村镇建筑简易消能减震技术抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砌体结构在我国使用已久,也是当前村镇建筑工程中使用最广泛的一种结构。汶川地震中,村镇建筑震害严重,主要原因是砌体结构整体性差、抗震性能弱,导致大量建筑物破坏和倒塌。受村镇经济、施工条件、技术水平的影响,施工工艺复杂的抗震措施难以落实,严重影响施工质量。为了提高砌体结构的抗震能力,简便易行、经济有效的抗震技术是主要抗震途径之一。论文围绕简易消能减震技术展开的研究工作及取得的主要结论有:
     ①简易消能减震技术开发
     基于村镇建筑的投入、施工水平、管理现状等实际,研究提出了两种简易消能减震技术,分别为沥青-砂垫层消能减震技术和捆绑橡胶束消能减震技术。
     ②沥青-砂和捆绑橡胶束材性试验研究
     对细砂、标准砂、粉煤灰、石粉、滑石粉、不同配合比的沥青-砂、不同配合比的沥青-滑石粉等材料的摩擦性能进行了研究,并测试了沥青的相关指标(针入度、延度、粘度)和捆绑橡胶束的力学性能。研究表明,沥青-砂试件中沥青含量为75%时,摩擦系数小,竖向承载力高。
     ③不同类型墙体抗震性能试验研究
     完成了无减震措施墙体、不同配合比沥青-砂滑移层墙体、上下圈梁固结墙体、捆绑橡胶束(轮胎)墙体四类共8片墙体的低周反复加载试验,对比分析了各墙体的破坏形态、刚度退化、耗能能力以及墙体的剪切变形和弯曲变形。分析结果表明设置减震措施的墙体明显提高了墙体的变形能力和塑性耗能能力;配合比为75%的沥青-砂技术随着竖向压应力的变化其性能稳定,能很好的耗散传往上部结构的能量,上部结构受力小;设置捆绑橡胶束(轮胎)的墙体能很好地耗散能量,能为墙体提供很大的第二刚度。
     ④沥青-砂滑移墙体和捆绑橡胶束砌体结构模型的振动台试验
     完成了沥青-砂滑移减震墙体、底部固结墙体、素砌体结构、现浇构造柱砌体结构、捆绑橡胶束砌体结构1/4比例模型振动台模拟地震试验,对比考察了模型结构的破坏特征、动力特性、加速度反应、位移反应、变形及原型结构的反应等特性。研究表明沥青-砂垫层、捆绑橡胶束消能减震装置均可有效取到消能减震效果,减少输入上部结构的地震能量,有效提高结构的整体性和抗倒塌能力。
     ⑤简易消能减震技术砌体结构数值模拟
     用ABAQUS对拟静力墙体试验进行了数值模拟,与试验结果吻合较好,验证了该模拟方法的可靠性;通过大量的数值分析模型,从动力时程反应和损伤耗能角度对比了传统结构和滑移结构的抗震性能,说明了该项滑移减震技术的可行性。
     ⑥简易消能减震技术要点建议
     基于试验结果和对大量模型进行分析的基础上,对简易消能减震技术的设计及其相关构造要求提出建议,包括各烈度区摩擦系数取值范围、简化设计方法、捆绑橡胶束布置等,为实际工程应用提供理论依据。
Masonry structure, which has been used for a long time in China, is one of themost widely used constructure in urban and rural region of china nowadays. However,the poor structural integrity and seismic performance have led to a large number ofbuildings destroyed and collapsed in Wenchuan earthquake. Furthermore, due to thepoor towns economy as well as equipment and technology, the complex seismicmeasures are difficult to be implemented, largely affecting the construction quality.Therefore, to improve the seismic capacity of the masonry structure favoring to the ruralareas, the simple and cost-effective seismic technology is one of the major seismic ways.The objective of this study was to investigate a simple energy dissipation technologyand the main conclusions were described as follows:
     ①Development of a simple energy dissipation technology
     Considering the actual investment, the construction level and management status invillages and towns, we proposed two kinds of simple energy dissipation technologies:asphalt sand cushion energy dissipation and bound rubber beam energy dissipation.
