated.For PD patients,some deficiency could happen in the sensory-movement integrating process,and the anatomical foci maybe located in prefrontal lobe.
     Thus,to investigate which regions involved in integration of sensory and movement, whether activity model in these regions are difference between PD and normal controls, we employed a multitask functional magnetic resonance imaging(fMRI) to represent these.
     Methods and subjects:
     Twenty-one right-handed patients with at Hoehn and Yahr stage 1 and 2 of Parkinson's disease(11 female,10 male;age range,43-81 years,mean age 60.43±9.65). Patients were studied only after their medication had been withdrown for at least 15h. They were assessed with the UPDRS(Unified Parkinson's Disease Rating Scale),the Hoehn and Yahr disability scale and MMSE(Mini-Mental Stated Examination) while off their medications.
     Twenty-two neurologically normal subjects(11 female,11 male;age range,42-75 years,mean age 59.23±11.12) participated in this study as control,were right-handed and gender matched with patients.The experimental design was block design,which included passive tactile stimulations,right-hand motor tasks,and sensory-movement integrating tasks.Imaging collecting included a high-resolution T1-weighted three-dimensional volume acquisition for anatomical localization and an acquisitions of echoplanar T2*-weighted images with blood oxygenation level-dependent(BOLD) contrast.fMRI data analysis was performed with SPM2 software.Both first- and second-level analyses were performed.In the first-level,data were modelled using a general linear model design.These contrast data were used in the second level for random effects analysis.For the within group analysis,a one-sample t-test model was used to identify the brain activity for each tasks(P <0.001,without correction for multiple comparisons),and spatial extent threshold was cluster size greater than 20 voxels.For intergroup comparisions,a two-sample t-test model(P <0.01,uncorrected) was used to explore the difference between patients and normal controls under each tasks.Locations of activated areas for different conditions were displayed by superimposing them on the Montreal Neurological Institute(MM) template.All coordinates reported were in Talairach space converted from MNI space.
     Results:
     As predicted,the results revealed decreased activated in the PD group compared with age-matched controls in somatosensory cortical areas bilaterally,left premotor cortex,thalamus,and the right cerebellum when they performing above three tasks(P < 0.01).Surprisingly and interestingly,significant decreases in activation were observed in the extrastriate visual cortex in the PD group during performing these three tasks, especially during movement task(P < 0.01).In contrast,increasing activities were observed in bilateral frontal lobe in the PD group compared with the aged-matched control group(P < 0.01).
     Conclusions:
     There are different neural networks engaged in sensory,movement and sensory-movement integration between PD group and normal controls.The extrastriate visual cortex maybe are multisensory processing regions and play an important role in sensory,movement and sensorimotor integration,nevertheless,in early stage PD, nigrostriatal dopamine depletion and intracortical dopamine deficiency may leads to the decreased activation in extrastriate visual cortex,and to fulfill these integrate processing, the compensation in bilateral prefrontal lobe will be happen.By now,whether the activation in the extrastriate visual cortex in sensorimotor integration is changed in patients with PD has never been reported.Our study is the first time to demonstrate above findings.
