新型突变mucA基因编码蛋白的亚细胞定位、对生物被膜形成的影响及其机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨新型突变mucA56基因编码蛋白的亚细胞定位,并观察mucA56基因对生物被膜形成的影响,探讨mucA56基因影响生物被膜形成的机制。方法:采用Ncol和XbaI酶切位点的引物,从pMD18T-HR扩增mucA56基因的全长克隆到pMF54构建pCAQ56, XbaI单酶切pPH07载体中的碱性磷酸酶基因全长插入到pCAQ56的开放阅读框中,构建mucA56-phoA融合表达载体pCAQ57。对构建的pCAQ57载体进行PCR鉴定及序列测定,并使用碱性磷酸酶抗体验证融合蛋白的表达。将pCAQ57、pKMG170阴性对照质粒)、pKMG176(阳性对照质粒)分别转化大肠杆菌和铜绿假单胞菌,划线接种在含有碱性磷酸酶作用底物BCIP的LB琼脂平板上,观察各自菌落颜色以评估碱性磷酸酶活性;从pGFPuv质粒中扩增表达增强型绿色荧光蛋白的基因全长,克隆入大肠杆菌-铜绿假单胞菌穿梭质粒(pUCP20),构建一个稳定的铜绿假单胞菌绿色荧光蛋白表达载体(pUCP20/GFPuv),采用电转化的方式将pUCP20/GFPuv导入到铜绿假单胞菌PAOl、PDO300(含经典突变mucA22基因的粘液型PA01同源菌株)、PAOmucA56(含新型突变mucA56基因的粘液型PAO1同源菌株)中,采用改良的流动介质体外培养生物被膜,应用激光共聚焦显微镜观察生物被膜形成第l、3、5天的形态和结构;收集三者生物被膜形成第一、三、五天的生物被膜细菌,提取细菌全蛋白进行蛋白质二维电泳,找出PA01、PAOmucA56表达水平相同而与PDO300表达水平差异的蛋白点,采用基质辅助的激光解吸/电离飞行时间(MALDI-TOF MS)分析差异蛋白质。
     结果:对构建的融合表达载体pCAQ57进行PCR鉴定及序列测定,结果表明phoA基因正向插入到mucA56的开放阅码框中;Western Blot进一步证实了融合蛋白的表达;以上提示成功构建了mucA56-phoA融合蛋白表达载体pCAQ57。转化了pCAQ57的大肠杆菌和铜绿假单胞菌,以及转化了pKMG170的大肠杆菌和铜绿假单胞菌,在含有碱性磷酸酶作用底物BCIP的LB琼脂平板上,均表现为白色菌落,提示为无活性的碱性磷酸酶活动。而转化了pKMG176的大肠杆菌和铜绿假单胞菌,在含有碱性磷酸酶作用底物BCIP的LB琼脂平板上均表现为蓝色菌落,提示为有活性的碱性磷酸酶活动;激光共聚焦显微镜观察PAOmucA56、PA01、PD0300第1、3、5天生物被膜形态,结果显示:PAOmucA56、PAO1的形成方式为水平铺散,其成熟生物被膜形态为均一的薄膜状,基质覆盖完全,PAOmucA56戎熟生物被膜平均厚度约为30μm,PAO1成熟生物被膜平均厚度约为25μm;PDO300的形成方式为局部堆积,呈山丘状,成熟生物被膜具有很大的异质性,以低的基质覆盖和大的微生物菌落间隔为特点,生物被膜最高厚度约为36μm。生物被膜形成第一天、第三天、第五天的生物被膜细菌全蛋白二维电泳,PAO1和PAOmucA56表达相同而与PDO300差异表达的蛋白点分别有8个、6个、15个。29个蛋白的质谱分析结果表明,有12个蛋白的质谱分析结果可信度不高(MS<66)。筛选出来的17个候选蛋白中,DNA指导的RNA聚合酶p亚单位、谷氨酰胺合成酶、延长因子Tu、DNA指导的RNA聚合酶α亚单位、内肽酶Clp2、延长因子G1、热休克蛋白HtpG、ATP依赖的Clp蛋白ATP结合亚单位clpX、触发因子在PDO300中相对低表达,而30S核糖体蛋白S18、磷酸烯醇丙酮酸羧激酶、丙酮酸脱氢酶复合物二氢硫辛酰赖氨酸基乙酰转移酶、PasP、生物素羧化酶、精氨酸脱亚氨酸、鸟氨酸氨甲酰转移酶、丝氨酸羟甲基转移酶3在PD0300中相对高表达;其中clp蛋白酶家族(内肽酶Clp2和ATP依赖的Clp蛋白ATP结合亚单位clpX)分别在第三天、第五天生物被膜细菌中有PD0300的相对低表达。
     结论:mucA56基因编码的产物定位在细胞质;藻酸盐可以影响生物被膜结构,而mucA56基因存在藻酸盐以外的途径影响生物被膜的形成;mucA56基因是一个多效调节基因,其调节范围涉及细菌的压力应激、藻酸盐合成等很多方面。clp蛋白酶家族的差异表达可能是PAOmucA56生物被膜形态特殊的重要原因。
Objective:To investigate the subcellular localization of the protein encoded by newly found mucA mutation gene (mucA56), observe the influnence of the mucA56 gene on biofilm formation and structure, and further explore the mechanism of the influnence.
     Methods:mucA56 gene is amlified from pMD18T-HR with Ncol and Xbal restrictive endonuclease site and cloned into pMF54 expression vector, resulting in pCAQ56; alkaline phosphatase gene fragment resulting from Xbal digesting of pPHO7 is fused to the open reading frame (ORF) of pCAQ56, resulting in the mucA56-phoA fusion expression vector pCAQ57; Gene fusion vector pCAQ57 is confirmed first by PCR and sequencing, then by western blot using anti-alkaline phosphatase antibody. pCAQ57, pKMG170 (negative control plasmid), pKMG176(positive control plasmid) are transformed into Ecoli. DH5a and Pseudomonas aeruginosa PAO1, then transformants are cultured on the LB agars containing alkaline phosphatase substrate BCIP, which could evaluate the activity of alkaline phosphatase; A enhanced green fluorescent protein gene is amplified from pGFPuv and cloned into E.coli-P.aeruginosa Shuttle vector pUCP20, resulting in a green fluorescent protein expression vector pUCP20/GFPuv which can label P.aeruginosa; pUCP20/GFPuv are transformed into P. aeruginosa PAO1, PDO300 (the mucoid PAO1 derivative with classic mucA22 mutation) and PAOmucA56 (the mucoid PAO1 derivative with new mucA56 mutation) by electrotransformation. Biofilms with 1-day-aged, three-day-aged and five-day-aged formed by GFP labeled P. aeruginosa are observed by laser scanning confocal microscope. The P.aeruginosa biofilm cells with 1-day-aged, three-day-aged and five-day-aged were collected, total bacterial protein extract of which are then gone through two-dimensional electrophoresis. The protein spots which represent the same expression level between PAO and PAOmucA56 but different from PDO300 are picked up for further identified by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF MS) analysis.
