混合动力电动汽车永磁同步电机弱磁控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于能源与环境问题带来的影响,传统汽车正在向“电动”转变,世界各国和各大汽车厂商无不投入巨资进行电动汽车的研究。作为电动汽车核心驱动部件的电机系统,是这一方向的研究热点。其中永磁同步电动机以其体积小、重量轻、效率高、功率密度大、调速范围宽、维护简单等优点,逐渐成为电动汽车电机驱动系统的主流。由于永磁同步电机转子使用永磁体,其激磁磁场不可调节,对其在有恒功率、宽调速范围运行要求的车载电机驱动应用上提出了挑战,引起了国内外学者的高度重视。因此,为了提高混合动力电动汽车高速运行时转矩输出的稳定性及响应转矩突变的动态响应特性,本文围绕永磁同步电机的弱磁控制系统展开深入的研究工作。
     完善的弱磁控制系统包含内环电流追踪控制和外环电流指令调节控制两部分组成。永磁同步电机是多变量、非线性、强耦合的系统,对参数和干扰极为敏感,因此传统的线性控制方法无法准确描述内环电流追踪调节过程,难以保证电机在高转速运行范围内输出转矩的稳定性。针对这一问题,本文深入分析反馈线性化理论,研究通过对输出变量进行Lie微分运算,得到所需坐标变换及非线性系统状态反馈量,进而实现永磁同步电机的输入输出线性化控制的方法,设计出基于输入输出反馈线性化算法的内环电流调节控制器。该电流控制器具有动态响应速度快、稳态追踪误差小、实现简单等优点,然而这种控制方法的效果要受到电机参数的影响。为了提高其对电机参数变化的鲁棒性,本文分析比较了若干典型的电机参数在线、离线计算方法,提出了基于电机磁链信息的输入输出反馈线性化电流控制算法。该方法重新设定系统输入量信息、反馈变量信息及系统控制方程,选取电机磁链作为电流调节器的输入控制信息,通过电压、电流基波分量离线计算电机磁链参数,不但有效地降低了参数估算的复杂程度,而且充分考虑了永磁同步电机谐波分量对参数计算的影响。改进后的内环电流控制器的鲁棒性得到了明显的提升。
     永磁同步电机外环电流指令调节控制方式多采用闭环反馈式调节或前馈开环式调节。传统的前馈开环式调节方法获取当前电机的转速、电压、转矩的实时信息,利用数学公式计算出dq轴电流的最佳期望值,该类算法的特点在于实时性好,系统动态响应性能较好,但由于采用开环控制,系统的抗扰动特性较差;传统的闭环调节方法将输出的控制指令电压幅值与逆变器设定的电压门限值作为PI调节器的输入,而PI调节器的输出作为d轴电流指令的补偿量对其进行修正,该类算法的特点是反馈调节环节不依赖于电机参数,系统的鲁棒性有所提高,但不足之处在于当电机高速运行时一旦转矩指令发生突变,单纯的PI调节难以保证系统的快速动态响应特性,严重时会影响到系统的稳定性。针对上述分析,本文提出一种含有电压指令补偿环节的混合式弱磁电流指令调节控制方法,该方法的前馈通道包含一个电机磁链与转矩/电流的二维表格,根据当前转矩和磁链信息快速查取dq轴电流期望值,保证了系统的实时性及动态特性要求;其反馈通道利用电压输出指令与电压指令补偿环节的偏差进行PI调节,得到当前电机的磁链信息,保证了系统的抗扰动特性以及高速弱磁运行时的稳定性要求。
     本文针对永磁同步电机弱磁控制系统进行了仿真和实验研究。仿真和实验结果表明所设计的弱磁控制系统对负载扰动鲁棒性强,具有良好的稳态特性和动态跟踪性能。所设计方法及其控制器结构简单,工程实用性强,因而适用于混合动力电动汽车电机驱动系统。
Due to the energy and environment issues, the conventional automobileindustry is changing to “electric”. Most countries and automobile companieshave invested a lot of money to do the research on electric vehicles. ThePermanent Magnet Synchronous Machine has gradually become the mainstreamof the electric vehicles drive system due to its small size, light weight, highefficiency, high power density, widely range of velocity modulation and theadvantages of simple maintenance. As a result of using permanent magnets in therotor of the Permanent Magnet Synchronous Machine, the excitation magneticfield can’t be adjusted, which is a challenge in the application of vehicle motordrive with the requirements of persistent power and wide range of velocitymodulation, which has drawn a great attention of scholars at home and abroad.Therefore, in order to improve the stability of the torque output in high speedoperation and the dynamic response characteristics when the torque response hasa mutation of the Hybrid Electric Vehicles (HEV), further research work has beendone regarding the Flux Weakening control system of the Permanent MagnetSynchronous Machine in this dissertation.