     ②Experimental study on material properties of asphalt sand and bound rubberbeam
     Friction properties of fine sand, sand, fly ash, powder, talcum powder, mix asphaltsand with different ratio and asphalt talcum powder with different ratio were studied. Inaddition, the asphalt-related indicators (penetration, ductility and viscosity) and themechanical property of bundled rubber beam were also tested. The experimental resultshowed that when the content of asphalt was75%, the specimen of the asphaltic sandspresented lower friction and higher vertical bearing capacity.
     ③Experimental study on seismic performance of different types of walls
     Four low cyclic loading tests of walls (with no isolation measures, with slidinglayer having different ratio of asphalt sand, with upper and lower ring beam, and withbound rubber beam or rubber of tire) were studied, which included four types and eightpieces of walls. The failure shape, energy dissipation capacity, wall shear deformationand bending deformation were compared and analyzed among different walls. Theexperimental results indicated that with isolation measures could greatly improve thecapacity of deformation and plastic energy dissipation of walls; with variation ofvertical stress, the asphalt sand at a ratio of75%could exhibit better stable performance and dissipation of the energy transported to the upper structure with small stressreceived; The bundle rubber beam (rubber of tire) walls contributed to the energydissipation, and providing a great second stiffness for the walls.
     ④Shaking table test of asphalt sand sliding wall and masonry structure modelwith bound rubber beam
     The asphalt sand sliding wall, the consolidation wall, the masonry structure, thein-situ cast tie-column masonry structure and the masonry structure with bound rubberbeam were tested at the shaking table of the1/4scale model. Some parameters such asfailure characteristics, dynamic characteristics, acceleration response, displacementresponse, deformation and the prototype structure response of the models werecompared among the asphalt sand sliding wall and masonry structure with bound rubberbeam. The results suggested that using asphalt sand sliding or binding rubber beam todissipate the energy was effective, which could reduce the seismic energy input to theupper structure. Furthermore, the overall structural integrity and collapse resistantcapacity was improved significantly.
     ⑤Numerical simulation of masonry structure using simple energy dissipationtechnology
     The ABAQUS software was used to analyze the pseudo static test of wall. Theanalytical results had a good agreement with the measured values, which showed thereliability of the modeling. With a large number of numerical models to fit theexperimental data and compare the seismic performance between traditional structureand sliding structure based on the dynamic time-history response and damage energydissipation, it demonstrated the feasibility of the slip damping technology.
     ⑥Main suggestions for simple energy dissipation technology
     Based on the experimental results and a large number of modeling and analysis, weprovided some suggestions on design and construction requirement for the simpleenergy dissipation technology, involving the friction coefficient range in differentintensity zone, simplified design method, the structure requirements of bound rubberbeam layout, and so on. These suggestions will give a theoretical guide for the practicalengineering application.
引文
[1]许琪搂,李杰,李国强.建筑结构抗震设计[M].郑州:河南科学技术出版社,1992.
    [2]刘开康.村镇土坯结构摩擦滑移隔震技术研究[D].大连:大连理工大学,2010.
    [3]刘大榕.基于反应谱理论的并联基础隔震和砂垫层隔震研究[D].河海:河海大学,2007.
    [4]李立.隔震与减震技术[M].中国抗震研究四十年,北京:地震出版社,1989.
    [5]高云学,杨玉成等.设有隔震砂层的砖房模型振动台试验[C].第二届全国地震工程学术会议论文集.第1卷,武汉,1987.
    [6]中华人民共和国国务院第116号令.村庄和集镇规划建设管理条例[S].1993.
    [7]唐家祥,刘再华.建筑结构基础隔震[M].华中理工大学出版社,1993.8.
    [8]日本免震构造协会编,叶列平译.图解隔震结构入门[M].科学出版社,1998.
    [9]周福霖.工程结构减震控制[M].北京:地震出版社.1997.
    [10]李红梅.基础摩擦滑移隔震结构分析[D].河北:河北农业大学,2001.
    [11]李磊.不同隔震系统的蓄水池性能的比较研究[J].甘肃科技纵横.2004,(01):91-96.(本文译自《国际结构稳定与动力学学报》,International Journal of Structural Stability andDynamics,Vol.2,No.4,2002,Author:M.K.SHRIMALI,and R.S.JANGID).
    [12]高菲.建筑物基础滑移隔震性能的研究[D].辽宁:辽宁工程与技术大学,2003.
    [13]王优龙,魏琏等.隔震技术的研究和应用[M].北京:地震出版社,1997.