     Results:The constructed mucA56-phoA fusion expression vector pCAQ57 is confirmed right by PCR and sequencing,WB further confirmed the expression of hybrid proteins. The colony colour of E. coilDH5a(pCAQ57), PAO1(pCAQ57), E. coliDH5a(pKMG170) and PAO1(pKMG176) on LB plate containing BCIP are all white, indicating no activity for the alkaline phosphatase. Observation of the biofilms with 1-day-old, three-day-old and five-day-old of PAO1,PAOmucA56 and PDO300 by Laser scanning confocal microscope reveal that PAO1 and PAOmucA56 biofilm develope from a uniform monolayer of attached cells into a biofilm characterized by an almost complete substratum coverage and even biomass distribution, the average thickness of the PAO1 and PAOmucA56 biofilm is 30μm and 25μm respectively; PDO300 forms a significantly different biofilm architecture, with attached cells growing exclusively in discrete microcolonies resulting in a low substratum coverage and high structural heterogeneity, the maximum thickness of PDO300 is 36μm; Proteomes of total protein extract of the biofilm bacterial with 1-day-aged, three-day-aged and five-day-aged reveals that the number of the protein spots whose abundance are same between PAO1 and PAOmucA56 but different from PDO300, were 8,6 and 15, respectively. Mass spectrometry results show the reliability of twelve proteins are not high. Among the seventeen candidate proteins, DNA directed RNA polymeraseβsubunit, glutamine synthetase, endopeptidase Clp2, elongation factor Tu, DNA directed RNA polymerase a subunit, elongation factor G1, heat shock protein HtpG, ATP dependent Clp protein ATP binding subunit clpX, trigger factor are relatively down-regulated in PDO300; 30S ribosomal protein S18, Phosphoenolpyruvate carboxykinase, Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, PasP, Biotin carboxylase, Arginine deiminase,Ornithine carbamoyltransferase, Serine hydroxymethyltransferase 3 are relatively up-regulated in PDO300; Especially,one clp protease family (Endopeptidase Clp2 and ATP dependent Clp protein ATP binding subunit clpX)is relatively down-regulated in the third day and fifth day of biofilm bacteria in PDO300, respectively.
     Conclusion:The MucA56 protein encoded by mucA56 gene is localized in the cytoplasm; Alginate might affect the biofilm formation, however, mucA56 gene influence the biofilm formation in another pathway other than alginate; mucA56 gene is a pleiotropic regulatory gene,which regulate many genes including genes involved in bacterial stress response, alginate synthesis and so on.The differentially expression of clp protease family may be the reason of the special biofilm morphology of PAOmucA56.
引文
1. Stover, C.K., X.Q. Pham, et al., Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature,2000.406(6799):p.959-64.
    2. Juan, C., B. Moya, et al., Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level beta-lactam resistance involves three AmpD homologues. Antimicrob Agents Chemother,2006.50(5):p. 1780-7.
    3.阮卫,杨祚,铜绿假单胞菌耐药机制研究进展.国外医学临床生物化学与检验学分册,2004.25(6):p.536-538.
    4. Branda, S.S., S. Vik, et al., Biofilms:the matrix revisited. Trends Microbiol,2005. 13(1):p.20-6.
    5. del Pozo, J.L. and R. Patel, The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther,2007.82(2):p.204-9.
    6. Ryder, C., M. Byrd, and D.J. Wozniak, Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol,2007.10(6):p.644-8.
    7. Costerton, J.W., G.G. Geesey, and K.J. Cheng, How bacteria stick. Sci Am,1978. 238(1):p.86-95.
    8. Ramsey, D.M. and D.J. Wozniak, Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol,2005.56(2):p.309-22.
    9. Pedersen, S.S., N. Hoiby, et al., Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax,1992.47(1):p.6-13.
    10. Evans, L.R. and A. Linker, Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol,1973.116(2):p.915-24.
    11. Thomassen, M.J., C.A. Demko, et al., Multiple of isolates of Pseudomonas aeruginosa with differing antimicrobial susceptibility patterns from patients with cystic fibrosis. J Infect Dis,1979.140(6):p.873-80.
    12. Sokol, P.A., M.Z. Luan, et al., Genetic rearrangement associated with in vivo mucoid conversion of Pseudomonas aeruginosa PAO is due to insertion elements. J Bacteriol,1994.176(3):p.553-62.
    13. Murphy, T.F., A.L. Brauer, et al., Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med,2008.177(8):p.853-60.
    14. Baltimore, R.S. and M. Mitchell, Immunologic investigations of mucoid strains of Pseudomonas aeruginosa:comparison of susceptibility to opsonic antibody in mucoid and nonmucoid strains. J Infect Dis,1980.141(2):p.238-47.
    15. Schwarzmann, S. and J.R. Boring, Antiphagocytic Effect of Slime from a Mucoid Strain of Pseudomonas aeruginosa. Infect Immun,1971.3(6):p.762-767.
    16. Pier, G.B., F. Coleman, et al., Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun,2001.69(3):p. 1895-901.
    17. Pier, GB., G.J. Small, and H.B. Warren, Protection against mucoid Pseudomonas aeruginosa in rodent models of endobronchial infections. Science,1990.249(4968): p.537-40.
    18. Govan, J.R. and G.S. Harris, Pseudomonas aeruginosa and cystic fibrosis:unusual bacterial adaptation and pathogenesis. Microbiol Sci,1986.3(10):p.302-8.
    19. Ramphal, R., C. Guay, and G.B. Pier, Pseudomonas aeruginosa adhesins for tracheobronchial mucin. Infect Immun,1987.55(3):p.600-3.
    20. Nivens, D.E., D.E. Ohman, et al., Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol, 2001.183(3):p.1047-57.
    21. Govan, J.R. and V. Deretic, Microbial pathogenesis in cystic fibrosis:mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev,1996.60(3):p. 539-74.
