复杂薄壳结构振动声辐射特性及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的发展,动力机械设备的运行功率增大,振动能量增强,而工程结构日益向轻、薄方向发展,导致结构振动和噪声问题日益严重。在产品设计阶段有效预测产品的声振特性,采取有效措施进行低噪声设计,就可以避免多次反复设计和试制,降低设计费用,加快制造进度。薄壳结构在汽车、船舶、水下航行结构等领域广泛使用,研究复杂薄壳结构在宽频域声振特性的预测及控制技术,对国民经济和国防事业具有重大的意义。
     本文以复杂薄壳结构为研究对象,研究了加筋板结构、夹层结构、基座结构、圆柱壳体及支撑结构与船舶模型在宽频范围的振动与声辐射特性及控制技术;提出了一种阻振性能优良的新型空心阻振结构;研制了一种具有宽频高阻尼特性的丁基橡胶复合阻尼减振胶板,从工程应用角度充分揭示了其对薄壳结构的减振性能;设计了内含多个设备支撑基座的圆柱壳体实验模型装置,研究了圆柱壳体内支撑结构的振动传递与辐射噪声特性;提出了支撑结构的复合阻振技术,开展了复杂薄壳结构在宽频域的声振特性预报,取得了良好的减振降噪效果。本文主要研究内容及结论如下:
     (1)基于复杂结构中高频声振性能分析的FE-SEA混合法,提出用特征尺寸与波长的比值即特征尺度比△划分FEM、SEA和FE-SEA混合法的有效频率区间,提高了建立复杂薄壳结构FE-SEA混合模型的效率。
     (2)提出了一种新型空心阻振结构,开展了阻振机理及数值计算和实验研究。与实心阻振结构相比,空心阻振结构的阻抗失配加剧,阻振效果提高,有效阻振频率向低频移动,可拓宽阻振频率范围。薄壳结构的加强筋可在一定程度上降低板结构的低频振动,而阻振结构主要对中高频振动具有优良的阻振性能。
     (3)以丁基橡胶为主要原材料研制的自粘性复合阻尼减振胶板,对于汽车、船舶等薄壳板筋结构,在宽频范围具有良好的阻尼减振性能。粘贴该复合阻尼减振胶板后,薄壳结构在宽频范围的平均结构损耗因子显著增加,阻尼减振效果随着传播距离的增加而增加。
     (4)设计了内部具有3类设备支撑基座的水下圆柱壳体实验模型装置,采用传递函数灵敏度分析方法,对圆柱壳体结构有限元模型进行修正。修正后圆柱壳体、平台结构前10阶固有频率的计算误差分别小于8%、2%,传递函数计算与实验结果的趋势基本一致。在此基础上,分析了支撑结构参数对圆柱壳体低频振动传递特性的影响规律,为支撑结构声学设计提供了基础。
     (5)通过基座至圆柱壳体结构的振动传递特性分析,揭示了基座类型、结构参数和布置位置对振动传递特性的影响。基座至圆柱壳体表面的振动传递函数、传递率与基座及圆柱壳体的结构振动模态参数有关,在低频时受基座和圆柱壳体结构振动模态的影响较为明显;相同类型的基座,至圆柱壳体表面的等效传递率较接近,基座局部结构参数的调整对等效传递率的影响较小;用机械导纳与传递率为评价指标,所得到的基座至壳体表面的机械导纳与传递率分布的趋势及基本特征一致;在中高频时,提出了采用等效机械导纳或等效传递率评价圆柱壳体表面的平均振动特性。
     (6)提出了质量阻振与阻尼减振相结合的复合阻振技术,开展了圆柱壳体模型支撑结构的复合阻振性能研究。结果表明复合阻振技术较单独刚性阻振、阻尼减振技术具有一定优势,可提高减振降噪效果并拓宽有效减振频率范围。
     本文工作发展了薄壳结构阻振结构的结构形式,研究了薄壳结构的质量阻振性能,研究了丁基橡胶复合阻尼材料的阻尼减振性能,提出了支撑结构的复合阻振技术,研宄了复杂薄壳结构的宽频声振性能混合法建模及数值预报方法,深化了支撑结构的振动传递控制技术,为提高复杂薄壳结构的声学设计水平进行了创造性的工作,取得了一系列具有工程实用价值的结论和成果,对于汽车、船舶等复杂薄壳结构的低噪声设计具有参考价值。
With the development of industry, the operating power of dynamic machinery equipment increases, and its vibration energy is heightened. Nevertheless, the engineering structure develops towards light and thin increasingly, which makes the structural vibration and sound become more severe. Therefore, in the product design stage, provided that the vibro-acoustic characteristics of product were predicted validly, the effective measures to proceed low noise design were carried out in advance, the designs and trial-manufactures repeatedly would be avoided, the cost of design would be reduced and the schedule of manufacture would be accelerated. As the thin shell structure has been widely used in automobile, ship hull and underwater navigation structure and so on, the prediction and control technology on the vibro-acoustic characteristics of complex thin shell structure in wide frequency domain will show great significance not only in astronavigation, automobile, ship, but also in machinery industry.