    [14]周福霖.工程结构减震控制[M].广州:地震出版社,1997.
    [15] Zhou Fu-lin, Tan Ping, Xiao Qiao-ling etal. Research and Application of Seismic IsolationSystem for Building Struetures[J]. Journal of Architecture and Civil Engineering,2006,23(2):l-8.
    [16]周锡元,苏经宇,樊水荣.变摩擦滑移减震机构的动力分析[C].第四届全国地震工程会议论文集.哈尔滨,1994:25-29.
    [17]苏经宇,韩淼,周锡元等.橡胶支座基础隔震建筑地震作用实用计算方法[J].振动工程学报.1999,12(2):229-232.
    [18]毛利军.建筑物基础滑移隔震体系研究[D].南京:东南大学,2004.
    [19]赵世峰,程文襄,张富有等.带限位钢棒夹层橡胶隔震垫的特征与工程应用[J].特种结构,2001,18(4):18-19.
    [20]李爱群,毛利军.并联基础隔震体系地震反应特征与隔震层参数的优选[J].工程抗震与加固改造,2005,27(2):27-31.
    [21]毛利军,李爱群.基础滑移隔震体系的地震反应谱[J].土木工程学报,2004,37(2):58-62.
    [22]侯中华.基础摩擦滑移隔震结构的地震反应分析研究[D].西安:西安建筑科技大学,2006.
    [23]孙敏,白杨,李大望等.基于不同摩擦系数水平的滑移隔震体系的相对输入能量与绝对输入能量的差异性分析[J].国际地震动态,2007,2(2):27-31.
    [24]姜婷,王俊峰,李大望.摩擦摆隔震结构振动台试验及结果分析[J].华南港工,2009,9(3):39-43.
    [25]王建强,丁永刚,李大望.组合基础隔震结构双向地震反应分析[J].地震工程与工程振动,2007,27(3):126-131.
    [26]刘德馨.滑动摩擦基础隔震房屋实用设计方法[J].四川建筑.1993,3:23-26.
    [27]朱玉华,吕西林,杜芳等.组合隔震系统滑动支座的滑移系数研究[J].结构工程师,2001,(02):34-44.
    [28]朱玉华,吕西林,施卫星等.基础隔震房屋模型振动台试验研究[J].地震工程与工程振动,2000,20(3):123-129.
    [29]吕西林,朱玉华,施卫星,上田荣.组合基础隔震房屋模型振动台试验研究[J].土木工程学报,2001,34(2):43-46.
    [30]徐赵东,曾晓,李爱群等.多维隔减震结构水平向振动台试验及隔减震性能分析[J].中国科学,2009,39(7):1318-1332.
    [31]尚守平,姚菲.软土-铰接桩体系隔震性能的振动台试验研究[J].铁道科学与工程学报,2006,3(6):19-24.
    [32]卢华喜.成层地基-桩基-上部结构动力相互作用理论分析与试验研究.湖南:湖南大学,2006.
    [33]彭轶君,尚守平,朱志辉等.有限元模拟土-箱基-框架结构大比例模型动力相互作用研究[J].铁道科学与工程学报,2006,3(1):75-79.
    [34]尚守平,周志锦.一种钢筋-沥青复合隔震层的性能[J].铁道科学与工程学报,2009,6(3):13-16.
    [35]尚守平,刘可,周志锦.农村居民隔震技术[J].施工技术,2009,38(2):97-100.
    [36]岁小溪.橡胶颗粒-砂混合物的隔震性能研究[D].湖南:湖南大学,2009.
    [37]徐忠根,周福霖.底部二层框架上部多塔楼底隔震数值模拟与试验研究[J].地震工程与工程振动,2005,25(1):126-132.
    [38]赵少伟,窦远明,郭蓉等.基础下砂垫层隔震性能振动台试验研究[J].河北工业大学学报,2005,34(3):92-97.
    [39]张智慧.滑移隔震结构滑移元件损伤的地震反应分析研究[D].西安:西安建筑科技大学,2010.
    [40]纪晓惠,陈良,郡宁译,武田寿一编.建筑物隔震防振与控振[M].北京:中国建筑工业出版社,1997.
    [41] David M.Lee.Base isolation for torsion reduction in asymmetric structures under earthquakeloading[J]. Earthquake Engineering and Struetural Dynamies,1980,112(8):349-359.