     Perfect flux weakening control system consists of the inner loop of currenttracing control and the outer loop of flux weakening current commandadjustment. Permanent magnet synchronous machine is a multivariate, nonlinear,and strong coupling system, which is very sensitive to parameters andinterference, so the traditional linear control method can not accurately describethe adjustment process of current tracking in the inner loop and has a difficulty inensuring the stability of the output torque within the range of high speed operating. This paper has a depth analysis of the Feedback Linearization theory,and conduct a research through applying Lie Derivative to the output variables toget the desired coordinate transformation and the state feedback variables ofnonlinear system, so the Input-Output Linearization control method of thePermanent Magnet Synchronous Machine can be realized and the inner loopcontroller to adjust current based on the Input-Output Feedback Linearizationalgorithm is designed in this thesis. The current controller has the advantages offast dynamic response, small error of steady state tracking, simpleimplementation etc. This control method, however, has inevitable problems withdepending on motor parameters. In order to improve its robustness of motorparameters change, this article analyzes and compares a number of on-line andoff-line calculation methods of typical motor parameters and proposes the inputand output feedback linearization of current control algorithm based on motorvoltage, flux estimation of current fundamental information. This methodreconfigures the system input, feedback variable information and the systemcontrol equations and selects motor Flux linkage as the input control informationof the current regulator. Through the offline calculation of the parameters of themotor flux according to the voltage and current fundamental component, not onlyeffectively reduce the complexity of the parameter estimation, and fully considerthe influence of the permanent magnet synchronous motor harmonic componentof the calculated parameters. The inner loop current controller improved hasimproved the characteristics of anti-disturbance of parameters significantly.
     The regulation and control mode of outer loop flux weakening currentcommand of the Permanent magnet synchronous machine adopt the Feedback(Closed-loop) regulating or Feedforward (Open-loop) adjustment in most cases.The traditional adjustment method of feedforward open-loop uses the real-timeinformation on the speed, voltage and torque of the current motor, and uses themathematical formula to calculate the best expectations of the dq-axis current,this type of algorithm is characterized by good real-time controlling and dynamicresponse of the system, but the system characteristic of anti-disturbance is poordue to the using of open-loop control. The traditional regulation of closed-loopoften uses the deviation of output voltage command and the allowable limit valueof inverter to adjust the PI regulator and the output of the regulator as the compensation given by the dq-axis current is amended. This characteristic of thealgorithm is that the feedback regulation of the link does not depend on motorparameters, and the robustness of the system is increased, but the drawback isthat the capacity of dynamic response of the system declined. In view of theabove analysis, a control method on feedforward/feedback hybrid flux weakeningcurrent command that contains the compensation link of the flux weakeningvoltage command is proposed in this paper. This method contains a two-dimensional form of the motor flux and torque/current in its feedforward channel,which can check the dq-axis current expectations based on the current demandfor torque and flux quickly, so as to ensure the system requirements of real-timeand dynamic characteristics. The feedback channel uses PI regulator for voltageoutput command and voltage command compensation link to get the current fluxinformation of the current motor, which ensures that the anti-disturbancecharacteristics of the system and stability requirements of high-speed fluxweakening operation.
     In this dissertation, simulation and experimental studies on PMSM fluxweakening control system have been carried out. Simulation and experimentalresults show that the system has strong robustness against load disturbances, andobtains good steady characteristics and dynamic tracking performances. Thedesigned methods and controllers are simple in structure and practical inengineering, so they are applicable for motor drive system for HEV.
引文
[1] Chan C C.The State of the Art of Electric, Hybrid and Fuel Cell Vehicles[J].Proceedings of the IEEE,2007,95(4):704~718.
    [2]欧阳明高.我国节能与新能源汽车发展战略与对策[J].汽车工程,2006,28(4):317-321.
    [3]欧阳明高.汽车新型能源动力系统技术战略与研发进展[J].内燃机学报,2008,26(增刊):107-114.