     In this paper, taking complex thin shell structure as research object, the vibration and radiation characteristics and control technology of stiffened plate (sheet-beam) structure, sandwich structure, base structure, cylindrical shell and its supporting structure and ship model have been studied in the wide range of frequency. A new pattern hollow blocking mass structure with excellent vibration-isolating performance was put forward. Besides, a kind of butyl-rubber composite damping rubber sheet with high damping characteristics was developed, and whose vibration damping performance in thin shell structure was uncovered from the perspective of engineering application. The cylindrical shell experimental model containing several equipment supporting pedestals was designed, and the vibration transmission and noise radiation characteristics of these inner supporting structures were studied. In addition, the composite blocking technology of supporting structure was put forward, a series of vibro-acoustic prediction were carried out on the complex thin shell structure such as cylindrical shell and ship cabins in the wide range of frequency, and a good effect on reducing vibration and noise was obtained. The main research contents and conclusions of this paper as follows:
     Base on the hybrid FE-SEA method applied on the vibro-acoustic characteristic analysis of complex structure in the mid-high frequency domain, the parameters of the ratio of characteristic dimension to wavelength used to divide each effective frequency domain of FEM, SEA and hybrid FE-SEA method was defined, which improved the efficiency of building complex thin shell structural hybrid FE-SEA model.
     A new type pattern hollow blocking mass structure was put forward, whose vibration-isolating mechanism was studied by numerical calculation and experiment. Compared with solid blocking mass, the impedance mismatching of hollow blocking mass was increased, which lead to its blocking performance be improved. The effective blocking frequency shifted toward low frequency domain, which widened the blocking frequency domain of hollow blocking mass. The stiffeners of thin shell structure could reduce the vibration of plates in low frequency to some extent, while the blocking mass had an excellent vibration-isolating performance in mid-high frequency domain.
     A kind of self-adhesive composite damping rubber sheet, with butyl rubber as main raw material, has good damping vibration attenuation performance for the thin shell structure such as ship in the wide range of frequency. After pasted with these composite damping sheets, the average structural loss factor of thin shell structure increased significantly in the wide range of frequency, whose damping performance increased with the propagation distance.
     One underwater cylindrical shell experimental model containing3kinds of equipment supporting pedestals was designed. By the analysis method of transfer function sensitivity, the finite element model of cylindrical shell structure was amended. The calculation errors of the first10order natural frequencies of the cylindrical shell and the internal platform structure were less than8%and2%respectively after amended. Besides, the trends of calculated transfer function were basically identical with experimental results. On this basis, the influence rule on the vibration transmission characteristics of supporting structures inside the cylindrical shell in low frequency was analyzed, which provided the foundation for the acoustic design of supporting structures.
     By analyzing the vibration transmission characteristics from pedestals to cylindrical shell structure, the influences on vibration transmission characteristics of pedestal type, structural parameters and layout were revealed. The vibration transfer function and transmissibility from pedestals to cylindrical shell structure had connection with structural modal parameters, which was influenced by pedestal and cylindrical shell structural vibration modes obviously in low frequency. The equivalent transmissibility from the same type pedestals to the cylindrical shell approached identical much the same, and the adjustment of the local structural parameters of pedestals also had a little effect on the equivalent transmissibility. Taking mechanical admittance and transmissibility as evaluation index, the distributional trends and essential characteristics of mechanical admittance and transmissibility from pedestals to the cylindrical shell were identical. In the mid-high frequency domain, taking the equivalent mechanical admittance and equivalent transmissibility as evaluating the average vibration characteristics of cylindrical shell was provided.
     The composite vibration-isolating technology combining blocking mass and damping vibration attenuation was provided, and the study on the composite blocking performance of the internal supporting structures was carried out. The results showed that the composite vibration-isolating technology was advantageous than rigid blocking or damping vibration attenuation technology solely, which could improve the vibration and noise reduction performance and widened the effective vibration-isolating frequency domain.
     In this paper, the structural styles of thin shell structural blocking mass was developed, and a kind of butyl-rubber composite damping rubber sheet was also developed. Based on studying the mass blocking and damping vibration attenuation performance, the composite vibration-isolating technology of inner structure was put forward, and the vibro-acoustic performance hybrid modeling and numerical prediction method on complex thin shell structure in wide frequency domain was studied, which deepened the vibration transmission control technology of inner structure and carried out creative work in order to improve the acoustic design level of complex thin shell structure. Thus a series of conclusion and achievements with engineering practical value were obtained, which had a reference value in the low noise design of the complex thin shell structures in automobile and ship hull and so on.
引文
[1]伍先俊,朱石坚,曹建华,等.结构声振研究的功率流方法[J].力学进展,2006.36(3):363-372.
    [2]陈晓利,盛美萍.多加筋圆柱壳体振动特性的导纳法研究[J].振动与冲击,2007,26(4):133-135.
    [3]卢兆刚.基于混合FE-SEA方法的汽车薄壁件中频声学特性预测及优化研究[D].浙江大学博士学位论文,2011年2月
    [4]刘小勇,盛美萍,行晓亮,等.双层圆柱壳噪声预报及统计能量参数灵敏度分析[J].振动与冲击,2007,26(7):50-53.
    [5]N. H. Farag, Pan. Dynamic response and power flow in three-dimensional coupled beam structures, i. analytical modeling[J]. J.Acoust.Soc.Am,1997,102(1):315-325.
    [6]Stefano Gabriele, Antonio Culla. Comparison of statistical and interval analysis for the energy flow uncertainties in structural vibrating systems[J]. Journal of Sound and Vibration, 2008(314):672-692.
    [7]韩旭,郭永进,朱平,等.基于诺顿等效系统功率流计算的多维振动传递特性研究[J].振动与冲击,2007,26(5):44-48.
    [8]解妙霞,陈花玲,吴九汇.圆柱壳高频弯曲振动的能量有限元分析[J].西安交通大学学报,2008,42(9):1113-1116.
    [9]金广文,何琳,姜荣俊.基于频响函数求逆法的双层圆柱壳体速度场重构[J].振动与冲击,2007,26(8):60-63.
    [10]金广文,何琳,姜荣俊.基于速度场重构的双层圆柱壳体振动传递特性试验研究[J].振动与冲击,2007,26(10):180-183.
    [11]金广文,章林柯,缪旭弘,等.水下加肋双层圆柱壳体振动传递特性分析[J].振动与冲击,2011,30(5):218-221.