引文
Abbruzzese G,Berardelli A.Sensorimotor integration in movement disorders.Mov Disord 2003;18:231-240
    A.Berardelli,J.C.Rothwell,P.D.Thompson,et al.Pathophysiology of bradykineasia in Parkinson's disease.Brain 2001;124:2131-2146
    Ahmed A.Moustafa,Scott J.Sherman,Michael J.Frank.A dopaminergic basis for working memory,learning and attentional shifting in Parkinsonism.Neuropsychologia.2008;46:3144-3156
    Amedi,A.,Malach,R.,Hendler,T.,Visuo-haptic object-related activation in the ventral visual pathway.Nature Neurosci.2001;4:324-330
    Amedi,A.,Jacobson,G,Hendler,T.,et al.Convergence of visual and tactile shape processing in the human lateral occipital complex.Cerebral Cortex 2002;12:1202-1212
    Atsushi Nambu.A new approach to understand the pathophysiology of Parkinson's disease.J Neurol 2005;252(4):1-4
    Baker CL Jr,Hess RF,Zihi J.J Neurosci.1991 Feb;11(2):454-461
    Barbosa ER,Limonqi JC,Cummings JL.Parkinson's disease.Psychiatr Clin North Am;1997:20(4):769-790
    Blake,R.,Sobel,K.V.,& James,T.W.Neural synergy between kinetic vision and touch.Psychological Science 2004;15:397-402
    Boecker H,Ceballos-Baumann A,Bartenstein P,et al.Sensory processing in Parkinson's and Huntington's disease investigations with 3D H_2~(15) O-PET.Brain 1999;122:1651-1665
    Bodegard,A.,Geyer,S.,Grefkes,C,et al.Hierarchical processing of tactile shape in the human brain.Neuron 2001;31:317-328
    Barker RA,Foltynie T.The future challenges in Parkinson's disease.J Neurol 2004;251:361-365
    Born R,Bradley D.Structure and function of visual area MT.Annu Rev Neurosci 2005;28:157-189
    Bruck A,Aalto S,Nurmi E,et al.Coritcal 6-[18F]fluoro-L-dopa uptake and frontal cognitive functions in early Parkinson's disease.Neurobilo Aging.2005;26(6):891-898
    Catalan MJ,Honda M,Weeks RA,et al.The function neuroanatomy of simple and complex sequential finger movements:a PET study.Brain 1998;121(Pt2):253-264
    Delwaide,P.J.& Gonce,M.Pathophysiology of Parkinson's signs.In Jankovic,J.& Tolosa,E.(Eds).Parkinson's disease and movement disorders.Williams & Williams,Baltimore 1993;pp.77-92
    Charles H.Adler.Nonmotor complications in Parkinson's disease.Movement Disorders Society 2005;20(11):23-29
    Cools R,Stefanova E,Barker RA,et al.Dopaminergic modulation of high-level cognition in Parkinson's disease:the role of the prefrontal cortex revealed by PET.Brain 2002;125:584-594
    Ceballos-Baumann A.Functional imaging in Parkinson's disease:activation studies with PET,fMRI and SPECT.J Neurol 2003;250(S1):15-23
    Deiber MP,Wise SP,Honda M,et al.Frontal and parietal networks for conditional motor learning:a positron emission tomography study.J Neurophysiol.1997;78(2):977-991
    Duffy CJ.The legacy of association cortex.Neurology 1984;34:192-197 Dubois B,Pillon B.Cognitive deficits in Parkinson's disease.J Neurol;1997:244(1):2-8
    Eckhorn R,Gail A,Bruns A,et al.Neural mechanisms of visual associative processing.Acta Neurobiol Exp(Wars);2004:64(2):239-252
    Elsinger,C.L.,Harrington,D.L.,Rao,S.M.,From preparation to online control:reappraisal of neural circuitry mediating internally generated and externally guided actions.NeuroImage 2006;31:1177-1187
    Feigin A,Mentis MJ,Dhawan V,et al.Levodopa infusing reduses the expression of a Parkinson's disease metabolic brain network.FDG PET study.Neurology,2000,54 Supp13:A113-A114.