    [4]李克强.汽车技术的发展动向及我国的对策[J].汽车工程,2009,31(11):1005-1016.
    [5] Kato, S.Design optimization of interior permanent magnet synchronousmotors for HEV&EV [J].SAE International Journal of Engines,2010,3(1):956-963.
    [6] Nasiri, H.Dynamic modeling and simulation of transmotor based series-parallel HEV applied to Toyota Prius2004[C].10th International Conferenceon Environment and Electrical Engineering,May.8-11,2011:1-4.
    [7] Cai W.Starting Engines and Powering Electric Loads with One Machine[J].IEEE Industry Applications Magazine,2006,12(6):29-38.
    [8] Zhu Z Q,Howe D.Electrical Machines and Drives for Electric, Hybrid, andFuel Cell Vehicles [J].Proceedings of the IEEE,2007,95(4):746-765.
    [9] Chunmi Jeon,Mun Kee Choi,Jaeheung Yoo.The effect of social influenceon consumers' hybridelectric vehicles adoption in Korea and China[C].International Conference on Advanced Communication Technology,2012:336–340.
    [10]李珂.电动汽车高效快响应电驱动系统控制策略研究[D].山东大学博士学位论文,2007.
    [11] Yonghua Song.Integration of plug-in hybrid and electric vehicles: Experiencefrom China [C].IEEE Power and Energy Society General Meeting,2010,1-6.
    [12] Wen, Xuhui.Electric vehicle key technology research in China[C].International Aegean Conference on Electrical Machines and PowerElectronics,2011,308-314.
    [13]王双红.混合动力电动车用开关磁阻电机控制系统研究[D].华中科技大学博士学位论文,2005.
    [14] Liqing Sun,Chan, C.C.State-of-art of energy system for new energyvehicles[C].IEEE Vehicle Power and Propulsion Conference,2008,1-8.
    [15]李长红,陈明俊,吴小役.PMSM调速系统中最大转矩电流比控制方法的研究[J].中国电机工程学报,2005,25(21):169-174.
    [16] Consoli A,Scarcella G,Scelba G,et al.Steady-State and TransientOperation of IPMSMs Under Maximum-Torque-per-Ampere Control[J].IEEE Transactions on Industrial Applications,2010,46(1):121-129.
    [17]孙承波,宋丹,陈国呈,等.基于锁相环的空调直流压缩机矢量控制系统[J].电工技术学报,2009,24(4):78-84.
    [18] Estima, Jorge O.Performance analysis of a PMSM drivefor hybrid electric vehicles [C].19th International Conference on ElectricalMachines,Rome,Italy,Sep.6-8,2010:1-6.
    [19] Vollmer, U.An at-all operating points highly efficient PMSM for HEV[J].World Electric Vehicle Journal,2008,2(4):99-107.
    [20] Zhang, J.Application of PMSM vector control system in PHEV [J].Journalof Jiangsu University,2011,32(2):157-162.
    [21]于海生,赵克友,郭雷.基于端口受控哈密顿方法的PMSM最大转矩/电流控制[J].中国电机工程学报,2006,26(8):82-87.
    [22] Mohamed Y A-R I,Lee T K.Adaptive Self-Tuning MTPA Vector Controllerfor IPMSM Drive System [J].IEEE Transactions on Energy Conversion,2006,21(3):636-644.
    [23] Niazi P,Toliyat H A,Goodarzi A.Robust Maximum Torque per Ampere(MTPA) Control of PM-Assisted SynRMcfor Traction Applications [J].IEEETransactions on Vehicular Technology,2007,56(4):1538-1545.
    [24] Bolognani S,Petrella R,Prearo A.Automatic Tracking of MTPA Trajectoryin IPM Motor Drives Based on AC Current Injection [J].IEEE Transactionson Industrial Applications,2011,47(1):105-114.
    [25] Bolognani S,Petrella R,Prearo A,et al.On-Line Tracking of the MTPATrajectory in IPM Motors Via Active Power Measurement[C].2010XIXInternational Conference on Electrical Machines,Rome,Italy,Sep.6-8,2010:1-7.
    [26] Kim S,Yoon Y D,Sul S K,et al.Parameter Independent MaximumTorque per Ampere (MTPA) Control of IPM Machine Based on SignalInjection[C].201025thAnnual IEEE Applied Power Electronics Conferenceand Exposition,Palm Springs,CA,Feb.21-25,2010:103–108.
