超声速混合层混合、燃烧机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以应用于双燃烧室冲压发动机的超声速混合层为研究对象,采用数值仿真与实验相结合的方法,对超声速混合层的流动、燃烧过程及其增强方法进行研究。
     为明确超声速混合层发展规律,利用混合LES/RANS方法计算隔板厚度、压力不匹配程度及燃料组分对超声速混合层发展的影响,并定量分析相应的混合效率和压力损失。发现一定范围内隔板厚度越大,混合越好,但总压损失也较大;燃烧流场的混合燃烧效果也随着隔板厚度增大而有所增加。冷流流场中,压力不匹配程度越高,混合相对较好,总压损失较小,但两者并非呈线性关系;燃烧流场的混合燃烧效率变化趋势与冷流流场基本一致。燃料中氢气浓度越靠近当量百分比,混合越好,但会增加总压损失。
     从被动混合增强和主动混合增强两方面对超声速混合层的混合增强进行了研究。发现随着凹腔长深比的增大,超声速混合层初始阶段涡的卷起提前,层流阶段距离缩短;涡结构呈现出较强的稳定性,涡耗散速率减慢。随着凹腔后缘倾角的增大,流场中下游段涡间距有减小趋势,涡结构呈现出较强的稳定性,涡耗散速率减慢。上下交错隔板构型的流向涡发展迅速,它的卷吸作用增大了空气和燃料接触面积,使燃料在很短的距离内实现了良好的混合;左右交错隔板构型流向涡的涡结构在距离隔板后缘40mm之前体现强的稳定性,在40mm-60mm的范围内涡结构迅速耗散。两种交错隔板对超声速混合层而言,都有混合增强效果,上下交错隔板增混效果要强于左右交错隔板。加入扰动的混合层涡结构尺寸明显大于没有扰动的情况,高频扰动的增混效果要强于低频情况。
     基于超声速混合层纹影图像分析不同构型隔板激波入射、反射位置和混合层增长速度、厚度和边缘结构等随时间震荡的特性。考察不同构型隔板混合层涡结构的卷起位置及涡运动速率。考察超声速混合层燃烧流场的着火过程中火焰的传播机制并描述了混合层中火焰的非定常特性。通过对比不同构型隔板混合层流场中OH基的分布,发现混合层中燃烧区域基本与混合层上下层气体掺混区域一致,其火焰基本形态由混合层的流动、混合特性主导;但混合增强方式对混合层燃烧流场的影响小于纯流动的情形。同时还发现,混合层上游燃烧的强度对混合层下游燃烧效果也存在一定的影响;混合层燃烧流场存在较强的三维特征,展向的扰动对混合层影响较大。
The present research studied the flow/combustion mechanisms and theenhancement methods of the supersonic mixing layer, using different experimentalinvestigations and numerical simulation.
     In order to determine the discipline of the development of the supersonic mixinglayer, hybrid LES/RANS method is applied to simulate the influence of the clapboardthickness, the pressure-nonmatching degree and fuel species. The results suggest: withina certain range, the mixing efficiency,the total-pressure loss and the combustionefficiency grow with an increased clapboard thickness. In the nonreacting mixing layer,the higher the pressure-nonmatching degree is, the higher the mixing efficiency and thelower the total-pressure loss are; the pressure-nonmatching degree is nonlinear to themixing efficiency and the total-pressure loss. The trend of mixing and combustionefficiency in reacting mixing layer is consistent with no-reacting mixing layer. Themixing efficiency and the total-pressure loss increase when the reaction is getting closeto the chemical stoichiometry.