    Fellows SJ,Noth J,Schwarz M.Precision grip and Parkinson's disease.Brain 1998;121:1771-1784
    Grafton ST,Waters C,Sutton J,Lew MF,et al.Pallidotomy increases activity of motor association cortex in Parkinson's dieasea:a positron emission tomographic study.Ann Neurol.,1995;37(6):776-783
    Georg Dimberger,Chris D.Frith,and Marjan Jahanshahi.Executive dysfunction in Parkinson's disease is associated with altered pallidal-frontal processing.Neurolmage 2005;25:588-599
    Hegen,M.C,Franzen,O.,McGlone,F.,et al.Tactile motion activates the human middle temporal/V5(MT/V5) complex.European Journal of Neuroscience 2002;16:957-964
    H.Boecker,J.Jankowski,P.Ditter,et al.A role of the basal ganglia and midbrain unclei for initiation of motor sequences.Neurolmage 2008;39:1356-1369
    Hess RF,Baker CL Jr,Zihl J.J Neurosci.1989;9(5):1628-1640
    Hemond CC,Kanwisher N G,Op de Beeck HP.A preference for contralateral stimuli in human object-and face-selective cortex.Plos One;2007:2(6):e574
    Inzelberg R,Schechtman E,Hocherman S.Visuo-Motor coordination deficits and motor impairments in Parkinson's disease.PLoSONE,2008;3(11):e3663.doi:10.1371/journal.pone.0003663
    Johansson RS.Sensory and memory information in the control of dexterous manipulation.In:Lacquaniti F,Vivinai P.Neural bases of motor behaviour.Dordrecht:Kluwer Academic Publishers:1996.p.205-260
    Jon H.kaas.The evolution of the complex sensory and motor systems of the human brain.Brain Research Bulletin 2008;75:384-390
    Klockgether T,Dichgans J.Visual control of arm movement in Parkinson's disease.Mov Disord 1994;9:48-56
    Klockgether T,Borutta M,Rapp H,et al.A defect of kinesthesia in Parkinson's disease.Mov Disord 1995;10:460-465
    Kunig G,Leenders KL,Martin-Solch C,et al.Reduced reward processing in the brains of Parkinsonian patients.Neuroreport.2000;11(17):3681-3687
    Kaji R and Murase N.Sensory function of basal ganglia.Mov Disord 2001;16:593-594
    Levin BE,Tomer R,Rey GJ.Cognitive impairments in Parkinson's disease.Neurol Clin;1992:10(2):471-485
    Lacquaniti F,Guigon E,Bianchi L,et al.Representing spatial information for limb movement:role of area 5 in the monkey.Cereb Cortex 1995;5(5):391-409
    Leiguarda RC;Marsden CD.Limb apraxias:higher-order disorders of sensorimotor integration.Brain 2000;V123:860-879
    Low KA,Miller J,Vierck E.Response slowing in Parkinson's disease.A psychophysiological analysis of premotor and motor processes.Brain 2002;125:1980-1994
    Mark R.Stoesz,Minming Zhang,Valerie D.Weisser,et al.Neural networks active during tactile form perception:common and differential activity during macrospatial and microspatial tasks.International Joural of Psychophysiology 2003;(50):41-49
    Martijn Keitz,Janneke Koerts,Rudie Kortekaas et al.Prefrontal cortex and striatal activation by feedback in Parkinson's disease.Brain Research 2008;doi:10.1016/j.brainres.2008.07.110
    Mesulam MM.Large-scale neurocognitive networks and distributed processing for attention,language,and memory.Ann Neurol.1990;28(5):597-613
    Mattay VS,Tessitore A,Callicott JH,et al.Dopaminergic modulation of cortical function in patients with Parkinson's disease.Ann Neurol 2002;51:156-164
    Michael S Beauchamp.See me,hear me,touch me:multisensory integration in lateral occipital-temporal cortex.Current Opinion in Neurobiology 2005;15:145-153