    [27] PingYi Lin.Voltage Control of Interior Permanent Magnet SynchronousMotor Drives to Extend DC-link Voltage Utilization for Flux WeakeningOperation [J].IEEE Transaction on Industry Applications,2003,40(1):68-76.
    [28] Lin F J,Lin C H A.The Flux Weakening Control Analysis and Its PIController of Fuzzy Self adaptive Design for PMSM [J].IEEE Transaction onEnergy Conversion,2004,19(1):66-72.
    [29] Utkin V I.aliency Analysis of PM Machines with Flux Weakening Capability[M].Berlin:Springer,1992.
    [30] Seok-Hee Han.Reducing Harmonic Eddy-Current Losses in the Stator Teethof Interior Permanent Magnet Synchronous Machines During Flux Weakening[J].IEEE Transctions on Energy Conversion,2010,25(2):441–449.
    [31] Chunmi Jeon,Mun Kee Choi,Jaeheung Yoo.The effect of social influenceon consumers' hybridelectric vehicles adoption in Korea and China[C].International Conference on Advanced Communication Technology,2012:336–340.
    [32]李珂.电动汽车高效快响应电驱动系统控制策略研究[D].山东大学博士学位论文,2007.
    [33] Yonghua Song.Integration of plug-in hybrid and electric vehicles: Experiencefrom China [C].IEEE Power and Energy Society General Meeting,2010,1-6.
    [34] Wen, Xuhui.Electric vehicle key technology research in China[C].International Aegean Conference on Electrical Machines and PowerElectronics,2011,308-314.
    [35]王双红.混合动力电动车用开关磁阻电机控制系统研究[D].华中科技大学博士学位论文,2005.
    [36] Liqing Sun,Chan, C.C.State-of-art of energy system for new energyvehicles[C].IEEE Vehicle Power and Propulsion Conference,2008,1-8.
    [37] Zhao Z M,Meng S,Chan C C,et al.A Novel Induction Machine DesignSuitable for Inverter-Driven Variable Speed System [J].IEEE Transctions onEnergy Conversion,2000,15(4):413–420.
    [38] Wang T,Zheng P,Cheng S.Design Characteristics of the Induction MotorUsed for Hybrid Electric Vehicle [J].IEEE Transctions on Magnetics,2005,41(1):505–508.
    [39] Fahimi B,Emadi A,Sepe R B.A Switched Reluctance Machine-BasedStarter/Alternator for More-Electric Cars [J].IEEE Transctions on EnergyConversion,2004,19(1):116–124.
    [40] Krishnamurthy M,Edrington C S,Emadi A,et al.Making the Case forApplications of Switched Reluctance Motor Technology in AutomotiveProducts [J].IEEE Transactions on Power Electronics,2006,21(3):659–675.
    [41] Edrington C S,Krishnamurthy M,Fahimi B.Bipolar Switched ReluctanceMachines: A Novel Solution for Automotive Applications [J].IEEETransactions on Vehicular Technology,2005,54(3):795–808.
    [42] Ishak D,Zhu Z Q,Howe D.Rotor Eddy Current Loss in PM Machines withFractional Slot Number per Pole [J].IEEE Transctions on Magnetics,2005,41(9):2462–2469.
    [43] Ishak D,Zhu Z Q,Howe D.Comparison of PM brushless motors, witheither All or Alternative Wound Teeth [J].IEEE Transactions on EnergyConversion,2006,21(1):95–103.
    [44] Ishak D,Zhu Z Q,Howe D.Permanent Magnet Brushless Machines withUnequal Tooth Widths and Similar Slot and Pole Numbers [J].IEEETransactions on Industrial Applications,2005,41(2):584–590.
    [45] Ranran Liu.Experimental Study of Compound-Structure Permanent-MagnetSynchronous Machine Used for HEVs [J].IEEE Transactionson Magnetics,2013,49(2):807–810.
    [46] Ping Zheng.Evaluation of the magnetic coupling degree and performance ofan axial-axial flux compound-structure permanent-magnet synchronousmachine used for hybrid electric vehicles [J].Journal of Applied Physics,2008,103(7):113–117.
    [47] Yong Liu.Optimization of an80kW Radial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine Used for HEVs [J].IEEETransactions on Magnetics,2011,47(10):2399–2400..