    [12]金广文,姜荣俊,陈美霞,等.不同参数下的单、双层圆柱壳体速度场研究[J].振动与冲击,2006,25(3):169-175.
    [13]金广文,何琳.水下双层圆柱壳体结构辐射噪声实时预报方法研究[J].声学学报,2010,35(4):427-433.
    [14]王雪仁,缪旭弘,贾地.子结构方法在圆柱壳体振动特性分析中的应用研究[J].中国舰船研究,2009,4(5):8-13,19.
    [15]P.Malekzadeh, M.Farid, P.Zahedinejad, et al. A three-dimensional layerwise-differential quadrature free vibration analysis of laminated cylindrical shells[J]. International Journal of Pressure Vessels and Piping,2008(85):450-458.
    [16]Seyyed M. Hasheminejad, Yaser Mirzaei. Free vibration analysis of an eccentric hollow cylinder using exact 3d elasticity theory[J]. Journal of Sound and Vibration,2009(326):687-702.
    [17]Zhang L, Xiang Y. Vibration of open circular cylindrical shells with intermediate ring supports[J].International Journal of Solids and Structures,2006(43):3705-3722.
    [18]B. Liu, Y.F. Xing, M.S. Qatu. Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells[J]. Composite Structures,2011.
    [19]HU X R, SUN Y K, YUAN J, et al. Multivariate statistical analysis of electron energy-loss spectroscopy in anisotropic materials[J].Ultramicroscopy,2008(108):465-471.
    [20]M. Rougui, F. Moussaoui, R. Benamar. Geometrically non-linear free and forced vibrations of simply supported circular cylindrical shells:a semi-analytical approach[J]. International Journal of Non-Linear Mechanics,2007(42):1102-1115.
    [21]Marco Amabili. Nonlinear vibrations of laminated circular cylinder shell:Comparison of different shell theories[J].Composite Structures,2011(94):207-220.
    [22]陈正翔,李春祥,江松青.材料不连续壳段对圆柱壳结构传播能量流的插入影响[J].振动工程学报,2000,13(3):346-352.
    [23]I. Bosmans, G. Vermeir. Diffuse transmission of structure-borne sound at periodic junctions of semi-infinite plates[J]. J.Acoust.Soc.Am,,1997,101(6):3443-3456.
    [24]YUAN C N, ZHU X R, ZHANG G L, et al. Indirect engineering estimation of ferce excited by machinery vibration sources of ship[J]. Journal of Ship Mechanics,2007, 11(6):961-973.
    [25]Arnaud Charpentier, Prasanth Sreedhar, Kazuki Fukui, et al. Using the hybrid FE-SEA method to predict structure-borne noise transmission in a trimmed automotive vehicle[C].SEA international,2007.
    [26]S Ahang G F, Zhang A F, Wan Z G. Optimum design of cylindrical shells under external hydrostatic pressure[J]. Journal of Ship Mechanics,2010,14(12):1384-1392.
    [27]I. Senjanovic, S. Tomasevic, N. Vladi. An advanced theory of thin-walled girders with application to ship vibrations[J]. Marine Structures,2009(22):387-437.
    [28]M K Wu, Torgeir Moan. Efficient calculation of wave-induced ship responses considering structural dynamic effects[J]. Applied Ocean Research,2005(27):81-96.
    [29]Seyyed M. Hasheminejad, M. Rajabi. Sound resonance scattering from a submerged functionally graded cylindrical shell[J]. Journal of Sound and Vibration,2007(302):208-228.
    [30]Seyyed M. Hasheminejad, Mahdi Azarpeyvand. Harmonic radiation from a liquid-filled spherical Sound lens with an internal eccentric spherical source[J]. Mechanics Research Communications,2004(31):493-506.
    [31]Seyyed M. Hasheminejad, Ako Bahari, Saeed Abbasion. Modelling and simulation of Sound pulse interaction with a fluid-filled hollow elastic sphere through numerical Laplace inversion[J]. Applied Mathematical Modelling,2011(35):22-49.
    [32]K. Daneshjou, M.M. Shokrieh, M. Ghorbani Moghaddam, et al. Analytical model of sound transmission through relatively thick fgm cylindrical shells considering third order shear deformation theory[J]. Composite Structures,2010(93):67-78.
    [33]张军锋,王敏庆,刘彦森,等.空气中及水下单层结构的隔声相似性研究与实验验证[J].声学技术,2007,26(4):683-686.
    [34]石焕文,盛美萍,孙进才.圆柱壳水中平面振动和声辐射的导纳法研究[J].西北大学学报(自然科学版),2006,36(3):359-363.
    [35]K. S. Sum, J. Pan. An analytical model for bandlimited response of Sound-structural coupled systems, i. direct sound field excitation[J]. J.Acoust.Soc.Am,1998,103(2):911-923.
    [36]靳国永,杨铁军,刘志刚,等.弹性板结构封闭声腔的结构-声耦合特性分析术[J].声学学报,2007,32(2):178-188.
    [37]陈馨蕊,郝志勇,杨陈,等.结构-声耦合法在汽车仪表板隔声性能仿真分析中的应用[J].振动与冲击,2009,28(8):154-157.
    [38]Seyyed M.Hansheminejad, Ali Ahamdi-Savadkoohi, et al. Vibro-Sound behavior of a hollow FGM cylinder excited by on-surface[J].Composite Structures,2010(92):86-96.
    [39]汤渭霖,何兵蓉.水中有限长加肋圆柱壳体振动和声辐射近似解析解[J].声学学报,2001,26(1):1-5.
    [40]姚熊亮,计方,钱德进,等.双层壳舷间复合托板隔振特性研究[J].振动、测试与诊断,2010,30(2):123-127.