    Michael GA,Garcia S,Fernandez D,et al.The ventral premotor cortex(vPM) and resistance to interference.Behav Neurosci.2006;120(2):447-462
    Monchi O,Petrides M,Mejia-Constain B,et al.Cortical activity in Parkinson's disease during executive processing depends on striatal involvement.Brain.2007;130(Pt 1):233-244
    Moutoussis K,Zeki S.Motion processing,directional selectivity,and conscious visual perception in the human brain.Proc Natl Acad Sci U.S.A.2008;105(42):16362-16367
    Maschke,M.,Gomez,C.M.,Tuite,P.J.& Konczak.J.Dysfunction of the basal ganglia, but not the cerebellum,impairs kinaesthesia.Brain 2003;126:2312-2322
    Mushiake H,Inase M,Tanji J.Neuronal activity in the primate premotor,supplementary,and precentral motor cortex during visually guided and internally determined sequential movements.J Neurophysiol.1991;66(3):705-718
    Murata,A.,Fadiga,L.,Fogassi,L.,et al.Objects representation in the ventral premotor corex(area F5) of the monkey.J.Neurophysiol 1997;78:2226-2230
    N.L.W.Keijsers,M.A.Admiraal,A.R.Cools,et al.Differential progression of proprioceptive and visual information processing deficits in Parkinson's disease.European Journal of Neuroscience 2005;(21):239-248
    Oliveira RM,Gurd JM,Nixon P,et al.Micrographia in Parkinson's disease:the effect of providing the external cue.J Neuro Neurosurg Psychiatry 1997;62:22-26
    Owen AM,Doyon J,Dagher A,et al.Abnormal basal ganglia outflow in Parkinson's disease indentified with PET.Brain 1998;121:949-965
    Parker AJ.From binocular disparity to the perception of stereoscopic depth.In:The visual neurosciences,edited by Chalupa LM and Werner JS.Cambridge,MA:MIT Press,2004,p.779-792
    Peter Neri.A stereoscopic look at visual cortex.J Neurophysiol 2005;93:1823-1826
    Prather,S.C,Votaw,J.R.& Sathian,K.Task-specific recruitment of dorsal and ventral areas during tactile perception.Neuropsychologia 2004;42:1079-1087
    Raczkowski D,Kalat JW,Nebes R.Reliability and validity of some handedness questionnaire items.Neuropsychologia.1974;12(1):43-47
    Rao SC,Rainer G,Miller EK.Integration of what and where in the primate prefrontal cortex.Science.1997;276(5313):821-824
    Rodman HR,Gross CG,Albright TD.Afferent basis of visual response properties in area MT of the macaque.I.Effects of striate cortex removal.J Neurosci.1989;9(6):2033-2050
    Rossini PM,Filippi MM,Vernieri F.Neurophysiology of sensorimotor integration in Parkinson's disease.Clin Neurosci 1998;5:121-130
    Roland,RE.,O'SuUivan,B.,Kawashima,R.Shape and roughness activate different somatosensory areas in the human brain.Proc.Natl.Acad.Sci.USA 1998;95:3295-3300
    Romo,R.,Salinas,E.Touch and go:decision-making mechanisms in somatosensation.Annu.Rev.Neurosci 2001;24:107-137
    Sadato N,Campball G,Ibanez V,et al.Complexity affects regional cerebral blood flow change during sequential finger movements.J Neurosic.1996;16(8):2691-2700
    Sadato,N.,Ibanez,V.,Deiber,M.-P,Hallett,M.,Gender difference in premotor activity during active tactile discrimination..Neurolmage 2000;11:532-540
    Snyder LH,Batista AP,Andersen RA.Nature.1997;386(6621):167-170
    Sathian,k.,Zangladze,A.,Hoffman,J.M.,&Grafton,S.T.Feeling with the mind's eye.Neuroreport 1997;8:3877-3881
    Sathian K,Zangaladze A.Feeling with the mind's eye:the role of visual imagery in tactile perception.Optom Vis Sci.2001;78(5):276-281
    Sathian,K.,Prather,S.C,& Zhang,M.Visual cortical involvement in normal tactile perception.In G.Calvert,C.Spence,& B.Stein(Eds.),The handbook of multisensory processes.Cambridge,MA:MIT Press 2004;pp.703-709