    [42] Buckle I.G, Mayes.R.L..Seismic Isolation:History, Application and Performance-A WordView[J]. Earthquake Spectra,1990,6(2):161-201.
    [43]欧妍君,钟超.建筑结构抗震的几种算法[J].广东建材,2006(3),105-106.
    [44] K.L.Ryan, A.K.ChoPra. Approximate analysis methods for asymmetric Plan base-isolatedbuildings[J]. Earthquake Engineering and Struetural Dynamics,2002,215(31):33-54.
    [45] A.K.Agrawal. Behaviour of equipment mounted over a torsionally coupled structure withsliding support[J]. Engineering Struetures,2000,135(22):72-84.
    [46] T.Nakamura, T.Suzuki, Hdkada, etal. Study on base isolation for torsional response inasymmetric structures under earthquake motion[C]. Proceeding of9thworld Conference onEarthquake Engineering Tokyo.Japan,1988,675-680.
    [47] Jenn-Shin Hwang,Ting-Yu Hsu. Experimental study of isolated building under triaxial groundexcitations[J]. Journal of structural Engineering,2000,126(9):879-886.
    [48]周志锦.一种钢筋-沥青复合隔震层研究[D].湖南:湖南大学,2009.
    [49]曾德民.橡胶隔震支座的刚度特征与隔震建筑的性能试验研究[D].北京:中国建筑科学研究院,2007.
    [50]唐家祥.隔震与消能减震结构的设计规定[J].工程抗震,1999,12(3):13-17.
    [51]赵亚敏.国内外建筑隔震设计标准比较分析[J].地震研究,2006,29(4):396-400.
    [52]重庆大学.沥青-砂垫层消能减震建筑物:中国, ZL201020199752.2[P].2010-11-15.
    [53]重庆大学.捆绑橡胶束消能减震建筑物:中国, ZL201020199752.2[P].2010-9-20.
    [54]张延年.耦合地震作用下结构振动控制与优化[M].哈尔滨:哈尔滨工业大学出版社,2008.
    [55] Chia-Ming Yang and Bertreo V. Use of Energy as a Criterion in Earthquake-ResistantDesign[R]. Report No. UCB/EERC-88/18. Earthquake Engineering Research Center,University of California, Berkeley,1988.
    [56]周云,周福霖.耗能减震体系的能量设计方法[J].世界地震工程,1997,13(4):25-37.
    [57]胡聿贤.地震工程学[M].地震出版社,1988.
    [58]李立.隔震技术的研究与应用[M].北京:地震出版社,1991.
    [59]曾德民,苏经宇,樊水荣等.建筑基础隔震技术系列讲座之一建筑基础隔震技术的发展和应用概况[J].工程抗震,1996,03:112-117.
    [60] Ji Shuyan, Zheng Nina, Liu Fengqiu, Li Yingmin, Liu Liping. Analysis Of FactorsInfluencing On Failure Pattern Of Masonry Wall Specimens In Pseudo-Static Experiments[C]. Proceedings of the3th International Conference On Advances In Experimental StructuralEngineering, San Francisco, California, USA, October15-16,2009.
    [61]中华人民共和国行业标准. GB/T2542-2003砌墙砖试验方法标准[S].中国建筑科学研究院,2003.
    [62]中华人民共和国行业标准. GBJ129-90砌体基本力学性能试验方法标准[S].中国建筑科学研究院,2004.
    [63]刘凤秋.预制构造柱约束墙体抗震性能试验研究[D].重庆:重庆大学,2010.
    [64]朱宇峰.蒸压粉煤灰实心砖墙片抗震性能试验研究[D].重庆:重庆大学,2007.
    [65]罗青儿.配筋粉煤灰砌块砌体剪力墙的试验研究[D].南京:东南大学,2005.
    [66]李敬明.蒸压加气混凝土砌块承重墙体抗震性能的试验研究[D].天津:天津大学,2005.
    [67]朱宇峰.蒸压粉煤灰实心砖墙片抗震性能试验研究[D].重庆:重庆大学,2007.
    [68]湛华. KP1型烧结页岩粉煤灰多孔砖墙体抗震抗剪性能试验研究[D].湖南:湖南大学,2001.
    [69]郑妮娜.装配式构造柱约束砌体结构抗震性能研究[D],重庆:重庆大学,2010.