    [41]彭旭,关珊珊,骆东平,等.内部声激励下加筋圆柱壳的声辐射特性分析[J].固体力学学报,2007,,28(4):355-361.
    [42]王祖华,彭旭,谢官模.部分敷设阻尼层的有限长环肋圆柱壳声辐射计算方法研究[J].船舶力学,2010,14(4):430-438.
    [43]张俊杰.基于不同理论的流场中圆柱壳振动能量流和辐射声功率研究[D].华中科技大学博士论文,2010.
    [44]曾革委,黄玉盈,谢官模,等.外壳板采用纵骨加强的双层加肋圆柱壳水下声辐射分析[J].中国造船,2003,44(2):45-52.
    [45]孙雪荣,朱锡.船舶水下结构噪声的研究概况与趋势[J].振动与冲击,2005,24(1):106-113.
    [46]徐张明,汪玉,华宏星,等.船舶结构的建模及水下振动和辐射噪声的FEM/BEM计算[J].船舶力学,2002,6(4):89-95.
    [47]Kazuhiro IIjima. Tetsuya Yao, Torgeir Moan, et al. Structural response of a ship in severe seas considering global hydroelastic vibrations[J].Marine Structures,2008(21):420-445.
    [48]徐张明,汪玉,华宏星,等.双层壳体的船舶动力舱振动与声辐射的有限元结合边界元数值计算[J].中国造船,2002,13(4):39-44.
    [49]耿烽.铝合金城市轨道车辆室内噪声预测与控制研究[D].江苏大学博士论文,2011.
    [50]张阿漫,钱德进,姚熊亮,等.结构型式对双层壳声辐射特性影响研究[J].中国舰船研究,2007,2(3):1-6.
    [51]金广文,何琳,姜荣俊,等.流固耦合对双层圆柱壳体振动特性的影响[J].武汉理工大学学报:交通科学与工程版,2007,31(5):882-885.
    [52]朱锡,胡忠平,石勇,等.预报基座结构噪声的有限元方法研究[J].海军工程大学学报,2003,15(6):33-36.
    [53]Roger Ghanem, Abhijit Sarkar. Reduced models for the medium-frequency dynamics of stochastic systems[J].Soundal Society of America,2003(113):834-836.
    [54]贺晨,盛美萍,石焕文.圆柱壳体振动声辐射效率数值计算分析[J].噪声与振动控制,2006(4):51-54.
    [55]姚熊亮,张煦,刘文贺,等.应力参数对圆柱壳声辐射影响的初探[J].哈尔滨工程大学学报,2007,28(11):1191-1195.
    [56]艾海峰,陈志坚,高翔,等.有限长圆柱壳结构声学设计模型[J].海军工程大学学报,2011,23(2):47-51.
    [57]姚熊亮,钱德进,张爱国,等.内部含基座的加筋双层壳振动与声辐射计算[J].中国舰船研究,2008,3(1):31-36.
    [58]Richard L. Weaver. Equipartition and mean-square responses in large undamped structures [J]. J.Acoust.Soc.Am,2001,102(1):315-325.
    [59]A. Le Bot. Derivation of statistical energy analysis from radiative exchanges[J]. Journal of Sound and Vibration,2007(300):763-779.
    [60]www.esi-group.com. VA One 2010.5 Validation & QA Document.
    [61]姚德源,王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社,1995年4月.
    [62]殷学文,崔宏飞,顾晓军,等.功率流理论、统计能量分析和能量有限元法之间的关联性[J].船舶力学,2007,11(4):637-646.
    [63]Courtney B. Burroughs, Raymond W. Fischer, Fred R. Kern. An introduction to statistical energy analysis Courtney burroughs [J]. J.Acoust.Soc.Am,1997,101(4):1779-1789.
    [64]程广利,朱石坚,伍先俊,等.统计能量分析法及其损耗因子确定方法综述[J].船舶工程,2004,26(4):10-15.
    [65]A. Le Bot, VCotoni. Validity diagrams of statistical energy analysis[J] Journal of Sound and Vibration,2010(329):221-235.
    [66]B.R.Mace. Statistical energy analysis:coupling loss factors, indirect coupling and system modes[J]Journal of Sound and Vibration,2005(279):141-170.
    [67]Lin T R, Andy C.C. Tan, Yan C, Douglas Hargreaves, et al. Vibration of L-shaped plates under a deterministic force or moment excitation:a case of statistical energy analysis application J]. Journal of Sound and Vibration,2011(330):4780-4797.
    [68]P. Pagnarsson, B.Pluymers, S.DonDers, W.Desmet. et al. Subcomponent modelling of input parameters for statistical energy analysis by using a wave-based boundary condition[J] Journal of Sound and Vibration,2010(329):96-108.
    [69]Svannte Finnveded. A quantitative criterion validating coupling power proportionality in statistical energy analysis[J]. Journal of Sound and Vibration,2011(330):87-109.
    [70]V. Cotoni, R.S. Langley, P.J. Shorter, et al. A statistical energy analysis subsystem formulation using finite element and periodic structure theory[J]. Journal of Sound and Vibration, 2008(318):1077-1108.
    [71]Orioles Guasch. A direct transmissibility formulation for experimental statistical energy analysis with no input power measurements[J]. Journal of Sound and Vibration,2011(330):6223-6236.
    [72]向树红,王大钧,于丹,王招霞,等.统计能量分析参数的综合确定方法及应用[J].振动工程学报,2004,17(4):477-482.
    [73]V. Cotoni, R.S. Langler, M.R.F. Kidner, et al. Numerical and experimental validation of variance prediction in the statistical energy analysis of built-up systems[J]. Journal of Sound and Vibration, 2005(288):701-728.