    Samii A,Nutt JG,Ransom BR.Parkinson's disease.Lancet 2004;363:1783-1793
    Schneider,J.S.,Diamond,S.G.& Markham,C.H.Parkinson's disease:sensory and motor problems in arms and hands.Neurology 1987;37:951-956
    Tao Wu and Mark Hallett.A functional MRI study of automatic movements in patients with Parkinson's disease.Brain 2005;128:2250-2259
    Tao Wu,Xinagyu Long,Yufeng Zang,et al.Regional homogeneity changes in patients with Parkinson's disease.Human Brain Mapping 2008;doi.10.1002/hbm.20622
    Tamburin S,Fiaschi A,Idone D,et al.Abormal sensorimotor integration is related to disease severity in Parkinson's disease:a TMS study.Mov Disord 2003;18:1316-1324
    Van der Koojj H,Van Asseldonk EH,Geelen J,Van Vugt JP,et al.Detecting asymmetries in balance control with system identification:first experimental results from Parkinson's patients.J Neural Transm.2007;114:1333-1337
    Weder BJ,Leenders KL,and Vontobel P.Impaired somatosensory discrimination of shape in Parkinson's disease:association with caudate nucleus dopaminergic function.Human Brain Mapping 1999;8:1-12
    Weder BJ,Azari NP,Knorr U,et al.Disturbed functional brain interaction underlying deficient tactile object discrimination in Parkinson's disease.Human Brain Mapping 2000;11:131-145
    Yelnik J.Functional anatomy of the basal ganglia.Mov disord 2002;17(S3):S15-S21
    Zangaladze A,Epstein CM,Grafton ST,et al.Involvement of visual cortex in tactile discrimination of orientation.Nature.1999;401(6753):587-90
    Zhang Minming,Randall Stilla,Carissa Cascio,et al.Widespread decrease of perception activation during tactile in Parkinson's disease.Neurolmage 2003;19(2):1577
    Zhang M,R.Stilla,V.Weisser et al.Preferential of multisensory and visual cortical activity during macrospatial compared to micropatial tactile form perception. Proceedings of Society for Neuroscience 33~(rd) Annual Meeting,2003 Nov.8-12.New Orleans,U.S.A.
    Zhang Minming,Weisser V.D.,Stilla R.,et al.Multisensory cortical processing of object shape and its relation to mental imagery.Cognitive,Affective & Behavioral Neuroscience 2004;4(2):251-259
    Zhang Minming,Erica Mariola,Randall Stilla,et al.Tactile discrimination of grating orientation:fMRI activation patterns.Human Brain Mapping 2005;25:370-377
    Zia,S.,Cody,F.& O' Boyle,D.(2000) Joint position sense is impaired by Parkinson's disease.Ann.Neurol.,47,218-228
    Allison J.D.,Meador K.J.,Loring D.W.,et al,Functional MRI cerebral activation and deactivation during finger movement.Neurology 2000;54(1):135-142
    Abbruzzese G,Dall'Agata D,Morena M,et al.Abnormalities of parietal and prerolandic somatosensory evoked potentials in Huntington's disease.Electroencephalogr Clin Neurophysiol 1990;77:340-346
    Abbruzzese G,Berardelli A.Sensorimotor integration in movement disorders.Mov Disord 2003;18:231-240
    A.Berardelli,J.C.Rothwell,P.D.Thompson,et al.Pathophysiology of bradykineasia in Parkinson's disease.Brain 2001;124:2131-2146
    Atsushi Nambu.A new approach to understand the pathophysiology of Parkinson's disease.J Neurol 2005;252(4):1-4
    Braun AR,Stoetter B,Randolph C,et al.The functional neuroanatomy of Tourette's syndrome:an FDG-PET study.I.Regional changes in cerebral glucose metabolism differentiating patients and controls.Neuropsychopharmacology 1993;9:277-291