    [48] Wu Hong-xing.The research on energy regeneration of permanent magnetsynchronous motor used for hybrid electricvehicle [C].Vehicle Power andPropulsion Conference,2008,1-4.
    [49] Al-Adsani, A.S,Schofield, N..Hybrid permanent magnet generatorsfor electricvehicle applications [C].IEEE International Electric Machines andDrives Conference,2009,1754-1761.
    [50]朱磊,温旭辉.车用永磁同步电机弱磁控制技术发展现状与趋势[C].中国第五届智能交通年会,2009,44(1):39–44.
    [51] S.Morimoto,Y.Tong.Performance of PM Hybrid Motor with MultipleFlux-Barrier[C].Power Conversion Conference,Nagaoka,1997,13(7):649–654.
    [52] T.Hirasa.Expansion of Operating Limits for Permanent Magnet Motor byCurrent Vector Control Considering Inverter Capacity[J].IEEE Transactionson Industry Application,1990,3:866–871.
    [53] S.Morimoto,Y.Tong.Wide Speed Operation of Interior PermanentMagnet Synchronous Motors with High Performance CurrentRegulatro[J].IEEE Transactions on Industry Application,1994,30(4):920–926.
    [54] T M Jahns.Control Techniques for Improved High-Speed Performance ofInterior PM Synchronous Motor Drives[J].IEEE Transactions on IndustryApplication,1990,272-280.
    [55] MacMinn.Control Techniques fro Improved High-speed Performance ofInterior PM Synchronous Motor Drives [J].International Journal of Robustand Nonlinear Control,1995,11(12):1161-1178.
    [56] Seok-Hee Han,Wen L. Soong.Reducing Harmonic Eddy-Current Losses inthe Stator Teeth of Interior Permanent Magnet Synchronous Machines DuringFlux Weakening [J].Transactions on Energy Conversion,2010,2:473-478.
    [57] M. Nasir Uddin.Online Parameter-Estimation-Based Speed Control of PMAC Motor Drive in Flux-Weakening Region [J].IEEE Transactions onIndustry Application,2008,34(5):319-322.
    [58] Tae-Suk Kwon,Gi-Young Choi.Novel Flux-Weakening Control of anIPMSM for Quasi-Six-Step Operation [J].IEEE Transactions on IndustryApplication,2008,16(3):480-482.
    [59] Kou Baoquan, Li Chunyan.Flux-Weakening-Characteristic Analysis of a NewPermanent-Magnet Synchronous Motor Used for Electric Vehicles [J].IEEETransactions on Plasma Scinece,2011,39(1):511-515.
    [60] Yongling Fu,Hesong Liu.Flux-Weakening Control of Nonsalient PolePMSM Having Large Winding Inductance, Accounting for Resistive VoltageDrop and Inverter Nonlinearities[J].IEEE Transactions on Power Electonics,2012,27(2):942-952.
    [61] Cheol Jo,Ji-Yun Seol.Flux-Weakening Control of IPM Motors WithSignificant Effect of Magnetic Saturation and Stator Resistance [J].IEEETransactions on Industry Electonics,2008,55(3):1330-1335.
    [62] Marco Tursini.Feedforward flux-weakening control of surface-mountedperma-nent-magnet synchronous motors accounting for resistive volt-age drop[J].IEEE Transactions on Industry Electonics,2010,57(1):440-445.
    [63] Gianmario Pellegrino,Gianmario Pellegrino.Design Tradeoffs BetweenConstant Power Speed Range, Uncontrolled Generator Operation, and RatedCurrent of IPM Motor Drives [J].IEEE Transactions on IndustryApplication,2011,47(5):1995-2003.
    [64] Chern T L,Wong J S.A novel flux-weakening control scheme based on thefuzzy logic of PMSM drive [C].Proceedings of the2009IEEE InternationalConference on Mechatronics and Automation,2009,1228-1232.
    [65] Song Chi, Member, Zheng Zhang.A Robust, Efficiency Optimized Flux-Weakening Control Algorithm for PM Synchronous Machines [J].IEEProceedings-Control Theory Applications,2007,14(2):544-550.
    [66] Roberto Petrella.Feedforward Flux-Weakening Control of Surface-MountedPermanent-Magnet Synchronous Motors Accounting for Resistive VoltageDrop [J].IEEE Transactions on Industrial Electronics,2010,57(1):440-448.