    [74]雷烨,盛美萍.复杂耦合系统SEA求解方法研究[J].振动与冲击,2010,29(7):159-161,168.
    [75]伍先俊,朱石坚,曹建华,等.缩减的统计能量方程及其特性研究[J].振动与冲击,2007,26(5):11-13.
    [76]L. Ji, B.R. Mace. Statistical energy analysis modelling of complex structures as coupled sets of oscillators:Ensemble mean and variance of energy[J] Journal of Sound and Vibration, 2008(317):760-780.
    [77]盛美萍.复杂耦合系统的统计能量分析及其应用[J].中国工程科学,2002,4(6):77-84.
    [78]廖庆斌,李舜酩.统计能量分析中的响应统计估计及其研究进展[J].力学进展,2007,37(3):337-345.
    [79]刘海生,杨春庄,陈士杰,等.统计能量分析方法声振预测应用研究[J].声学技术,2010,29(2):192-197.
    [80]陈萍. AutoSEA2的声学-结构灵敏度分析软件开发与应用研究[D].西北工业大学硕士论文,2008.
    [81]邓江华,刘献栋,李兴虎,等.车身阻尼层结构的声灵敏度分析及优化[J].噪声与振动控制,2009(1):54-57.
    [82]彭伟才,何锃.基于统计能量模型的辐射声功率灵敏度分析[J].中国舰船研究,2009,4(6):11-14.
    [83]E.L. Jansen. A perturbation method for nonlinear vibrations of imperfect structures:application to cylindrical shell vibrations[J]. International Journal of Solids and Structures 2008(45):1124-1145.
    [84]赵群,张义民,赵晋芳.振动传递路径的功率流传递度灵敏度分析[J].振动与冲击,2009,28(7):183-186.
    [85]伍先俊,朱石坚.统计能量软件AutoSEA应用技术研究[J].噪声与振动控制,2007(5):87-89.
    [86]K. Renji. Estimation of spectral density using statistical energy analysis[J]. Journal of Sound and Vibration,2004(275):447-451.
    [87]K. Renji, P.S. Nair, S. Narayanan. Sound response behaviour of panels mounted with equipment and its prediction using statistical energy analysis[J]. Journal of Sound and Vibration, 2006(289):851-870.
    [88]M. Kassem, C. Soize, L. Gagliardini. Energy-density field approach for low-and medium-frequency vibrosound analysis of complex structures using a statistical computational model[J]. Journal of Sound and Vibration,2009(321):849-863.
    [89]D.J. Chappell, S. Giani, G. Tanner. Dynamical energy analysis for built-up Sound systems at high frequencies[J]. Journal of Sound and Vibration,2006(290):842-858.
    [90]叶武平,易明,靳晓雄,等.运用统计能量分析法进行轿车内室噪声的仿真[J].同济大学学报,2001,29(9):1066-1071.
    [91]刘小勇,刘志宏,行晓亮,等.SEA在汽车室内噪声控制中的应用研究[J].噪声控制,2007,31(1):66-68.
    [92]王彦琴,盛美萍,孙进才,等.统计能量分析预测飞机壁板隔声量及舱室内声场分布[J].声学技术,2003,22(4):219-222.
    [93]胡莹,陈克安,潘凯,等.基于统计能量分析的飞机舱室降噪研究[J].振动与噪声控制,2007(2):65-68.
    [94]丁少春,朱石坚,刘凯,等.双振子系统的瞬时统计能量分析[J].武汉理工大学学报:交通科学与工程版,2009,33(2):287-290.
    [95]聂旭涛,雄飞峤.运用统计能量分析法预示空空导弹舱内动力学环境[J].振动与冲击,2007,26(4):140-143.
    [96]缪旭弘,陶景桥,姚熊亮,等.基于灰色理论的水下双层壳体振动与声辐射统计能量分析[J].船舶力学,2006,10(2):146-152.
    [97]李冰茹,王宣银,葛辉良,等.基于统计能量分析方法的壳体系统振动声辐射特性影响因素研究[J].兵工学报,2008,29(8):1009-1015.
    [98]陈美霞,袁自强,汪浩,等.基于振动测量的加肋圆柱壳中、高频振动预报[J].中国舰船研究,2007,2(4):31-36.
    [99]C. Wang, J.C.S. Lai. Discussions on "on the number of modes required for statistical energy analysis-based calculations" [J]. Journal of Sound and Vibration,2005(281):475-480.
    [100]伍先俊,朱石坚.统计能量法及其在船舶声振预测中的应用综述[J].武汉理工大学学报:交通科学与工程版,2004,28(2):212-215.
    [101]K. Renji, M. Mahalakshmi. High frequency vibration energy transfer in a system of three plates connected at discrete points using statistical energy analysis[J]. Journal of Sound and Vibration, 2006(296):539-553.
    [102]王海英.夹层结构振动声辐射特性研究[D].大连理工大学博士学位论文,2009.
    [103]李湘南,林哲.船舶机械设备联接处非保守耦合损耗因子的研究[J].振动与冲击,2005,24(4):89-92.
    [104]C. Hopkins. Experimental statistical energy analysis of coupled plates with wave conversion at the junction[J]. Journal of Sound and Vibration,2009(322):155-166.
    [105]俞孟萨,李东升.统计能量法计算声呐自噪声的水动力噪声分量[J].船舶力学,2004,8(1):99-105.
    [106]Ma J, Li D. Study of shipboard noise prediction with SEA[J] Journal of Dalian University of Technology,2003,43(5):645-649.
    [107]金建海,冷文浩,吴文伟.船舶舱室噪声SEA计算的快速建模及其可视化[J].船舶力学,2010,14(7):805-811.