    22. Linker, A. and R.S. Jones, A new polysaccharide resembling alginic acid isolated from pseudomonads. J Biol Chem,1966.241(16):p.3845-51.
    23. Wozniak, D.J. and D.E. Ohman, Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol,1994.176(19):p.6007-14.
    24. Martin, D.W., M.J. Schurr, et al., Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A,1993.90(18):p.8377-81.
    25. Xie, Z.D., C.D. Hershberger, et al., Sigma factor-anti-sigma factor interaction in alginate synthesis:inhibition of AlgT by MucA. J Bacteriol,1996.178(16):p. 4990-6.
    26. Mathee, K., C.J. McPherson, and D.E. Ohman, Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol,1997.179(11):p.3711-20.
    27. Boucher, J.C., H. Yu, et al., Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun,1997.65(9):p.3838-46.
    28. Anthony, M., B. Rose, et al., Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J Clin Microbiol,2002. 40(8):p.2772-8.
    29. 谢琳卡,陈安群,宋世会等,同源重组构建铜绿假单胞菌新的mucA基因突变株.华中科技大学学报(医学版),2009.38(5):p.571-574.
    30. Mathee, K., O. Ciofu, et al., Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide:a mechanism for virulence activation in the cystic fibrosis lung. Microbiology,1999.145 (Pt 6):p.1349-57.
    1. Michaelis, S., J.F. Hunt, and J. Beckwith, Effects of signal sequence mutations on the kinetics of alkaline phosphatase export to the periplasm in Escherichia coli. J Bacteriol,1986.167(1):p.160-7.
    2. Michaelis, S., H. Inouye, et al., Mutations that alter the signal sequence of alkaline phosphatase in Escherichia coli. J Bacteriol,1983.154(1):p.366-74.
    3. Hoffman, C.S. and A. Wright, Fusions of secreted proteins to alkaline phosphatase: an approach for studying protein secretion. Proc Natl Acad Sci U S A,1985.82(15): p.5107-11.
    4. Manoil, C. and J. Beckwith, TnphoA:a transposon probe for protein export signals. Proc Natl Acad Sci U S A,1985.82(23):p.8129-33.
    5. Derman, A.I. and J. Beckwith, Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm. J Bacteriol,1991.173(23):p. 7719-22.
    6. Manoil, C. and J. Beckwith, A genetic approach to analyzing membrane protein topology. Science,1986.233(4771):p.1403-8.
    7. Gutierrez, C. and J.C. Devedjian, A plasmid facilitating in vitro construction of phoA gene fusions in Escherichia coli. Nucleic Acids Res,1989.17(10):p.3999.
    8. Li, P., J. Beckwith, and H. Inouye, Alteration of the amino terminus of the mature sequence of a periplasmic protein can severely affect protein export in Escherichia coli. Proc Natl Acad Sci U S A,1988.85(20):p.7685-9.
    9. Taylor, R.K., C. Manoil, and J.J. Mekalanos, Broad-host-range vectors for delivery of TnphoA:use in genetic analysis of secreted virulence determinants of Vibrio cholerae. J Bacteriol,1989.171(4):p.1870-8.
    10. Manoil, C, D. Boyd, and J. Beckwith, Molecular genetic analysis of membrane protein topology. Trends Genet,1988.4(8):p.223-6.
    11. Chun, S.Y. and J.S. Parkinson, Bacterial motility:membrane topology of the Escherichia coli MotB protein. Science,1988.239(4837):p.276-8.
    12. Horabin, J.I. and R.E. Webster, An amino acid sequence which directs membrane insertion causes loss of membrane potential. J Biol Chem,1988.263(23):p. 11575-83.
    13. Sarkar, H.K., B. Thorens, et al., Expression of the human erythrocyte glucose transporter in Escherichia coli. Proc Natl Acad Sci U S A,1988.85(15):p.5463-7.
    14. Lewenza, S., R.K. Falsafi, et al., Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1:a tool for identifying differentially regulated genes. Genome Res,2005.15(4):p.583-9.
    15. Oglesby, L.L., S. Jain, and D.E. Ohman, Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology, 2008.154(Pt 6):p.1605-15.
    16. Mathee, K., C.J. McPherson, and D.E. Ohman, Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol,1997.179(11):p.3711-20.
    17.谢琳卡,陈安群,宋世会等,同源重组构建铜绿假单胞菌新的mucA基因突变株.华中科技大学学报(医学版),2009.38(5):p.571-574.
    18. Mathee, K., O. Ciofu, et al., Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide:a mechanism for virulence activation in the cystic fibrosis lung. Microbiology,1999.145 (Pt 6):p.1349-57.
    19. Boucher, J.C., H. Yu, et al., Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun,1997.65(9):p.3838-46.
    20. Firoved, A.M. and V. Deretic, Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J Bacteriol,2003.185(3):p.1071-81.
    21. Anthony, M., B. Rose, et al., Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J Clin Microbiol,2002. 40(8):p.2772-8.
    22. Schurr, M.J., H. Yu, et al., Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J Bacteriol,1996.178(16):p. 4997-5004.
    23. Lonetto, M., M. Gribskov, and C.A. Gross, The sigma 70 family:sequence conservation and evolutionary relationships. J Bacteriol,1992.174(12):p.3843-9.
    24. Walsh, N.P., B.M. Alba, et al., OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell,2003.113(1):p.61-71.
    25. Alba, B.M., J.A. Leeds, et al., DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev,2002.16(16):p.2156-68.
    26. Chaba, R., I.L. Grigorova, et al., Design principles of the proteolytic cascade governing the sigmaE-mediated envelope stress response in Escherichia coli:keys to graded, buffered, and rapid signal transduction. Genes Dev,2007.21(1):p. 124-36.
    27. Alba, B.M. and C.A. Gross, Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol,2004.52(3):p.613-9.
    28. Qiu, D., V.M. Eisinger, et al., Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A,2007.104(19):p.8107-12.
    29.倪明,田德英,余冰等,一株含新的mucA突变基因的黏液型铜绿假单胞菌的生物学特性.中华医学杂志,2004.84(19):p.1649-1653.
    30. Manoil, C., J.J. Mekalanos, and J. Beckwith, Alkaline phosphatase fusions:sensors of subcellular location. J Bacteriol,1990.172(2):p.515-8.