     Supersonic mixing layer is investigated by using passive and activemixing-enhancement methods. It is found that as the length-depth ratio of the cavityincreases,the vortexs in the mixing layer are rolled up at an earlier time,leading to ashorter distance during which the flow is laminar.Besides,the vortexs assume strongerstability and their dissipation rate decrease.As the aft-angle of the cavity increases,thespace between vortexs become shorter in the downstream regime of the flow field andthe vortexs also assume stronger stability and their dissipation rate decrease.Theup-and-down staggered clapboard makes the steamwise vortexs develop rapidly,theirentrainment increases the contact surface area between the fuel and the air,facilitatingmixing during a short distance.In the left-and-right staggered clapboard case,thestreamwise vortexs assume strong stability before a distance of40mm from theclapboard,while they are rapidly dissipated during a distance of40-60mm.Both of thetwo types of staggered clapboards have mixing-enhancement effect,with the formerbetter than the latter.The scales of vortexs with disturbance in the flow field areobviously larger than those without disturbance, and high-frequency disturbance assumebetter effect than that of low-frequency.
     Based on the schlieren photographs,with different clapboards, the unsteady featureof the incidence and reflection locations of the shock wave, the mixing layers’sincreasing thickness and boundary structures are investigated. The location wherevortexs are rolled up and vortexs’ moving speed are investigated. The flame propagatingmechanism during ignition period of the supersonic reacting mixing layer and theunsteadyness of the flame are investigated. By comparing OH radicals distribution under different clapboards cases, it is found that the combustion area basically is thesame as the mixing area, the flame structure is mainly influenced by flow and mixing.Besides, the effect of mixing-enhancement methods is suppressed more or lesscompared to the nonreacting case. The combustion intensity upstream does influencethat of the downstream and the flow field assumes three-dimensional feature, severelyinfluenced by spanwise disturbance.
引文
[1] Murthy S N B, E. T. Curran. High-speed flight propulsion systems. Volume137. Progress in astronautics and aeronautics [J]. AIAA1991,137
    [2]龙玉珍.弹用超燃冲压发动机关键技术及其实现途径[J].飞航导弹,1997,6
    [3] E. T. Curran M, S. N. B. Scramjet Propulsion. Volume189. Progress inastronautics and aeronautics [J]. AIAA2002
    [4] Waltrup P J, et al. History of U.S Navy Ramjet, Scramjet, and Mix-CyclePropulsion Development [J]. Journal of Propulsion and Power.2002,18(1):14-17
    [5]刘桐林.未来超声速飞航导弹技术发展思考[J].飞航导弹.2003,(3):15-23
    [6]金如山.高超音速巡航导弹用的超燃亚燃双燃烧室冲压发动机及燃料[J].国际航空,1990年4月
    [7] L K J. Airbreathing Propulsion for Defense of the Surface Fleet.Johns HopkinsAPL Technical Digest13,57-68[R].1992
    [8] P.J. W. Hypersonic Airbreathing Propulsion: Evolution and Opportunities [R].Apr1987AGARD CP428, Paper No.12