    [108]吴刚,杨德庆.大型集装箱船振动及噪声数值计算建模方法研究[J].振动与冲击,2008,27(5):68-73.
    [109]张娟,李天匀,朱翔,等.基于AutoSEA2的船舶典型动力源辐射噪声分析[J].船舶力学,2008,12(5):819-823.
    [110]郦茜,吴卫国.基于AutoSEA的高速船静噪声预报与控制[J].中国舰船研究,2008,3(1):28-30.
    [111]刘凯,朱石坚,丁少春.基于AutoSEA的鱼雷结构辐射噪声预报方法[J].鱼雷技术,2010,18(2):91-94.
    [112]R. S.Langley, P. Bremner. A hybrid method for the vibration analysis of complex structural-Sound systems[J]. J.Acoust.Soc.Am,1999,105(3):1657-1671.
    [113]P.J.Shorter, R.S.Langler. Vibro-Sound analysis of complex systems[J]. Journal of Sound and Vibration,2005(288):669-699.
    [114]Robin S. Langley, Julio A. Cordioli. Hybrid deterministic-statistical analysis of vibro-Sound systems with domain couplings on statistical components[J]. Journal of Sound and Vibration. 2009(321):893-912.
    [115]Phil Shorter, Vincent Cotoni, Robin Langler, et al. Numerical and experimental validation of the hybrid FE-SEA method[C].The 2005 Congress and Exposition on Noise Control Engineering, 2005.
    [116]www.esi-group.com. VA One 2010.5 Tutorials guide.
    [117]孙进才,王敏庆关,盛美萍.统计能量分析(SEA)研究的新进展[J].自然科学进展,1998,8(2):129-136.
    [118]陈书明,王登峰,昝建明.基于FE-SEA混合模型的轿车车内噪声预测[J].汽车工程,2011,33(3):236-240.
    [119]Arnaud Charpentier, Prasanth Sreedhar, Kazuki Fukui, et al. Using the hybrid FE-SEA method to predict structure-borne noise transmission in a trimmed automotive vehicle[C].SEA international,2007.
    [120]Arnaud Charpentier, Prasanth Sreedhar, Bryce Gardner, et al. Use of a hybrid FE-SEA model of a trimmed vehicle to improve the design for interior noise[C].SEA international,2009.
    [121]潘凯.基于VA One的飞机舱内噪声预计方法研宄[J].测控技术,2008,27(3):22-23,26.
    [122]V Jayachandran, M. W.Bonilha. A hybrid sea modal technique for modeling structural-Sound interior noise in rotorcraft[J]. J.Acoust.Soc.Am,2003,113(3):1448-1454.
    [123]邱斌,吴卫国,刘恺.高速船全频段舱室噪声仿真预报[J].中国舰船研究,2011,6(6):49-53.
    [124]杨德庆,戴浪涛.浮式生产储油船振动噪声混合数值预报[J].海洋工程,2006,24(1):1-8.
    [125]韦璇,马玉璞,孙社营,等.舰艇声隐身技术和材料的发展现状与展望[J].舰船科学技术,2006,28(6):22-27.
    [126]缪旭弘,王仁乾,顾磊,等.去耦隔声层性能数值分析[J].船舶力学,2005,9(5):125-131.
    [127]范玉岭,王敏庆.复合板隔声性能分析[J].噪声与振动控制,2007(2):90-93.
    [128]姚熊亮,刘庆杰,翁强,等.水下加筋圆柱壳体的振动与近场声辐射研究[J].中国舰船研究,2006,1(2):13-19.
    [129]Zhang J J, Li T Y, Ye W B, Zhu X, et al. Sound radiation of damped cylindrical shell with arbitrary thickness in the fluid field[J]. Journal of marine science and application, 2010(9):431-438.
    [130]张阿漫,姚熊亮,钱德进,等.背衬对隔声去耦瓦吸声性能的影响[J].传感器与微系统,2008,27(2):53-55.
    [131]邹元杰.水中阻尼复合壳体结构声振特性的数值分析[D].大连理工大学博士学位文,2004.
    [132]陈强,强宝民,何润生,等.几种参数对复合材料圆柱壳体振动特性的影响[J].中国工程机械学报,2007,5(4):394-398.
    [133]石勇,朱锡,胡忠平.方钢刚性减振结构对组合板振动影响的计算分析[J].海军工程大学学报,2003,15(2):45-49.
    [134]刘见华,金成定,李喆.多个阻振质量阻抑结构声的传递[J].上海交通大学学报,2003,37(8):1206-1208.
    [135]M.N. Ichchou, J. Berthaut, M. Collet. Multi-mode wave propagation in ribbed plates, part II:predictions and comparisons [J]. International Journal of Solids and Structures 2008(45):1196-1216.
    [136]黎胜,赵德有.平面声波由空气经加肋板向水中传输的数值计算研究[J].声学学报,2002,27(2):112-116.
    [137]刘洪林,王德禹.阻振质量块对板结构振动与声辐射的影响[J].振动与冲击,2003,22(4):76-79.
    [138]石勇,朱锡,刘润泉.方钢隔振结构对结构噪声隔离作用的理论分析与试验[J].中国造船,2004,45(2):36-42.
    [139]刘见华,金咸定,李喆.阻振质量阻抑结构声的传递[J].上海交通大学学报,2003,38(8):1201-1204.
    [140]计方,路晓东,姚熊亮.船体结构粘弹性夹层阻抑振动波传递特性研究[J].应用基础与工程科学学报,2012,20(3):464-471.
    [141]丁少春,朱石坚,俞翔,等.运用功率流方法对舰艇水下声辐射特性的研究[J].武汉理工大学学报(交通科学与工程版),2008,32(2):263-266.