    1. Firoved, A.M. and V. Deretic, Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J Bacteriol,2003.185(3):p.1071-81.
    2. Wozniak, D.J. and D.E. Ohman, Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol,1994.176(19):p.6007-14.
    3. Boucher, J.C., H. Yu, et al., Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun,1997.65(9):p.3838-46.
    4. Hentzer, M., G.M. Teitzel, et al., Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol,2001.183(18):p.5395-401.
    5. Davies, D.G., A.M. Chakrabarty, and G.G. Geesey, Exopolysaccharide production in biofilms:substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol,1993.59(4):p.1181-6.
    6. Davies, D.G. and G.G. Geesey, Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol,1995.61(3):p.860-7.
    7. Nivens, D.E., D.E. Ohman, et al., Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol, 2001.183(3):p.1047-57.
    8. Sarkisova, S., M.A. Patrauchan, et al., Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol,2005.187(13):p.4327-37.
    9. Stapper, A.P., G. Narasimhan, et al., Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol,2004.53(Pt 7):p.679-90.
    10. Wozniak, D.J., T.J. Wyckoff, et al., Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A,2003.100(13):p.7907-12.
    11. Laue, H., A. Schenk, et al., Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiology,2006.152(Pt 10):p.2909-18.
    12.谢琳卡,陈安群,宋世会等,同源生组构建铜绿假单胞菌新的mucA基因突变株.华中科技大学学报(医学版),2009.38(5):p.571-574.
    13. Mathee, K., O. Ciofu, et al., Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide:a mechanism for virulence activation in the cystic fibrosis lung. Microbiology,1999.145 (Pt 6):p.1349-57.
    14. Sauer, K., A.K. Camper, et al., Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol,2002.184(4):p.1140-54.
    15. Harrison, J.J., H. Ceri, et al., The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biol Proced Online,2006.8:p.194-215.
    16. West, S.E., H.P. Schweizer, et al., Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene,1994. 148(1):p.81-6.
    17. Musk, D.J., D.A. Banko, and P.J. Hergenrother, Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol,2005.12(7): p.789-96.
    18. Stanley, N.R. and B.A. Lazazzera, Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol,2004.52(4):p.917-24.
    19.严岩,李彤,刘树林,两种培养基对铜绿假单胞菌和大肠埃希菌生物被膜厚度的影响.中国实验诊断学,2007.11(5):p.613-618.
    20. O'Toole, G.A. and R. Kolter, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways:a genetic analysis. Mol Microbiol,1998.28(3):p.449-61.
    21. Klausen, M., A. Heydorn, et al., Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type Ⅳ pili mutants. Mol Microbiol,2003.48(6):p.1511-24.
    22. Donlan, R.M., Biofilms:microbial life on surfaces. Emerg Infect Dis,2002.8(9):p. 881-90.
    23. Liu, Y. and J.H. Tay, The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res,2002.36(7):p.1653-65.
    24. Purevdorj-Gage, B., W.J. Costerton, and P. Stoodley, Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology,2005.151(Pt 5):p.1569-76.
    25. Xu, K.D., P.S. Stewart, et al., Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol, 1998.64(10):p.4035-9.
    26. Hassett, D.J., Anaerobic production of alginate by Pseudomonas aeruginosa: alginate restricts diffusion of oxygen. J Bacteriol,1996.178(24):p.7322-5.
    27. Tart, A.H., M.C. Wolfgang, and D.J. Wozniak, The alternative sigma factor AlgT represses Pseudomonas aeruginosa flagellum biosynthesis by inhibiting expression of fleQ. J Bacteriol,2005.187(23):p.7955-62.
    28. Tart, A.H., M.J. Blanks, and D.J. Wozniak, The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J Bacteriol,2006.188(18):p. 6483-9.
    29. Barken, K.B., S.J. Pamp, et al., Roles of type Ⅳ pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol,2008.10(9):p.2331-43.
    1.罗强,王.跃.,细菌的蛋白质组学研究进展.国外医学临床生物化学与检验学分册,2002.23(6):p.346-347.
    2. Malhotra, S., L.A. Silo-Suh, et al., Proteome analysis of the effect of mucoid conversion on global protein expression in Pseudomonas aeruginosa strain PAO1 shows induction of the disulfide bond isomerase, dsbA. J Bacteriol,2000.182(24):p. 6999-7006.
    3. Wu, M., T. Guina, et al., The Pseudomonas aeruginosa proteome during anaerobic growth. J Bacteriol,2005.187(23):p.8185-90.
    4. Vilain, S., P. Cosette, et al., Comparative proteomic analysis of planktonic and immobilized Pseudomonas aeruginosa cells:a multivariate statistical approach. Anal Biochem,2004.329(1):p.120-30.
    5. Patrauchan, M.A., S.A. Sarkisova, and M.J. Franklin, Strain-specific proteome responses of Pseudomonas aeruginosa to biofilm-associated growth and to calcium. Microbiology,2007.153(Pt 11):p.3838-51.
    6. Sauer, K., A.K. Camper, et al., Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol,2002.184(4):p.1140-54.
    7. Zhang, J., H. Ma, et al., Grape berry plasma membrane proteome analysis and its differential expression during ripening. J Exp Bot,2008.59(11):p.2979-90.
    8. Yang, Y., T.W. Thannhauser, et al., Development of an integrated approach for evaluation of 2-D gel image analysis:impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow. Electrophoresis, 2007.28(12):p.2080-94.
    9. Mathee, K., O. Ciofu, et al., Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide:a mechanism for virulence activation in the cystic fibrosis lung. Microbiology,1999.145 (Pt 6):p.1349-57.
    10. Mathee, K., C.J. McPherson, and D.E. Ohman, Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol,1997.179(11):p.3711-20.
    11. Rowen, D.W. and V. Deretic, Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Mol Microbiol,2000.36(2):p.314-27.
    12. Donlan, R.M., Biofilms:microbial life on surfaces. Emerg Infect Dis,2002.8(9):p. 881-90.
    13. Hentzer, M., GM. Teitzel, et al., Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol,2001.183(18):p.5395-401.
    14. Stapper, A.P., G Narasimhan, et al., Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol,2004.53(Pt 7):p.679-90.
    15. Liu, Y. and J.H. Tay, The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res,2002.36(7):p.1653-65.
    16. Wen, Z.T., P. Suntharaligham, et al., Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infect Immun,2005.73(1):p.219-25.
    17. Qiu, D., V.M. Eisinger, et al., ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa. Microbiology, 2008.154(Pt 7):p.2119-30.