    [9] Billig.F.S. W P J, Stockbridge.R.D. Integral-rocket dual-combustion ramjets:a new propulsion concept [J]. Journal of Spacecraft and Rockets,1980,17(5):416-424
    [10]司徒明王陆.双燃式冲压发动机中富油燃气射流的超燃研究[J].推进技术,2001,22(3):237-240
    [11]司徒明,王子川,牛余涛等.高温富油燃气超燃实验研究[J].推进技术,1999,20(6):75-79
    [12]Brandstetter A, et al. Flame Stabilization in Supersonic Combustion [R].AIAA Paper2002-5224,2002
    [13]Situ M W C, Lu H.P. Hot gas piloted energy for supersonic combustion ofkerosne with dual-cavity [C]. AIAA Paper2001-0523
    [14]孙英英,韩肇元,司徒明等.高温富油燃气作引导火焰的煤油超燃研究[J].推进技术,2001,22(2):157-161
    [15]孙英英,司徒明,韩肇元等.碳氢燃料超声速燃研究的新方法[J].推进技术,2001,22(1):69-71
    [16]司徒明,李建国.一种研究煤油超燃的新方案[J].流体力学实验与测量,2001,15(2):28-33
    [17]孙英英,司徒明.双燃烧室中煤油超燃试验研究[J].流体力学实验与测量,2000,14(1):51-56
    [18]孙英英,司徒明.一种缩短碳氢燃料—空气混合物点火延迟的方法[J].流体力学实验与测量,2001,15(2):28-33
    [19]张树道,韩肇元.一种研究双燃式(超燃)冲压发动机进气道和燃烧室冷态内流场的实验方法[J].流体力学试验与测量,1998,12(2):51-54
    [20]张树道,韩肇元,徐胜利等.双燃式(超燃)冲压发动机中激波与边界层之间相互作用对内部流动的影响[J].流体力学试验与测量,1999,13(2):16-21
    [21]谭慧俊,郭荣伟.高超声速混合模块冲压发动机亚燃模块进气道的高焓风洞试验研究[J].航空学报,2007,28(4):783-790
    [22]谭慧俊,郭荣伟,李光胜.双燃烧室冲压发动机亚燃模块进气道非设计点工作特性[J].航空学报,2008,29(1):20-27
    [23]于江飞.双燃烧室冲压发动机超声速混合层数值模拟及非线性分析[D].国防科学技术大学,硕士学位论文,2008
    [24]刘彧.双燃烧室冲压发动机混合增强及燃烧流场的实验和数值仿真研究[D].国防科学技术大学,硕士学位论文,2011
    [25]金如山.高超音速巡航导弹用的超燃亚燃双燃烧室冲压发动机及燃料[J].国际航空,1990(4):35-37
    [26]丁猛.基于凹腔的超声速燃烧火焰稳定技术研究[D].国防科学技术大学,博士学位论文,2005,10
    [27]王永寿.弹用吸气式发动机现状与发展动向[J].飞航导弹,2003,1:47-53
    [28]Waltrup P J M E W, F. Zarlingo, E. S. Cravlin. History of U.S Navy Ramjet,Scramjet, and Mix-Cycle Propulsion Development.[J]. Journal of Propulsion andPower.200218(1):14-17
    [29]刘陵.超音速燃烧与超音速燃烧冲压发动机[M].西北工业大学出版社.1993
    [30]Tishkoff J M D J P, Edwards T, Nejad. A S. Future Directions of SupersonicCombustion Research: Air Force/NASA Workshop on Supersonic Combustion AIAAPaper97-1017,[R].1997
    [31]Bayley D J H R J. Experimental investigation of Angled Injection in aCompressible Flow [R]. AIAA Paper95-2414[R].1995
    [32]Takakage A H F, Junji M. Experimental Investigation of Inclined HydrogenInjection into a Supersonic Flow [R]. AIAA Paper99-4915,1999
    [33]McDaniel J C G G, Quagliaroli T M. Combustion of Hydrogen in Mach2AirUsing an Unswept Ramp Fuel Injector: A Test Case For CFD Validation [R]. AIAAPaper94-2521,1994
    [34]Gauba G H-H H, McDaniel J C. Numerical and Experimental Investigation ofHydrogen Combustion in a Mach2AirFlow with an Unswept Ramp Fuel Injector [J].AIAA Paper95-2562,1995
    [35]Eklund D R S S D, Northam G B. Study of a Supersonic CombustorEmploying Swept Ramp Fuel Injectors [J]. Journal of Propulsion and Power,1997,13(6):697-704
    [36]Abdel-Salam T M T S N, Mohieldin T O. Effects of Ramp Side Angle inSupersonic Mixing [J]. Journal of Propulsion and Power,2003,41(6):1199-1201
    [37]Cox S K S R P, Walters R W. Vortical Interactions Generated by an InjectorArray to Enhance Mixing in Supersonic Flow [R]. AIAA Paper94-0708,1994
    [38]G. R. Supersonic Jet Mixing Enhancement Using Impingement Tones fromObstacles of Various Geometries [J]. AIAA Journal,1995,33(3):454-462
    [39]Tomioka S M A, Kudo K, Mitani T. Effects of Injection Scheme onPerformance of a Staged Supersonic Combustor [R]. AIAA Paper99-2107,1999