    [142]李晓政,黄其柏,王勇.车辆室内噪声的统计能量分析优化仿真[J].噪声与振动控制,2005(3):29-32.
    [143]王登峰,陈书明,曲伟.车内噪声统计能量分析预测与试[J].吉林大学学报(工学板,增刊1),2009,39(1):69-73.
    [144]Cremer L, Heckl M, Ungar E E. Structure-borne Sound[M]. Second edition. Berlin:Springer-Verlag,1988.
    [145]申华,温华兵,陆金铭,等.空心方钢阻振质量结构的阻振效果研究[J].中国造船,2013,54(1):101-107.
    [146]Che C D.Chen D S. Structure-borne sound attenuation in a multi-corner structure with attached blocking mass[J]. Journal of Ship Mechanics,2010,14(9):1052-1064.
    [147]车驰东,陈端石,等.转角处阻振质量对平面纵波-弯曲波传递衰减作用的研究[J].船舶力学,2011,15(1-2):132-142.
    [148]车驰东,陈端石,等.成任意角度连接的两块平板转角处阻振质量对平面弯曲波传递的影响分析[J].声学学报,2007,32(3):282-288.
    [149]田正东,计方.阻振质量刚性隔振在舰船基座结构中应用研究[J].船舶力学,2011,15(8):906-914.
    [150]张瑾,马兴瑞,韩增尧,等.中频力学环境预示的FE-SEA混合方法研究[J].振动工程学报,2012,25(2):206-214.
    [151]王献忠,孙龙泉,姚熊亮,等.含阻振质量基座的圆柱壳隔振特性[J].华中科技大学学报(自然科学版),2012,40(5):50-53.
    [152]Xia Zhaowang, Liu Xiandong, Shan Yingchun. Coupling Simulation Algorithm of a Rotating Flat-plate Blade with Particle Dampers under Centrifugal Forces[J]. Journal of Vibration and Sounds, Transactions of the ASME,2011,133(4):215-231
    [153]夏兆旺,温华兵,刘献栋.颗粒阻尼器结构振动特性耦合算法仿真与试验[J].农业机械学报,2011,(8):26-29.
    [154]M. BenRomdhane, N.Bouhaddi ect. The loss factor experimental characterisation of the non-obstructive particles damping approach[J].Mechanical Systems and Signal Processing,2013,38(2):585-600.
    [155]吴文伟,吴崇健,沈顺根,等.双层加肋圆柱壳振动和声辐射研究[J].船舶力学,2002,6(1):44-51.
    [156]王宏伟,赵德有.含流体夹层阻尼复合板隔声性能研究[J].大连理工大学学报,2000,40(4):395-398.
    [157]李江涛.复合结构基座减振特性的理论与实验研究[D].上海交通大学博士论文,2010.
    [158]郑辉,陈端石,骆振黄.阻尼复合板的结构参数配置与传声损失[J].振动工程学报,1994,7(4):297-305.
    [159]Yao X L, Ji F. Attenuation of the flexural wave transmission through impedance mismatch hull base[J]. Journal of Ship Mechanics,2010,14(6):678-689.
    [160]黄建国,杨家军,廖道训.阻尼复合结构的隔声性能与参数配置[J].华中理工大学学报, 1998,26(2):4-6.
    [161]罗忠,朱锡,简林安,等.三明治夹芯基座阻抗阻尼隔振特性分析[J].哈尔滨工程大学学报,2009,30(9):980-985.
    [162]P.J.Shorter. Wave propagation and damping in linear viscoelastic laminates[J].J.Acoust.Soc.Am, 2004,115(5):1917-1925.
    [163]石勇,刘宇,刘鑫,等.夹层复合材料在潜艇声隐身结构中的应用及其相关技术研究[J].材料开发与应用,2008,23(6):21-25.
    [164]史晓峰,陶建成,邱小军.点声源入射下无限大平板的隔声[J].声学学报,2008,33(3):268-274.
    [165]殷学文,黄捷,崔宏飞,等.舰艇结构振动和声学特性研究进展[J].振动与冲击,2008,27(4):85-88.
    [166]陈前.弹性一一粘弹性复合结构动力学研究[D].南京航空学院博士论文,1987年
    [167]Bistsie.F. The structural-Sound energy finite element method and energy boundary element method[D].Ph.D. Thesis.Purdue Iuniversity,1996.
    [168]R.H.Lyon,G. Maidanik.Power flow between linearly couPled OscillatorS[J] Journalof Acousties soeiety of America,1962,34(5).
    [169]R.H.Lyon. Statistical energy analysis of dynamical systems:Theory and applications[M].M.I.T.Press,1975.
    [170]Clarkon B L. Pope R J. Experimental determination of modal densities and loss factors of plats and cylinders[J]. Journal of Sound and Vibration,1981,77(4):535-549
    [171]D. Reynolds, J. Mcconnachie, P. Bettess, et, Reverse adaPtivity a new evolutionary tool for struetural optimization[J].International Journal for numerical methods in engineering,1999, 45(5):529-552.
    [172]Langley R S. Shorter P J. Cotoni V. A hybrid FE-SEA method for the analysis of complex vibro-Sound systems[C]. Proceedings of NOVEM 2005.
    [173]马大猷.噪声与振动控制工程手册[M].机械工业出版社,2002.
    [174]姚熊亮,计方,钱德进,等.壳间连接介质对双层壳声辐射性能的影响[J].声学技术,2009,28(3):312-317.
    [175]高菊,陈美霞,陈清坤,等.不同流场中双层圆柱壳层间声振传递特性研究[J].中国舰船研究,2010,5(5):34-39.
    [176]R.S.Langley. On the diffuse field reciprocity relationship and vibrational energy variance in a random subsystem at high frequencies[J]. Journal of the Sound Society of America,2007,121: 913-921.