    18. Lonetto, M., M. Gribskov, and C.A. Gross, The sigma 70 family:sequence conservation and evolutionary relationships. J Bacteriol,1992.174(12):p.3843-9.
    19. Kanehara, K. and Y. Akiyama, [RIP(regulated intramembrane proteolysis):from bacteria to higher organism]. Tanpakushitsu Kakusan Koso,2003.48(7):p.836-41.
    20. Tomoyasu, T., T. Ohkishi, et al., The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J Bacteriol,2002. 184(3):p.645-53.
    21. Iyoda, S. and H. Watanabe, ClpXP protease controls expression of the type Ⅲ protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coll J Bacteriol,2005.187(12):p.4086-94.
    22. Wu, W., H. Badrane, et al., MucA-mediated coordination of type Ⅲ secretion and alginate synthesis in Pseudomonas aeruginosa. J Bacteriol,2004.186(22):p. 7575-85.
    23. Tart, A.H., M.C. Wolfgang, and D.J. Wozniak, The alternative sigma factor AlgT represses Pseudomonas aeruginosa flagellum biosynthesis by inhibiting expression of fleQ. J Bacteriol,2005.187(23):p.7955-62.
    24. Tart, A.H., M.J. Blanks, and D.J. Wozniak, The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J Bacteriol,2006.188(18):p. 6483-9.
    25. Ramsey, D.M. and D.J. Wozniak, Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol,2005.56(2):p.309-22.
    1. Stover, C.K., X.Q. Pham, et al., Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature,2000.406(6799):p.959-64.
    2. Reynolds, H.Y., A. S. Levine, R. E. Wood, C. H. Zierdt, D. C. Dale, and J. E. Pennington., Pseudomonas aeruginosa infections:persisting problems and current research to find new therapies. Ann Intern Med,1975.82(6):p.819-31.
    3. Pennington, J.E., H.Y. Reynolds, and P.P. Carbone. Pseudomonas pneumonia. A retrospective study of 36 cases. Am J Med,1973.55(2):p.155-60.
    4. George, R.H., Pseudomonas infections in cystic fibrosis. Arch Dis Child,1987. 62(5):p.438-9.
    5. Wood, R.E., T.F. Boat, and C.F. Doershuk, Cystic fibrosis. Am Rev Respir Dis,1976. 113(6):p.833-78.
    6. FitzSimmons, S.C., The changing epidemiology of cystic fibrosis. J Pediatr,1993. 122(1):p.1-9.
    7. Kulczycki, L.L., T.M. Murphy, and J.A. Bellanti, Pseudomonas colonization in cystic fibrosis. A study of 160 patients. Jama,1978.240(1):p.30-4.
    8. Pier, G.B., Pulmonary disease associated with Pseudomonas aeruginosa in cystic fibrosis:current status of the host-bacterium interaction. J Infect Dis,1985.151(4): p.575-80.
    9. Warner, J.O., Immunology of cystic fibrosis. Br Med Bull,1992.48(4):p.893-911.
    10. Boucher, R.C., New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J,2004.23(1):p.146-58.
    11. Burns, J.L., R.L. Gibson, et al., Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis,2001.183(3):p. 444-52.
    12. Singh, P.K., A.L. Schaefer, et al., Quorum-sensing signals indicate that cystic
    fibrosis lungs are infected with bacterial biofilms. Nature,2000.407(6805):p. 762-4.
    13. Mah, T.F. and GA. O'Toole, Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol,2001.9(1):p.34-9.
    14. Dunne, W.M., Jr., Bacterial adhesion:seen any good biofilms lately? Clin Microbiol Rev,2002.15(2):p.155-66.
    15. Parsek, M.R. and P.K. Singh, Bacterial biofilms:an emerging link to disease pathogenesis. Annu Rev Microbiol,2003.57:p.677-701.
    16. Pedersen, S.S., N. Hoiby, et al., Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax,1992.47(1):p.6-13.
    17. Govan, J.R. and V. Deretic, Microbial pathogenesis in cystic fibrosis:mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev,1996.60(3):p. 539-74.
    18. Lyczak, J.B., C.L. Cannon, and G.B. Pier, Lung infections associated with cystic fibrosis. Clin Microbiol Rev,2002.15(2):p.194-222.
    19. Linker, A. and R.S. Jones, A new polysaccharide resembling alginic acid isolated from pseudomonads. J Biol Chem,1966.241(16):p.3845-51.
    20. Frederiksen, B., C. Koch, and N. Hoiby, Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr Pulmonol,1997.23(5): p.330-5.
    21. Seale, T.W., H. Thirkill, et al., Serotypes and antibiotic susceptibilities of Pseudomonas aeruginosa isolates from single sputa of cystic fibrosis patients. J Clin Microbiol,1979.9(1):p.72-8.
    22. Murphy, T.F., A.L. Brauer, et al., Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med,2008.177(8):p.853-60.
    23. Evans, L.R. and A. Linker, Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol,1973.116(2):p.915-24.
    24. Thomassen, M.J., C.A. Demko, et al., Multiple of isolates of Pseudomonas aeruginosa with differing antimicrobial susceptibility patterns from patients with cystic fibrosis. J Infect Dis,1979.140(6):p.873-80.
    25. Sokol, P.A., M.Z. Luan, et al., Genetic rearrangement associated with in vivo mucoid conversion of Pseudomonas aeruginosa PAO is due to insertion elements. J Bacteriol,1994.176(3):p.553-62.
    26. Ramsey, D.M. and D.J. Wozniak, Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol,2005.56(2):p.309-22.
    27. Pier, GB., Pseudomonas aeruginosa:a key problem in cystic fibrosis. ASM News, 1998.64:p.339-347.
    28. Simpson, J.A., S.E. Smith, and R.T. Dean, Scavenging by alginate of free radicals released by macrophages. Free Radic Biol Med,1989.6(4):p.347-53.
    29. Pedersen, S.S., A. Kharazmi, et al., Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun,1990.58(10):p. 3363-8.
    30. Baltimore, R.S. and M. Mitchell, Immunologic investigations of mucoid strains of Pseudomonas aeruginosa:comparison of susceptibility to opsonic antibody in mucoid and nonmucoid strains. J Infect Dis,1980.141(2):p.238-47.
    31. Schwarzmann, S. and J.R. Boring, Antiphagocytic Effect of Slime from a Mucoid Strain of Pseudomonas aeruginosa. Infect Immun,1971.3(6):p.762-767.