    [40]Spetman D M H C W, Moser M D. Development of a Strutjet Cold-FlowMixing Experiment [J]. Journal of Propulsion and Power,1999,15(1):155-158
    [41]Gruenig C A V, Mayinger F. Mayinger F. Fuel Injection into a SupersonicAirflow by Means of Pylons [J]. Journal of Propulsion and Power,2000,16(1):29-34
    [42]Muller S H C W, Bakker P G, Parkinson D, Turner M. Mixing of SupersonicJets in a Strutjet Propulsion system [J]. Journal of Propulsion and Power,2001,17(5):1129-1131
    [43]Shreenivasan O J K R, Kumar T S, Sujith R I, Chakravarthy S R. Mixing inConfined Supersonic Flow Past Strut Based Cavity and Ramps [R]. AIAA Paper2004-4194,2004
    [44]潘余.超燃冲压发动机多凹腔燃烧室燃烧与流动过程研究[D].国防科学技术大学,博士学位论文,2004
    [45]王蕾.航空喷气公司完成DCR地面试验[J].飞航导弹简讯,2007(40):1-2
    [46]丛敏.高超声速导弹演示器的关键技术——双燃烧室冲压发动机[J].飞航导弹,2003(4):47-49
    [47]司徒明.双燃式液体冲压发动机研究——地面连管试验[J].飞航导弹,1997(3):45-48
    [48]张新宇.超燃冲压模型发动机实验设备与实验技术[J].力学进展,2003,33(4):491-498
    [49]王蕾,沈剑,尚绍华. X-43A的分离系统[J].飞航导弹,2007(12):5-10
    [50]丛敏,秦春玲.美国高超声速研究动态[J].飞航导弹,2007(10):9-12
    [51]Miller.M.F B C T, Mungal.M.G. An experimental investigation of the effectsof compressibility on a turbulent reacting mixing layer [J]. J Fluid Mech,1998,356:25-64
    [52]Dahm.W.J.A. Effects of heat release on turbulent shear flows. Part2.Turbulent mixing layers and the equivalence principle [J]. J Fluid Mech,2005,540:1-19
    [53]Male.I F H, Sarkar.S, et al. On the turbulence structure in inert and reactingcompressible mixing layers [J]. J Fluid Mech,2007,593:171-180
    [54]Day.M.J R W C M N N. Parametrizing the growth rate influence of thevelocity ratio in compressible reacting mixing layers [J]. Phys Fluids,1998,10(Compendex):2676–2686
    [55]Wang.X F T. Effect of heat release on the behavior of reacting mixing layer [J].Chalmers Tekniska Hogskola, Doktorsavhandlingar,1992,(Compendex):624-629
    [56]P. E. Dimotakis. Turbulent mixing [J]. Annu. Rev. Fluid Mech,2005,37:329-356
    [57]Drazin P G. ntroduction to Hydrodynamic Stability [M]. Cambridge Univ.Press,2002
    [58]P. Weigand W M, X. R. Duan, R. Giezendanner-Thoben, U. Meier. LaserDiagnostic Study of the Mechanism of a Periodic Combustion Instability in a GasTurbine Model Combustor Flow [J]. Turbulence and Combustion,2005,75:275-292
    [59]Gaster.M. A note on the relation between temporally-increasing andspatially-increasing disturbances in hydrodynamic stability [J]. J Fluid Mech,1962,14:222-224
    [60]Michalke.A. Vortex formation in according to stability theory [J]. J FluidMech,1965,22:371-383
    [61]Kelly.R.E. The stability of an unsteady Kelvin–Helmholtz flow [J]. J FluidMech,1965,22:574-560
    [62]Sandham N D. A numerical investigation of the compressible mixing layer [D].1989
    [63]Jackson.T.L G C E. Inviscid spatial stability of a compressible mixing layer [J].J Fluid Mech,1989,208:609-637
    [64]Grosch.C.E J T L. Inviscid spatial stability of a threedimensional compressiblemixing layer [J]. J Fluid Mech,1991,231:35-50
    [65]Greenough.J R J, Soetrisno.M. The effect walls on a compressible mixinglayer [C]. AIAA Paper89-0372,1989