    Burton H,MacLeod AM,Videen T,et al.Multiple foci in parietal and frontal cortex activated by rubbing embossed grating patterns across fingerpads:a positron emission tomography study in humans.Cereb Cortex 1997;7:3-17
    Bremmer F,Schlack A,Shah NJ,et al.Polymodal motion processing in posterior parietal and premotor cortex:a human fmri study strongly implies equivalencies between humans and monkeys.Neuron 2001;29:287-296
    Blake DT,Byl NN,Merzenich MM.Representation of t he hand in t he cerebral cortex[J].Behe Brain Res,2002,135(2):179-184
    C.F.Ross,R.D.Martin,The role of vision in the origin and evolution of primates,in:J.H.Kaas(Ed.),Evolution of Nervous Systems,vol.4,Elsevier,London,2007,pp.59-78
    Disbrow E,Roberts T,Poeppel D,et al.Evidence for interhemispheric processing of inputs from the hands in human S2 and PV.J Neurophysiol 2001;85:2236-2244
    D.J.Felleman,D.C.Van Essen,Distributed hierarchical processing in the primate cerebral cortex,Cereb.1991;Cortex 1:1-47
    Feinberg TE,Gonzalez R.L.J.,Heilman,K.M.,et al.Multimodal agnosia after unilateral left hemisphere lesion.Neurology 1986;36:864-867
    Georgiou N,Bradshaw JL,Phillips JG,et al.Advance information and movement sequencing in Gilles de la Tourette's syndrome.J Neurol Neurosurg Psychiatry 1995;58:184-191
    G.Luppino,G.Rizzolatti,The organization of the frontal motor cortex,News Physiol.Sci.2000;15:19-24
    Giovanni Abbruzzese & Alfredo Berardelli.Sensorimotor integration in movement disorders.Movement Disordere Society 2003;18(3):231-240
    Grefkes,Geyer S,Schormann T,et al.Human somatosensory area 2:observer-independent cytoarchitectonic mapping,interindividual variability,and population map.Neuroimage 2001;14:617-630
    Indovina I,Sanes J.N.,On somatotopic representation centers for finger movement s in human primary motor cortex and supplementary motor area.Neuroimage 2001;13(6):1027-1034
    Iwamura Y,Iriki A,Tanaka M,et al.Bilateral hand representation in the postcentral somatosensory cortex.Nature 1994;369:554-556
    Inzelberg R,Schechtman E,Hocherman S.Visuo-Motor coordination deficits and motor impairments in Parkinson's disease.PLoSONE,2008;3(11):e3663.doi:10.1371/journal.pone.0003663
    I.Stepniewska,P.C.Fang,J.H.Kaas,Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos,Proc.Natl.Acad.Sci.U.S.A.2005;102:4878-4883
    J.H.Kaas,Why is brain size so important:design problems and solutions as neocortex gets bigger or smaller Brain Mind 2000;1:7-23
    J.H.Kaas,T.M.Preuss,Human brain evolution,in:L.R.Squire(Ed.),Fundamental Neuroscience,second ed.,Academic Press,San Diego,2003,pp.1147-1166
    J.H.Kaas,Reconstructing the organization of the forebrain of the first mammals,in:J.H.Kaas(Ed.),Evolution of Nervous Systems,vol.3,Elsevier,London,2007,pp.27-48
    Jon H.kaas.The evolution of the complex sensory and motor systems of the human brain.Brain Research Bulletin 2008;75:384-390
    J.I.Block,D.M.Boyer,Grasping primate origins,Science 2002;298:1606-1610
    Kuwert T,Norh J,Scholz D,et al.Comparison of somatosensory evoked potentials with striatal glucose consumption measured by positron emission tomography in the early diagnosis of Huntington's disease.Mov Disord 1993;8:98-106
    Kaji R and Murase N.Sensory function of basal ganglia.Mov Disord 2001;16:593-594
    Killacker HP,Gould HJ,Cusick CG,et al.The relation of corpus callosum connections to architectionic fields and body surface maps in sensorimotor cortex of New and Old World monkeys.J Comp Neurol 1983;219:384-419