    [67] Yu X H,Xu J X.Impact of flux weakening current to the iron loss in anIPMSM including PWM carrier effect [C].International Conference onElectrical Machines,2010,245-250.
    [68] Roberto H,Moncada A.Saliency Analysis of PM Machines with FluxWeakening Capability [C].Proceedings of the2008International Conferenceon Electrical Machines,2008,245-273.
    [69] Gianmario Pellegrino.Direct-Flux Vector Control of IPM Motor Drives in theMaximum Torque Per Voltage Speed Range [J].IEEE Transactions onIndustrial Electronics,2010,59(10):116-122.
    [70] Seok-Hee Han.Reducing Harmonic Eddy-Current Losses in the Stator Teethof Interior Permanent Magnet Synchronous Machines During Flux Weakening[J].IEEE Transactions on Energy Conversion,2010,25(2):441-449.
    [71] Longya Xu.Synthesis of dimensionless indexes for IPM machine in variablespeed operations [C].,2008. ICEMS2008. International Conferenceon Electrical Machines and Systems,2008,2814-2819.
    [72] Marco Tursini.Feedforward Flux-Weakening Control of Surface-MountedPermanent-Magnet Synchronous [J].IEEE Transactions on IndustrialElectronics,2010,57(1):2382-2389.
    [73] Cheol Jo.Flux-Weakening Control of IPM Motors With Significant Effect ofMagnetic Saturation and Stator Resistance [J].IEEE Transactions on IndustrialElectronics,2008,55(3):719-722.
    [74] Kou Baoquan.Flux-Weakening-Characteristic Analysis of a New Permanent-Magnet Synchronous Motor Used for Electric Vehicles [J].IEEE Transactionson Plasma Science,2011,39(1):511-515.
    [75] M. Nasir Uddin.Online Parameter-Estimation-Based Speed Control of PMAC Motor Drive in Flux-Weakening Region [J].IEEE Transactions onIndustry Applications,2008,44(5):1046-1055.
    [76] Jiunn-Jiang Chen.Automatic flux-weakening control of permanent magnetsynchronous motors using a reduced-order controller [J]., IEEE Transactionson Power Electronics,2000,15(5):881-890.
    [77] Young-Doo Yoon.New Flux Weakening Control for High Saliency InteriorPermanent Magnet Synchronous Machine Without Any Tables [C].,2007European Conference on Power Electronics and Applications,2007,1-7.
    [78] Kshirsagar.Implementation and Sensorless Vector-Control Design and TuningStrategy for SMPM Machines in Fan-Type Applications [J]., IEEETransactions on Industry Applications,2012,48(6):2402-2413.
    [79] Sanada, M.Control Method Suitable for Direct-Torque-Control-Based MotorDrive System Satisfying Voltage and Current Limitations [J]., IEEETransactions on Industry Applications,2012,48(3):970-976.
    [80] Chen Rong,Deng Zhiquan,Yan Yangguang.Design of current control loopfor permanent magnet synchronous servo system[J].Journal of NanjingUniversity of Aeronautics&Astronautics,2004,36(2):220-225(inChinese).
    [81] Wan Shanming,Wu Fang,Huang Shenghua.Analysis of digital currentcontrol loop for a PMSM[J].Journal of Huazhong University of Science&Technology:Natural Science Edition,2007,35(5):48-51(in Chinese).
    [82]王宏佳,杨明,刘里.交流伺服系统电流环带宽扩展研究[J].中国电机工程学报,2010,30(12):56-62.
    [83] Briz F,Degner M W,Lorenz R D.Analysis and design of current regulatorsusing complex vectors[J].IEEE Transactions on Industrial Applications,2000,36(3)817-825.
    [84]王恩德,黄声华.表贴式永磁同步电机伺服系统电流环设计[J].中国电机工程学报,2012,32(33):82-88.
    [85] B. Cheng and T. R. Tesch.Torque feedforward control technique forpermanent-magnet synchronous motors [J].IEEE Transactions on IndustrialElectronics,2010,57(3):969-974.
    [86] Seung-Ki Sul.Voltage Feedback Current Control Scheme for ImprovedTransient Performance of Permanent Magnet Synchronous Machine Drives[J].IEEE Transactions on Industrial Electronics,2012,59(9):3373-3382.