    [66]Tam.C.K H F Q. Instability and acoustic wave modes of supersonic mixinglayers inside a rectangular channel [J]. J Fluid Mech,1989,203:51-76
    [67]沈清,王强,庄逢甘.超声速平面剪切层声辐射涡模态数值分析[J].力学学报,2007(1)
    [68]Browand.F.K. An experimental investigation of the instability of anincompressible separated shear layer [J]. J Fluid Mech,1966,26:281-307
    [69]Miksad.R.W. Experiments on the nonlinear stages of free-shear-layertransition [J]. J Fluid Mech,1972,56:695-719
    [70]Corcos.G.M S F S. A numerical simulation of Kelvin-Helmholtz waves offinite amplitude [J]. J Fluid Mech,1976,73:241-264
    [71]Metcalfe.R.W O S A. Secondary instability of a temporally growing mixinglayer [J]. J Fluid Mech,1987,184:207-243
    [72]Monkewitz.A. The absolute and convective nature of instability intwo-dimensional wakes at low Reynolds numbers [J]. J Fluid Mech,1988,188:223-252
    [73]Lasheras.J.C. Three-dimensional instability of a plane free shear layer: anexperimental study of the formation and evolution of streamwise vortices [J]. J FluidMech,1988,189:53-86
    [74]沈利平,林建忠.第四届华东地区流体力学学术会议论文集[C].1994,306-310
    [75]周恒,马亮.混合层在二维扰动和三维扰动下的失稳特征[J].中国科学,A辑,1995,25(3):303-311
    [76]赵耕夫.自由剪切流大尺度结构的二次稳定性[J].应用数学和力学,1995,16(4):359-365
    [77]Churilove.S.M S I G. Three-dimensional disturbances to a mixing layer in thenonlinear critical-layer regime [J]. J Fluid Mech,1995,291:57-81
    [78]Chant L.J A M J. Growth rates for compressible turbulent mixing layers usinga non-linear stability method [C]. AIAA Paper99-4861.1999
    [79]关发明等.超声速平面剪切层多模态混合扰动数值分析[J].航空动力学报,2010,25
    [80]D Papamoschou A R. The Compressible Turbulent Shear Layer: AnExperimental Study [J]. J. Fluid Mech,1988,197:453-477
    [81]G L Brown A R. On Density Effects and Large Structures in Turbulent MixingLayers [J]. J. Fluid Mech,1974,64:775-816
    [82]Brown G L R A. On density effects and large strutture in turbulent mixinglayers [J]. J Fluid Mech,1974,64:778-814
    [83]W B D. Interferometric meas-urement of heterogeneous shear layer spreadingrates [J]. AIAA J,1984,22:1550-1555
    [84]Bogdanoff. D W. Compressibility Effects in Turbulent Shear Layers [J]. AIAAJournal,1983,21:926-927
    [85]Papamoschou D R A. Compress-ible turbulent shear layer:a experimentalstudy [J]. J Fluid Mech,1988,197:453-477
    [86]T.Rossmann, et al. An Experimental Investigation of High CompressibilityNon-Reacting Mixing Layers [J]. AIAA,2000,0663
    [87]Elliott G S S. Compressibility effects in free shear layers [J]. Phys.Fluids1990,A2.1231-1240
    [88]Goebel S G D, J.C. Experimental study of compressible turbulent mixinglayers [J]. AIAA Journal,1991,29,538-546
    [89]Zhuang M D, P.E, Kubota T. The effect of walls on a spatially growingsupersonic shear layer [J]. Phys. Fluids A2,1990,599-608
    [90]Sandham N D R, W.C. Three-dimensional simulations of large-eddies in thecompressible mixing layer [J]. J. Fluid Mech,1991,224,133-158
    [91]Clemens N T M M G. Two and three-dimensional effects in the supersonicmixing layer [J]. AIAA Journal,1992,30,973-981
    [92]Clemens N T M M G. Effects of sidewall disturbances on the supersonicmixing layer [J]. Journal of Propulsion and Power,1992,8,249-251