    Kurlan R,Lichter D,Hewitt D.Sensory tics in Tourette's syndrome.Neurology 1989; 39:731-734
    Klockgether T,Dichgans J.Visual control of arm movement in Parkinson's disease.Mov Disord 1994;9:48-56
    Klockgether T,Borutta M,Rapp H,et al.A defect of kinesthesia in Parkinson's disease.Mov Disord 1995;10:460-465
    K.L.Hoffman,I.Gauthier,Evolutionary specializations for processing faces and objects,in:J.H.Kaas(Ed.),Evolution of Nervous Systems,vol.4,Elsevier,London,2007,pp.437-445
    Leckman JF,Walker DE,Cohen DJ,et al.Premonitory urges in Tourette's syndrome.Am J Psychiatry 1993;150:98-102
    L.G.Ungerleider,J.V.Haxby,What and where in the human brain,Curr.Opin.Neurobiol.1994;4:157-165
    M.G.Rosa,L.A.Krubitzer,The evolution of visual cortex:where is V2?1999;22:242-248
    M.C.Corballis,Evolution of hemispheric specialization of the human brain,in:J.H.Kaas(Ed.),Evolution of Nervous Systems,vol.4,Elsevier,London,2007,pp.379-393
    M.S.Remple,J.L.Reed,I.Stepniewska,D.C.Lyon,J.H.Kaas,The organization of frontoparietal cortex in the tree shrew(Tupaia belangeri).Ⅱ.Connectional evidence for a frontal-posterior parietal network,J.Comp.Neurol.2007;501:121-149
    Noth J,Engel L,Friedmann HH,et al.Evoked potentials in patients with Huntington's disease and their offspring.I.Somatosensory evoked potentials.Electroencephalogr Clin Neurophysiol 1984;32:134-141
    N.Picard,P.O.Strick,Motor areas of the medial wall:a review of their location and functional activation,Cereb.1996;Cortex 6:342-353
    Oliveira RM,Gurd JM,Nixon P,et al.Micrographia in Parkinson's disease:the effect of providing the external cue.J Neuro Neurosurg Psychiatry 1997;62:22-26
    Snider SR,Fahn S,Isgreen WP,et al.Primary sensory symptoms in parkinsonism.Neurology 1976;34:957-959
    Syrigou-Papavisiliou A,Verma NP,LeWitt PA.Sensory evoked responses in Tourette's syndrome.Clin Electroencephalogr 1988;19:108-110
    Singer HS,Reiss AL,Brown JE,et al.Volumetric MRJ changes in basal ganglia of children with Tourette's syndrome.Neurology 1993;43:950-956
    Samii A,Nutt JG,Ransom BR.Parkinson's disease.Lancet 2004;363:1783-1793
    S.Herculano-Houzel,C.E.Collins,P.Wong,J.H.Kaas,Cellular scaling rules for primate brains,Proc.Natl.Acad.Sci.U.S.A.2007;104:3562-3567
    Stoeckel MC,Weder B,Binkofski F,et al.A fronto-parietal circuit for tactile object discrimination:an event-related fMRJ study.Neuroimage 2003;19:1103-1114
    Topper R,Schwarz M,Podull K,et al.Absence of frontal somatosensory evoked potentials in Huntington's disease.Brain 1993;116:87-101
    T.W.Deacon,The evolution of language systems in the human brain,in:J.H.Kaas(Ed.).Evolution of Nervous Systems,vol.4,Elsevier,London,2007,pp.529-548
    Van der Koojj H,Van Asseldonk EH,Geelen J,Van Vugt JP,et al.Detecting asymmetries in balance control with system identification:first experimental results from Parkinson's patients.J Neural Transm.2007;114:1333-1337
    Yelnik J.Functional anatomy of the basal ganglia.Mov disord 2002;17(S3):S15-S21
    Zhang M,Weisser VD,Stilla R,et al.Multisensory cortical processing of object shape and its relation to mental imagery.Cogn Affect Behav Neurosci 2004;4:251-259
    Ziemann U,Paulus W,Rothenberger A.Decreased motor inhibition in Tourette's disorder:evidence from transcranial magnetic stimulation.Am J Psychiatry 1997;154:1277-1284