    32. Pier, GB., F. Coleman, et al., Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun,2001.69(3):p. 1895-901.
    33. Pier, GB., G.J. Small, and H.B. Warren, Protection against mucoid Pseudomonas aeruginosa in rodent models of endobronchial infections. Science,1990.249(4968): p.537-40.
    34. Govan, J.R. and G.S. Harris, Pseudomonas aeruginosa and cystic fibrosis:unusual bacterial adaptation and pathogenesis. Microbiol Sci,1986.3(10):p.302-8.
    35. Deretic, V., M.J. Schurr, and H. Yu, Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol,1995.3(9):p. 351-6.
    36. Doull, I.J., Recent advances in cystic fibrosis. Arch Dis Child,2001.85(1):p.62-6.
    37. Marcus, H. and N.R. Baker, Quantitation of adherence of mucoid and nonmucoid Pseudomonas aeruginosa to hamster tracheal epithelium. Infect Immun,1985. 47(3):p.723-9.
    38. Ramphal, R., C. Guay, and G.B. Pier, Pseudomonas aeruginosa adhesins for tracheobronchial mucin. Infect Immun,1987.55(3):p.600-3.
    39. Lam, J., R. Chan, et al., Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun,1980.28(2):p. 546-56.
    40. Nivens, D.E., D.E. Ohman, et al., Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol, 2001.183(3):p.1047-57.
    41. Hoiby, N., H. Krogh Johansen, et al., Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect,2001.3(1):p.23-35.
    42. Firoved, A.M., J.C. Boucher, and V. Deretic, Global genomic analysis of AlgU (sigma(E))-dependent promoters (sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis. J Bacteriol,2002.184(4): p.1057-64.
    43. Firoved,A.M.,W. Ornatowski, and V. Deretic, Microarray analysis reveals induction of lipoprotein genes in mucoid Pseudomonas aeruginosa:implications for inflammation in cystic fibrosis. Infect Immun,2004.72(9):p.5012-8.
    44. Firoved, A.M. and V. Deretic, Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J Bacteriol,2003.185(3):p.1071-81.
    45. Schnider-Keel, U., K.B. Lejbolle, et al., The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHAO. Appl Environ Microbiol, 2001.67(12):p.5683-93.
    46. Yu, H., J.C. Boucher, et al., Virulence properties of Pseudomonas aeruginosa lacking the extreme-stress sigma factor AlgU (sigmaE). Infect Immun,1996.64(7): p.2774-81.
    47. Garrett, E.S., D. Perlegas, and D.J. Wozniak, Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). J Bacteriol,1999.181(23):p.7401-4.
    48. Silo-Suh, L., S.J. Suh, et al., A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc Natl Acad Sci U S A,2002. 99(24):p.15699-704.
    49. Chitnis, C.E. and D.E. Ohman, Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol,1993.8(3):p.583-93.
    50. Schiller, N.L., S.R. Monday, et al., Characterization of the Pseudomonas aeruginosa alginate lyase gene (algL):cloning, sequencing, and expression in Escherichia coli. J Bacteriol,1993.175(15):p.4780-9.
    51. Franklin, M.J., C.E. Chitnis, et al., Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. J Bacteriol,1994.176(7):p.1821-30.
    52. Rehm, B.H., E. Grabert, et al., Antibody response of rabbits and cystic fibrosis patients to an alginate-specific outer membrane protein of a mucoid strain of Pseudomonas aeruginosa. Microb Pathog,1994.16(1):p.43-51.
    53. Franklin, M.J. and D.E. Ohman, Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J Bacteriol,2002.184(11):p.3000-7.
    54. Aarons, S.J., I.W. Sutherland, et al., A novel gene, algK, from the alginate biosynthesis cluster of Pseudomonas aeruginosa. Microbiology,1997.143 (Pt 2):p. 641-52.
    55. Robles-Price, A., T.Y. Wong, et al., AlgX is a periplasmic protein required for alginate biosynthesis in Pseudomonas aeruginosa. J Bacteriol,2004.186(21):p. 7369-77.
    56. Maharaj, R., T.B. May, et al., Sequence of the alg8 and alg44 genes involved in the synthesis of alginate by Pseudomonas aeruginosa. Gene,1993.136(1-2):p.267-9.
    57. Monday, S.R. and N.L. Schiller, Alginate synthesis in Pseudomonas aeruginosa:the role ofAlgL (alginate lyase) and AlgX. J Bacteriol,1996.178(3):p.625-32.
    58. Remminghorst, U. and B.H. Rehm, Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Lett,2006.580(16):p.3883-8.
    59. Remminghorst, U. and B.H. Rehm, In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl Environ Microbiol,2006.72(1):p.298-305.
    60. Jain, S. and D.E. Ohman, Deletion of algK in mucoid Pseudomonas aeruginosa blocks alginate polymer formation and results in uronic acid secretion. J Bacteriol, 1998.180(3):p.634-41.
    61. Boyd, A. and A.M. Chakrabarty, Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol,1994.60(7):p.2355-9.
    62. Rehm, B.H. and S. Valla, Bacterial alginates:biosynthesis and applications. Appl Microbiol Biotechnol,1997.48(3):p.281-8.
    63. Zielinski, N.A., A.M. Chakrabarty, and A. Berry, Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J Biol Chem,1991.266(15):p.9754-63.
    64. Regni, C, L. Naught, et al., Structural basis of diverse substrate recognition by the enzyme PMM/PGMfrom P. aeruginosa. Structure,2004.12(1):p.55-63.
    65. Deretic, V., J.F. Gill, and A.M. Chakrabarty, Gene algD coding for GDPmannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa. J Bacteriol,1987.169(1):p.351-8.
    66. Wozniak, D.J. and D.E. Ohman, Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol,1994.176(19):p.6007-14.
    67. Deretic, V., M.J. Schurr, et al., Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis:environmental stress and regulation of bacterial virulence by alternative sigma factors. J Bacteriol,1994.176(10):p.2773-80.
    68. DeVries, C.A. and D.E. Ohman, Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J Bacteriol,1994.176(21):p.6677-87.
    69. Yu, H., M.J. Schurr, and V. Deretic, Functional equivalence of Escherichia coli sigma E and Pseudomonas aeruginosa AlgU:E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa. J Bacteriol,1995.177(11):p.3259-68.
    70. Schurr, M.J., H. Yu, et al., Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (sigma E) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa. J Bacteriol,1995.177(19):p. 5670-9.