    [93]Messersmith N L D, J.C. An experimental investigation of organized structureand mixing in compressible turbulent free shear layers [R]. University of Illinois, Dept.of Mechanical and Industrial Engineering.1992
    [94]Messersmith N L, Dutton,J.C.&Krier,H. Experimental investigation of largescale structures in compressible mixing layers [C]. AIAA paper91-0244.1991
    [95]Elliott G S, Sammimy, M.&Arnette,S.A. Study of compressible mixinglayers with filtered Rayleigh scattering based visualizations.[J]. AIAA Journal,1993,30,2567-2569
    [96]Petullo S P,Dolling D S. Large-scale structure orientation in a compressibleturbulent shear layer.[C]. AIAA Paper91-2315.1993
    [97]张兆顺.湍流[M].国防工业出版社,2002
    [98]Michalke. A. On Spatially Growing Disturbances in an Inviscid Shear Layer[J]. J. Fluid Mech,1965,23:71-404
    [99]P. A. Monkewitz P H. Influence of the Velocity Ratio on the Spatial Instabilityof Mixing Layers [J]. Phys. Fluids,1982,25:1137-1143
    [100] G. M. Corcos,F S S. Vorticity Concentration and the Dynamics ofUnstable Free Shear Layers [J]. J Fluid Mech,1976,73:241-264
    [101] Winant C D,B F K. Vortex Pairing: the Mech anism of TurbulentMixing-Layer Growth at Moderate Reynolds Number [J]. J Fluid Mech,1974,63:237-255
    [102] Pui N K,G I S. Measurement of the growth rate and structure in planeturbulent mixing layers [J]. J Fluid Mech,1978,91:111-130
    [103] Wygnanski I O D. The forced mixing layer between parallel streams [J]. JFluid Mech,1979,93:325-335
    [104] Aref H S E D. Vortex dynamics of the two-dimensional turbulent shearlayer [J]. J Fluid Mech,1980,100:705-737
    [105] Riley J J,M e R W. Direct numerical simulation of a perturbed, turbulentmixing layer [C]. AIAA Paper.1980,No.80-0274
    [106] Cain A B,R W C, Ferziger J H. A three-dimensional simulation oftransition and early turbulence in a time-developing mixing layer [R]. Inter Rep No TF-14. Stanford University, Calif.1981,231-256
    [107] Michael.M.R,R D M. Role of coherent structures in a isothermally reactingmixing layers [J]. Phys Fluids,1994,6(2):903-908
    [108] E. A. The modelling of large eddies in a two-dimensional shear layer [J]. JFluid Mech,1976,76:561-592
    [109] Mansour N N M P. Improved methods for large eddy simulations ofturbulence [C]. The First Internat ional Symposium on Turbulent Shear Flows. ThePennsylvania State University, Berlin,1977
    [110] Hernan M A,J I J. Computer analysis of a high-speed film of the planeturbulent mixing layer [J]. Journal of Fluid Mechanics1982,119:323-345
    [111] Overman.E.A Z. Evolution and merger of isolated vortex structures [J]. JPhys Fluids,1982,25(8):1297-1305
    [112] Wygnanski I W T I. On coherent structures in a highly excited mixinglayer [J]. J Fluid Mech,1988,195:161-173
    [113]张涵信,罗俊荣.超声速剪切层的混合问题[J].空气动力学学报,2007,25
    [114]林建忠等.自由剪切层中离散涡的运动学特性[J].浙江大学学报,1993,27(1):137-141
    [115]张洪泉.混合层中的流向涡与Rayleigh离心不稳定[J].力学学报,1997,29
    [116]刘君.二维可压缩自由剪切层的理论分析[J].空气动力学学报,2005,23
    [117]曹伟,周恒.二维超音速混合层中小激波的存在及其对流场结构的影响[J].中国科学,2001,5