    [70]房良,张敏.约束混凝土小型空心砌块开孔砌体抗震性能的试验研究建筑技术[J].2005,36(7):516-518.
    [71]孙健.混凝土多孔砖砌体力学性能及墙片抗震性能试验研究[D].武汉:武汉理工大学,2007.
    [72]代建波.新型石膏土坯墙结构房屋抗震性能试验及设计方法研究[D].西安:西安建筑科技大学,2008.
    [73]陈良. N式砌块配筋砌体剪力墙的抗震性能试验研究[D].湖南:湖南大学,2008.
    [74]周斌.混凝土普通砖砌体力学性能及墙片抗震性能试验研究[D].武汉:武汉理工大学,2007.
    [75]卢会芳.碳纤维布加固带洞口砌体墙试验研究[D].武汉:武汉理工大学,2004.
    [76]中华人民共和国行业标准. JGJ101—96建筑抗震试验方法规程[S].中国建筑科学研究院,1997.
    [77]周云.摩擦耗能减震结构设计[M].武汉理工大学出版社,2006.
    [78]中华人民共和国行业标准. GB50011—2010建筑结构抗震设计规范[S].中华人民共和国建设部,2010.
    [79]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [80] Nagarajaiah Satish, Narasimhan Sriram, Johnson Erik.Structural control benchmark problem:Phase II-Nonlinear smart base-isolated building subjected to near-fault earthquakes[J].Structural Control and Health Monitoring,2008,15(5):653-656.
    [81] Di Sarno, L., Chioccarelli E., Cosenza E., Seismic response analysis of an irregular baseisolated building[J]. Bulletin of Earthquake Engineering,2011,1(1):1-30.
    [82] Karimi H.R., Zapateiro M., Luo, N., An LMI approach to vibration control of base-isolatedbuilding structures with delayed measurements[J]. International Journal of Systems Science,2010,41(12):1511-1523.
    [83] Lafontaine Mario, Moroni Ofelia, Sarrazin Mauricio et al. Optimal control of accelerations ina base-isolated building using magneto-rheological dampers and genetic algorithms[J].Journal of Earthquake Engineering,2009,13(8):1153-1171.
    [84] Pozo Francesc, Montserrat Pere Marc, Rodellar Joséet al. Robust active control of hystereticbase-isolated structures: Application to the benchmark smart base-isolated building[J].Structural Control and Health Monitoring,2008,15(5):720-736.
    [85]邱法维,钱稼如,陈志鹏.结构抗震实验方法[M].北京:科学出版社,2000.
    [86]熊峰,应付钊.非线性有限元法分析预应力砌体墙结构[J].四川大学学报(工程科学版),2000,32(03):16-20.
    [87]王达诠,武建华.砌体RVE均质过程的有限元分析[J].重庆建筑大学学报,2002,24(4):35-39.
    [88]李英民,韩军,刘立平. ANSYS在砌体结构非线性有限元分析中的应用研究[J].重庆建筑大学学报,2006,28(05):90-96.
    [89]庄茁,张帆,岑松. ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [90]雷拓,钱江,刘成清.混凝土损伤塑性模型应用研究[J].结构工程师,2008,24(02):22-27.
    [91]刘立鹏,唐岱新.无筋砌体材料本构模型述评[J].哈尔滨工业大学学报,2004,36(09):1256-1259.
    [92]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论和应用[M].同济大学出版社,1996.
    [93] Lourenco P B, Rots J G, Blaauwendraad J. Continuum model for masonry: parameterestimation and validation[J]. Structure Engineer, ASCE,1998,124(6):642-652.
    [94]中华人民共和国行业标准. GB50010—2010混凝土结构设计规范[S].中华人民共和国建设部,2010.
    [95]吕伟荣,施楚贤.普通砖砌体受压本构模型[J].建筑结构,2006,36(11):77-78.
    [96]刘桂秋.砌体结构基本受力性能的研究[D].湖南:湖南大学,2005.
    [97]王述红,唐春安.砌体开裂过程数值试验[M].沈阳:东北大学出版社,2003.
    [98]杨卫忠.砌体受压本构关系模型[J].建筑结构,2008,38(10):80-82.
    [99]施楚贤.砌体结构理论和设计[M].第二版.北京:中国建筑工业出版社,2003.
    [100]杨晓杰,马一平,王培铭等.水泥砂浆塑性收缩开裂的三元本构方程研究[J].建筑材料学报,2009,12(1):22-26.