    71. Martin, D.W., M.J. Schurr, et al., Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A,1993.90(18):p.8377-81.
    72. Mathee, K., C.J. McPherson, and D.E. Ohman, Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol,1997.179(11):p.3711-20.
    73. Schurr, M.J., H. Yu, et al., Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J Bacteriol,1996.178(16):p. 4997-5004.
    74. Xie, Z.D., C.D. Hershberger, et al., Sigma factor-anti-sigma factor interaction in alginate synthesis:inhibition of AlgT by MucA. J Bacteriol,1996.178(16):p. 4990-6.
    75. Boucher, J.C., H. Yu, et al., Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun,1997.65(9):p.3838-46.
    76. Martin, D.W., M.J. Schurr, et al., Differentiation of Pseudomonas aeruginosa into the alginate-producing form:inactivation of mucB causes conversion to mucoidy. Mol Microbiol,1993.9(3):p.497-506.
    77. Goldberg, J.B., W.L. Gorman, et al., A mutation in algN permits trans activation of alginate production by algT in Pseudomonas species. J Bacteriol,1993.175(5):p. 1303-8.
    78. Wood, L.F., A.J. Leech, and D.E. Ohman, Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa:Roles of sigma (AlgT) and the AlgW and Prc proteases. Mol Microbiol,2006.62(2):p.412-26.
    79. Deretic, V. and W.M. Konyecsni, Control of mucoidy in Pseudomonas aeruginosa: transcriptional regulation of algR and identification of the second regulatory gene, algQ. J Bacteriol,1989.171(7):p.3680-8.
    80. Nikolskaya, A.N. and M.Y Galperin, A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res,2002.30(11):p.2453-9.
    81. Whitchurch, C.B., R.A. Alm, and J.S. Mattick, The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A,1996.93(18):p.9839-43.
    82. Yu, H., M. Mudd, et al., Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa. J Bacteriol,1997.179(1):p.187-93.
    83. Ma, S., U. Selvaraj, et al., Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa. J Bacteriol,1998.180(4):p.956-68.
    84. Whitchurch, C.B., T.E. Erova, et al., Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type Ⅳ fimbria-mediated twitching motility. J Bacteriol,2002.184(16):p.4544-54.
    85. Belete, B., H. Lu, and D.J. Wozniak, Pseudomonas aeruginosa AlgR regulates type Ⅳ pilus biosynthesis by activating transcription of the fimU-pilVWXY1Y2E operon. J Bacteriol,2008.190(6):p.2023-30.
    86. Carterson, A.J., L.A. Morici, et al., The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa. J Bacteriol,2004.186(20):p. 6837-44.
    87. Lizewski, S.E., J.R. Schurr, et al., Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J Bacteriol,2004.186(17): p.5672-84.
    88. Morici, L.A., A.J. Carterson, et al., Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J Bacteriol,2007.189(21):p. 7752-64.
    89. Goldberg, J.B. and D.E. Ohman, Construction and characterization of Pseudomonas aeruginosa algB mutants:role of algB in high-level production of alginate. J Bacteriol,1987.169(4):p.1593-602.
    90. Goldberg, J.B. and D.E. Ohman, Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J Bacteriol,1984. 158(3):p.1115-21.
    91. Wozniak, D.J. and D.E. Ohman, Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. J Bacteriol, 1991.173(4):p.1406-13.
    92. Goldberg, J.B. and T. Dahnke, Pseudomonas aeruginosa AlgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators. Mol Microbiol,1992.6(1):p.59-66.
    93. Woolwine, S.C. and D.J. Wozniak, Identification of an Escherichia coli pepA homolog and its involvement in suppression of the algB phenotype in mucoid Pseudomonas aeruginosa. J Bacteriol,1999.181(1):p.107-16.
    94. Leech, A. J., A. Sprinkle, et al., The NtrC family regulator AlgB, which controls alginate biosynthesis in mucoid Pseudomonas aeruginosa, binds directly to the algD promoter. J Bacteriol,2008.190(2):p.581-9.
    95. Totten, P.A., J.C. Lara, and S. Lory, The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol,1990.172(1):p.389-96.
    96. Ma, S., D.J. Wozniak, and D.E. Ohman, Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator algB. J Biol Chem,1997.272(29):p.17952-60.
    97. Baynham, P.J. and D.J. Wozniak, Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol Microbiol,1996.22(1):p.97-108.
    98. Baynham, P.J., A.L. Brown, et al., Pseudomonas aeruginosa AlgZ, a ribbon-helix-helix DNA-binding protein, is essential for alginate synthesis and algD transcriptional activation. Mol Microbiol,1999.33(5):p.1069-80.
    99. Baynham, P.J., D.M. Ramsey, et al., The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type Ⅳ pili. J Bacteriol,2006.188(1):p.132-40.
    100. Ramsey, D.M., P.J. Baynham, and D.J. Wozniak, Binding of Pseudomonas aeruginosa AlgZ to sites upstream of the algZ promoter leads to repression of transcription. J Bacteriol,2005.187(13):p.4430-43.
    101. Tart, A.H., M.J. Blanks, and D.J. Wozniak, The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J Bacteriol,2006.188(18):p. 6483-9.
    102. Kim, H.Y., D. Schlictman, et al., Alginate, inorganic polyphosphate, GTP and ppGpp synthesis co-regulated in Pseudomonas aeruginosa:implications for stationary phase survival and synthesis of RNA/DNA precursors. Mol Microbiol, 1998.27(4):p.717-25.
    103. Deretic, V. and W.M. Konyecsni, A procaryotic regulatory factor with a histone HI-like carboxy-terminal domain:clonal variation of repeats within algP, a gene involved in regulation of mucoidy in Pseudomonas aeruginosa. J Bacteriol,1990. 172(10):p.5544-54.
    104. Kato, J., T.K. Misra, and A.M. Chakrabarty, AlgR3, a protein resembling eukaryotic histone HI, regulates alginate synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A,1990.87(8):p.2887-91.
    105. Wozniak, D.J. and D.E. Ohman, Involvement of the alginate algT gene and integration host factor in the regulation of the Pseudomonas aeruginosa algB gene. J Bacteriol,1993.175(13):p.4145-53.
    106. Delic-Attree, I., B. Toussaint, et al., Isolation of an IHF-deficient mutant of a Pseudomonas aeruginosa mucoid isolate and evaluation of the role of IHF in algD gene expression. Microbiology,1996.142 (Pt 10):p.2785-93.