    [118]曹伟,周恒.二维超音速混合层增强混合的研究[J].中国科学,2002,32
    [119]熊红亮等.可压缩自由剪切层纹影试验研究[J].流体力学实验与测量,2003,17
    [120]熊红亮崔尔杰.可压缩混合层流动特性与增混措施研究[C].空气动力学前沿研究会议.2003
    [121]赵玉新.超声速混合层时空结构的实验研究[D].国防科学技术大学,博士学位论文,2008
    [122]赵玉新等.压力不匹配混合层流场结构的实验研究[J].实验流体力学,2007,21
    [123]赵玉新等.超声速湍流混合层中小激波结构的实验研究[J].国防科技大学学报,2007,29
    [124]孙明波.超声速来流稳焰凹腔的流动及火焰稳定机制研究[D].国防科学技术大学,博士学位论文,2008
    [125] Shin.D.S F J H. Linear stability of the reacting mixing layer [J]. AIAAJournal,1991,29(compendex):1634-1642
    [126] Shin.D.S F J H. Linear stability of the compressible reacting mixing layer[J]. AIAA Journal,1993,31(4):677-685
    [127] Planche.O.H R W C. Compressiblelity effect on the supersonic reactingmixing layer [C]. AIAA Paper91-0739.1991
    [128] J. Philip Drurnrnond R C R a M Y H. A Detailed Numerical Model of aSupersonic Reacting Mixing Layer [C]. AIAA Paper.1986-1427
    [129] J.Philip Drummond H S M. A Numerical Study of Mixing Enhancement inSupersonic Reacting Flow Fields [C]. AIAA-88-3260
    [130] McMurtry.P.A J W H, Riley.J.J and Metcalfe.R.W. Direct numericalsimulations of a reacting mixing layer with chemical heat release [J]. AIAA Journal,1985,24(6):962-970
    [131] McMurtry.P.A J W H, Riley.J.J Mechanisms by which heat release affectsthe flow field in a chemically reacting terbulent mixing layer [C]. AIAA-87-01311987
    [132] Hermanson.J.C M M G, Dimotakis.P.E. Heat release effects on shear-layerGrowth and entrainment [J]. AIAA Journal,1987,25(4):578-583
    [133] Burr.R.F D J C. Numerical simulations of compressible and reactingtemporal mixing layers and implications for modeing [C]. AIAA91-1718,1991
    [134] D.A. Schwer H-H T, C. L. Merkle. Computation and Validation ofSpatially Developing Reacting Mixing layers [C]. AlAA95-0261
    [135] Chakraborty D, et al. Effect of Stream Temperature on HypervelocityReacting Mixing Layer [J]. AIAA,2003,1205
    [136] Chakraborty D, et al. A thermo-chemical exploration of a two-dimensionalreacting supersonic mixing layer [J]. American Institute of Physics,1997
    [137] Park K H M e, Hussain F. Role of coherent structures in an isothermailyreacting mixing layers [J]. Phys Fluids,1994,6(2):885-888
    [138]苗文博,程晓丽,王强.超声速空间发展燃烧反应剪切层放热效应分析[J].空气动力学学报,2008,26
    [139]苗文博,王强,程晓丽.可压缩化学反应混合层的直接数值模拟[C].中国科协年会.2006
    [140]苗文博,程晓丽,王强.可压缩燃烧反应转握混合层直接数值模拟[J].力学学报,2008,40
    [141]李启兵,符松.高速混合层化学反应影响的初步研究[C].庆祝中国力学学会成立50周年暨中国力学学会学术大会2007论文集.2007
    [142]王春,司徒明,马继华.高温富油燃气超声速燃烧数值模拟[J].推进技术,2000,21
    [143] keller.J.O D J W. The effects of highly exothermic chemical reaction on atwo-dimensional mixing layer [J]. AIAA Journal,1985,23:1937-1945
    [144] Hall.J.L. An Experimental Investigation of Structure, Mixing andCombustion in Compressible Turbulent Shear Layers [M]. CALIFORNIA INST OFTECH PASADENA GRADUATE AERONAUTICAL LABS,Ft. Belvoir: DefenseTechnical Information Center:1991
    [145] Barlow.R.S F D C, Mungal.M.G, et al. Experiments on the structure of anannular compressible reacting shear layer [J]. AIAA Journal,1992,30:2244-2251
    [146] Miller.M.F I T C, Yip.B,Bowman.C.T. an experimental study of thestructure of a compressible, reacting mixing layer [C]. AIAA Paper.1993-0354