    [101]常留红,陈健康.单轴压缩下水泥砂浆本构关系的实验研究[J].水利学报,2007,38(2):217-220.
    [102]朱伯龙.砌体结构设计原理[M].同济大学出版社,1991.
    [103]施楚贤.砌体结构[M].中国建筑工业出版社,2008.
    [104]江见鲸,何放龙.有限元法及其应用[M].机械工业出版社,2006.
    [105] ABAQUS/Standard User's Manual, Hibbitt, Karlsson,Sorensen,Inc.2002.
    [106] Lee.J,and G. L. Fenves. Plastic-Damage Model for Cyclic Loading of Concrete Structures[J].Journal of Engineering Mechanics,vol.124,no.8,pp.892-900,1998.
    [107] Lubliner. J, J. Oliver,S. Oller,and E. O ate. A Plastic-Damage Model for Concrete [J].International Journal of Solids and Structures,vol.25,no.3,pp.229-326,1989.
    [108]张劲,王庆扬,胡守营等. ABAQUS混凝土损伤塑性模型参数验证[J].建筑结构,2008,38(8):127-130.
    [109]王金昌,陈页开. ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.
    [110]陆新征,叶列平,缪志伟等.建筑抗震弹塑性分析[M].北京:中国建筑工业出版社,2009.
    [111]王国珏.装配式构造柱约束砌体墙抗震性能的非线性模拟分析[D].重庆:重庆大学,2010.
    [112] Mazars J. Mechanical Damage and Fracture of Concrete Structure,Advances in FractureMechanics[Z]. D. Francoir Pergamon,Oxford.4,1982,1502-1509.
    [113] Sidoroff F. Description of anisotropic damage application to elasticity[Z].in:Proc. of IUTAMColloquium. Physical Nonlinearities in Structural Analysis,1981,237-244.
    [114] Sidoroff F. Description of anisotropic damage application to elasticity [C]//HULTJ,LEMAIT RE J.Physical Non linearity in Structural Analysis,Symposium Senlis France May27-30,1980. Berlin: Springer Ver lag.
    [115]邬瑞锋,奚肖凤.砖墙在垂直和侧向力共同作用下的破坏机理[J].大连工学院学报,1981,20(3):44-51.
    [116]邬瑞锋,吕和祥,奚肖凤.具有构造柱墙体弹塑性、开裂、裂缝开展的分析[J].大连理工大学学报,1979(1):60-72.
    [117]姜忻良,李春波,翟文杰.软土地基上带圈梁构造柱砌体结构的非线性有限元分析[J].地震工程与工程振动,2001,21(3):65-69.
    [118] U.Andreaus. Failure Criteria for Masonry Panels Under In-Plane Loading[J]. Journal ofStructural Engineering, ASCE,1996,122(1).
    [119]许琪楼,姬同庚.砖砌体双向受力单元非线性分析模式[J].工程力学,1992,9(3):73-80.
    [120]雷拓,钱江,刘成清.混凝土损伤塑性模型应用研究[J].结构工程师,2008,24(02):22-27.
    [121] Lubliner. J, J. Oliver,S. Oller,and E. O ate. A Plastic-Damage Model for Concrete[J].International Journal of Solids and Structures,vol.25,no.3,pp.229-326,1989.
    [122]刘劲松,刘红军. ABAQUS钢筋混凝土有限元分析[J].装备制造技术,2009,(06):69-70.
    [123] ABAQUS Analysis User's Manual,Hibbitt,Karlsson,Sorensen,Inc.2002.
    [124]吕西林,金国芳.钢筋混凝土结构非线性理论与应用[M].上海:同济大学出版社,1997.
    [125]庄茁,张帆,芩松等. ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [126]汪大绥,李志山,李承铭等.复杂结构弹塑性时程分析在ABAQUS软件中的实现[J].建筑结构,2007,37(5):92-95.
    [127] ABAQUS, Inc. ABAQUS Analysis User’s Manual[M].2006.
    [128]唐家祥.建筑隔震与消能减震设计[J].建筑科学,2002,18(1):21-27.
    [129]熊仲明,王清敏,丰定国等.基础滑移隔震房屋滑移位移的简化计算[J].西安建筑科技大学学报(自然科学版).1998,30(03):301-303.