    [177]韩敬永,基于统计能量及混合法的航天器有效载荷声振环境预示[D],哈尔滨工业大学硕士论文,2012.07
    [178]钱斌.圆柱壳组合系统振动噪声的有效导纳功率流法研究[D].西北工业大学博士学位论文,2002.
    [179]盛美萍,王敏庆,孙进才等.噪声与振动控制技术基础[M].科学出版社,2001.
    [180]Foin O, Berry A. Sound radiation from an elastic baffled rectangular plate covered by a decoupling coating and immersedin a heavy Sound fluid[J]. J Sound Soc. Am.,2000,107(5): 2501-2510.
    [181]侯守武,焦映厚,陈照波.舰船典型设备基座阻尼结构振动特性试验研究[M].第十届全国振动理论及应用学术会议论文集,2011:110-114.
    [182]王献忠,孙龙泉,邱忠辉.部分敷设阻尼材料的水下结构声辐射分析[J].振动与冲击,2012,31(18):122-127.
    [183]于大鹏,赵德有,汪玉.船舶声学建模和阻尼结构对舱室噪声影响研究[J].船舶力学,2010,14(5):539-548.
    [184]仇远旺,章炜,郑发彬.船舶模型阻尼减振试验研究[J].工程与试验,2010,50(4):22-24.
    [185]桂洪斌.船舶与海洋工程结构振动控制问题的若干探讨[D].上海交通大学博士后学位论文,2003年06月
    [186]常冠军编.粘弹性阻尼材料[M].北京:国防工业出版社,2012年10月.
    [187]郭夕军,孙晓冬,周兵.一种船舶甲板粘弹性复合阻尼减振胶板,中国发明专利,CN102407628A,2012-04-11.
    [188]罗忠,朱锡,梅志远,等.夹芯复合材料结构阻尼特性研究[J].振动与冲击,2008,27(11):134-136.
    [189]温华兵,左言言,复兆旺,等.加筋圆柱壳体支撑结构振动传递特性试验研宄[J].船舶力学,2013,17(7):785-792
    [190]朱石坚,何琳.船舶机械振动控制[M].北京:国防工业出版社,2006.
    [191]霍睿,施引.功率流隔振效率评价指标及其与振级落差的关系[J].中国造船2007,48(3):86-92.
    [192]许树浩,桂洪斌.浮筏系统隔振性能的功率流评价指标[J].船舶力学,2012,16(5):567-572.
    [193]Wang Jinting,Lu Dandan etc. Accuracy of the half-power bandwidth method with a third-order correction for estimating damping in multi-DOF systems[J]. Earthquake Engineering and Engineering Vibration,2013,12(1):33-38.
    [194]FEMTools Theroreticak Manual.Version2.1,www.femtools.com
    [195]温华兵.船舶浮筏隔振系统的抗冲击性能分析与试验研究[D].江苏科技大学硕士学位论文,2005年04月
    [196]温华兵,王国治.基于频响函数相关系数灵敏度的浮筏舱段有限元模型修正[J].江苏科技大学学报(自然科学版),2005,19(6):75-79.
    [197].温华兵,王国治.基于频响函数灵敏度分析的鱼雷模型有限元模型修正[J].鱼雷技术,2006,14(3):10-14.
    [198]P.J.Shorter, R.S.Langley. On the reciprocity relationship between direct field radiation and diffuse reverberant loading[J]. Journal of the Sound Society of America,2005,117:85-95.
    [199]纪琳.中频振动分析方法——混合模型解析[M].北京:机械工业出版社,2013年4月
    [200]姚熊亮,计方,钱德进,等.偏心阻振质量阻抑振动波传递特性研究.振动与冲击,2010,29(1):48-52
    [201]GB/T 9911-2009.船用柴油机辐射的空气噪声测量方法.
    [202]张峰,俞孟萨,许树浩,等.浮筏隔振系统功率流的矢量四端参数方法[J].中国造船,2010,51(4):118-126.
    [203]俞孟萨,黄国荣,伏同先,等.潜艇机械噪声控制技术的现状与发展概述[J].船舶力学,2003,7(4):110-120.
    [204]Igllsa T, Xu K. Vibration control using multiple tuned mass dampers[J]. Journal of of Sound and Vibration,1994,175(4):491-503.
    [205]Fuller C R, Rogers C A. Control of sound radiation with active/adaptive structure[J]. Journal of Sound and Vibration,1992,157(1):19-39.
    [206]BerkhofA P. Sensor scheme design for active structural acOUStiC control[J]. Journal of Acoust. Soc. Am 2000,108(3):1037-1045.
    [207]Baz A, Ro J J. The Concept and performance ofactive constrained layer damping treatments[J]. Sound and Vibration,1994,28(3):18-21.
    [208]Ray M C, Baz A. Optimization of energy dissipation of active constrained layer damping treatments of plates[J]. Journal of Sound and Vibration,1997,208(3):391-406.
    [209]李宏男,杨浩,李秀领,等.磁流变阻尼器参数化动力学模型研究进展[J].大连理工大学学报,2004,44(4):616-624.
    [210]P.Short, Q.Zhang, A.Parrett. Using the Hybrid FE-SEA Method to Prediet and Diagnose Component Transmission Loss[C].SAE,2007-01-2172.
    [211]I.Vaz, J.Pan. Vibro-acoustic Modeling of the APAMAT Ⅱ Test System [C].SAE,2009-01-2210.
    [212]D.Blanchet, W.V. Hal, A. Cailet. Effect of Beading on Radiation Noise[C].SAE,2009-01-2210.
    [213]罗放,杨德庆,戴浪涛.基于混和法的齿轮箱基座动力学特性全频域计算[J].舰船科学技术,2009,31(2):71-75.