    107. Delic-Attree, I., B. Toussaint, et al., Cloning, sequence and mutagenesis of the structural gene of Pseudomonas aeruginosa CysB, which can activate algD transcription. Mol Microbiol,1997.24(6):p.1275-84.
    108. Suh, S.J., L. Silo-Suh, et al., Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol,1999. 181(13):p.3890-7.
    109. Boucher, J.C., M.J. Schurr, and V. Deretic, Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism. Mol Microbiol,2000.36(2): p.341-51.
    110. Merighi, M., V.T. Lee, et al., The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol,2007.65(4):p.876-95.
    111. Oglesby, L.L., S. Jain, and D.E. Ohman, Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology, 2008.154(Pt 6):p.1605-15.
    112. Sarkisova, S., M.A. Patrauchan, et al., Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol,2005.187(13):p.4327-37.
    113. Hassett, D.J., Anaerobic production of alginate by Pseudomonas aeruginosa: alginate restricts diffusion of oxygen. J Bacteriol,1996.178(24):p.7322-5.
    114. Missiakas, D. and S. Raina, The extracytoplasmic function sigma factors:role and regulation. Mol Microbiol,1998.28(6):p.1059-66.
    115. Helmann, J.D., The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol,2002.46:p.47-110.
    116. Lonetto, M., M. Gribskov, and C.A. Gross, The sigma 70 family:sequence
    conservation and evolutionary relationships. J Bacteriol,1992.174(12):p.3843-9.
    117. Ades, S. E., Control of the alternative sigma factor σ E in Escherichia coli. Curr Opin Microbiol,2004,7(2):157-62.
    118. Walsh, N.P., B.M. Alba, et al., OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell,2003.113(1):p.61-71.
    119. Wilken, C., K. Kitzing, et al., Crystal structure of the DegS stress sensor:How a PDZ domain recognizes misfolded protein and activates a protease. Cell,2004. 117(4):p.483-94.
    120. Alba, B.M., J.A. Leeds, et al., DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev,2002.16(16):p.2156-68.
    121. Chaba, R., I.L. Grigorova, et al., Design principles of the proteolytic cascade governing the sigmaE-mediated envelope stress response in Escherichia coli:keys to graded, buffered, and rapid signal transduction. Genes Dev,2007.21(1):p. 124-36.
    122. Schurr, M.J. and V. Deretic, Microbial pathogenesis in cystic fibrosis:co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa. Mol Microbiol,1997.24(2):p.411-20.
    123. Malhotra, S., L.A. Silo-Suh, et al., Proteome analysis of the effect of mucoid conversion on global protein expression in Pseudomonas aeruginosa strain PAO1 shows induction of the disulfide bond isomerase, dsbA. J Bacteriol,2000.182(24):p. 6999-7006.
    124. Boucher, J.C., J. Martinez-Salazar, et al., Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA. J Bacteriol,1996.178(2):p.511-23.
    125. Qiu, D., V.M. Eisinger, et al., Regulated proteolysis controls mucoid conversion in
    Pseudomonas aeruginosa. Proc Natl Acad Sci U S A,2007.104(19):p.8107-12.
    126. Reiling, S.A., J.A. Jansen, et al., Prc protease promotes mucoidy in mucA mutants of Pseudomonas aeruginosa. Microbiology,2005.151(Pt 7):p.2251-61.
    127. Qiu, D., V.M. Eisinger, et al., ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa. Microbiology, 2008.154(Pt 7):p.2119-30.
    128. O'Toole, G, H.B. Kaplan, and R. Kolter, Biofilm formation as microbial development. Annu Rev Microbiol,2000.54:p.49-79.
    129. Sauer, K., A.K. Camper, et al., Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol,2002.184(4):p.1140-54.
    130. Pedersen, S.S., F. Espersen, et al., Immunoglobulin A and immunoglobulin G antibody responses to alginates from Pseudomonas aeruginosa in patients with cystic fibrosis. J Clin Microbiol,1990.28(4):p.747-55.
    131. Worlitzsch, D., R. Tarran, et al., Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest,2002. 109(3):p.317-25.
    132. Pier, G.B., D. Boyer, et al., Human monoclonal antibodies to Pseudomonas aeruginosa alginate that protect against infection by both mucoid and nonmucoid strains. J Immunol,2004.173(9):p.5671-8.
    133. Whiteley, M., M.G Bangera, et al., Gene expression in Pseudomonas aeruginosa biofilms. Nature,2001.413(6858):p.860-4.
    134. Wagner, V.E., D. Bushnell, et al., Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons:effects of growth phase and environment. J Bacteriol, 2003.185(7):p.2080-95.
    135. Wolfgang, M.C., J. Jyot, et al., Pseudomonas aeruginosa regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. Proc Natl Acad Sci U S A,2004.101(17):p.6664-8.
    136. Frisk, A., J.R. Schurr, et al., Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells. Infect Immun,2004.72(9):p. 5433-8.
    137. Hentzer, M., G.M. Teitzel, et al., Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol,2001.183(18):p.5395-401.
    138. Wozniak, D.J., T.J. Wyckoff, et al., Alginate is not a significant component of the extracellular polysaccharide matrix of PA 14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A,2003.100(13):p.7907-12.
    139. Stapper, A.P., G. Narasimhan, et al., Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol,2004.53(Pt 7):p.679-90.
    140. Friedman, L. and R. Kolter, Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol,2004.51(3):p.675-90.
    141. Friedman, L. and R. Kolter, Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol, 2004.186(14):p.4457-65.
    142. Jackson, K.D., M. Starkey, et al., Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol,2004.186(14):p.4466-75.
    143. Matsukawa, M. and E.P. Greenberg, Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol,2004.186(14): p.4449-56.
    144. Parsek, M.R. and C. Fuqua, Biofilms 2003:emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol,2004.186(14):p.4427-40.
    145. Whitchurch, C.B., T. Tolker-Nielsen, et al., Extracellular DNA required for bacterial biofilm formation. Science,2002.295(5559):p.1487.
    146. Leid, J.G, C.J. Willson, et al., The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol,2005.175(11):p.7512-8.
    147. Alkawash, M.A., J.S. Soothill, and N.L. Schiller, Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. Apmis,2006.114(2):p. 131-8.
    148. Aaron, S.D., W. Ferris, et al., Single and combination antibiotic susceptibilities of planktonic, adherent, and biofilm-grown Pseudomonas aeruginosa isolates cultured from sputa of adults with cystic fibrosis. J Clin Microbiol,2002.40(11):p.4172-9.