    [87] T. S. Kwon and S. K. Sul.Novel antiwindup of a current regulator of asurface-mounted permanent-magnet motor for flux-weakening control[J].IEEE Transactions on Industrial Applications,2006,42(5):1293-1300.
    [88] B. H. Bae and S. K. Sul.A novel dynamic overmodulation strategy for fasttorque control of high-saliency-ratio AC motor [J].IEEE Transactions onIndustrial Applications,2005,41(4):1013-1019.
    [89] Masayuki Sanada.Effectiveness of Voltage Error Compensation andParameter Identification for Model-Based Sensorless Control of IPMSM[J].IEEE Transactions on Industrial Applications,2009,45(1):213-221.
    [90] Uddin M N,Abido M A,Rahman M A.Development and Implementationof a Hybrid Intelligent Controller for Interior Permanent Magnet SynchronousMotor Drives [J].IEEE Transaction on Industry Applications,2003,40(1):68-76.
    [91] Lin F J,Lin C H A.Permanent-Magnet Synchronous Motor Servo DriveUsing Self-Constructing Fuzzy Neural Network Controller [J].IEEETransaction on Energy Conversion,2004,19(1):66-72.
    [92] Utkin V I.Sliding Modes in Control and Optimization Utkin [M].Berlin:Springer,1992.
    [93]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社社,1996.
    [94]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [95]张昌凡,王耀南,何静.永磁同步伺服电机的变结构智能控制[J].中国电机工程学报,2002,22(7):13-17.
    [96]王江,李韬,曾启明,等.基于精确线性化解耦的内置式永磁同步电机牵引系统[C].系统仿真学报,2009,21(20):6529-6533.
    [97]于海生,赵克友,郭雷.基于端口受控哈密顿方法的PMSM最大转矩/电流控制[J].中国电机工程学报,2006,26(8):82-87.
    [98]林立,黄苏融.永磁同步电机系统线性化H∞鲁棒控制[J].电机与控制学报,2009,13(4):541-548.
    [99] Seok-Kyoon Kim.Speed and Current Regulation for Uncertain PMSM usingAdaptive State Feedback and Backstepping Control [C].IEEE InternationalSymposium on Industrial Electronics,2009,1275-1280.
    [100] Yikang He.Speed Tracking Control of PMSM with Adaptive Backstepping[C].Proceedings of the6th World Congress on Intelligent Control andAutomation,2006,1986-1989.
    [101]申宇,仇原鹰,马伯渊.增益调度积分型切换项滑模控制器设计[J].系统工程与电子技术,2011,33(9):2079-2084.
    [102]Marcin Morawiec.The Adaptive Backstepping Control of PermanentMagnet Synchronous Motor Supplied by Current Source Inverter[J].IEEE Transaction on Industry Informatics,2013,49(2):1047-1055.
    [103]张春鹏.基于直接反馈线性化的异步电动机非线性控制[J].中国电机工程学报,2003,23(2):99-102.
    [104]周苏.基于反馈线性化的车用无刷直流电机转矩随动控制[J].武汉科技大学学报,2012,35(5):391-397.
    [105]刘贤兴.基于精确线性化解耦的永磁同步电机空间矢量调制系统[J].中国电机工程学报,2007,27(30):55-59.
    [106]林立,黄苏融.基于精确线性化解耦的内置式永磁同步电机牵引系统[J].系统仿真学报,2009,21(20):6529-6533.
    [107] Venugopal, R.Feedback Linearization-Based Position Control of anElectrohydraulic Servo System With Supply Pressure Uncertainty [J]., IEEETransactions on Control Systems Technology,2012,20(4):1092-1099.
    [108] David A. Cartes.Permanent Magnet Synchronous Motor ParameterIdentification using Particle Swarm Optimization [J].International Journal ofComputational Intelligence Research,2008,4(2):211-218.
    [109] D. A. Khaburi and M. Shahnazari.ParametersIdentification of PermanentMagnet Synchronous Machine in Vector Control [C].10th EuropeanConference on Power Electronics and Applications,2003,1357-1360.
    [110] Choi S H,Ko J S,Kim I D,et al.永磁同步电机绕阻电感的饱和效应[J].电工技术学报,2000,15(1):21-25.
    [111] Telford,D.Online identification of induction machine electricalparameters forvector control loop tuning [J]., IEEE Transactions on Industrial Electronics,2003,50(2):253-261.