    [147] Miller.M.F I T C, Seitzman.J.M. compressibility effects in areactingmixing layer [C]. AIAA Paper.1993-1771
    [148] Miller.M.F I T C, Seitzman.J.M. an experimental investigation ofsupersonic reacting mixing layers [C]. AIAA Paper.1994-0823
    [149] Rogers.R.C C D P a G R W. Experimental Supersonic CombustionResearch at NASA Langley [R]. AIAA paper98-2506,1998
    [150] Seiner.J.M G G E. Effect of Tabs on Mixing on Round Jets [R]. AIAApaper98-2326,1998
    [151] YU.K.H S K C. Role of large coherent structures in turbulent compressiblemixing [J]. Experimental Thermal and Fluid Science,1997,14(1):75-84
    [152] Vandsberger.U. A Self-Excited Wire Method for Cotrol of the Evolutionof a Turbulent Mixing Layer [C]. AIAA Paper93-0443.1993
    [153] Bogdanoff. D W. Advanced injection and mixing techniques for scramjetcombustors [J]. Journal of Propulsion and Power1994,10(2):354-361
    [154] Doty.M.J. Experiments on mach wave interactions in a compressiblemixing layer [R]. AIAA Paper99-2105,1999
    [155] Adelgren.R.G E G S, Crawford.J.B. Axisymmetric Jet Shear LayerExcitation Induced by Electric Arc Discharge and Focused Laser Energy Deposition [R].AIAA paper2002-0729,2002
    [156] Doty.M.J M D K. Experiments on Mach Wave Interactions in aCompressible Mixing Layer [R]. AIAA-99-2105,1999
    [157] Tetsuji Sunami M N. Supersonic Mixing and Combustion Control UsingStreamwise Vortices [R]. AIAA Paper98-3271,1998
    [158]耿辉.超声速燃烧室中凹腔上游横向喷注燃料的流动、混合与燃烧特性研究[D].国防科学技术大学,博士学位论文,2007
    [159] Fan T C, et al. Validation of a hybrid Reynolds-averaged/Large eddysimulation method for simulating cavity flameholder configurations [R]. AIAA paper2001-2929
    [160] Yoshizawa A, et al. Statistically derived subgrid scale kinetic energymodel for Large-eddy simualtion of turbulent flows [J]. Journal of the Physical Societyof Japan,1985,54:2834
    [161]刘君等.一种新型的计算化学非平衡流动的解耦方法[J].国防科技大学学报,2000,22(5):19
    [162] W S C. High order ENO and WENO schemes for computational fluiddynamics, in Barth T. J.,Deconinck H., High-Order Methods for Computational Physics[J].1999
    [163] Garnier E, et al. Large Eddy Simulation of Shock/Boundary-LayerInteraction [J]. AIAA Journal,2002,40(10):1121
    [164]刘瑜.化学非平衡流的计算方法研究及其在激波诱导燃烧现象模拟中的应用[D].国防科学技术大学,硕士学位论文,2008
    [165] Mott D R, et al. A Quasi-steady-state solver for the stiff ordinarydifferential equations [J]. Journal of computational physics,2000,(164):407
    [166] Mott D R, et al. A Solver for the Stiff Ordinary Differential Equations ofChemical Kinetics [R]. NRL/MR/6400-01-8553,2001
    [167] Baurle.R.A E D R G M R. Numerical study of scramjet combustor fueledby aerodynamic ramp injector in dual mode combustion [R]. AIAA Paper2001-0379,2001
    [168] Rajasekaran.A B V. Numerical simulation od three dimensional reactingflow in a model supersonic combustor [J]. Journal of Propulsion and Power,2006,4(22)
    [169] J.E.Rossiter,D.B.Bliss.Aerodynamically Induced Pressure OscillationCavities:Physical Mechanisms and Suppression Concepts [R].Reports and Memo-randaNo.3438,1964.
    [170] H.H.Heller, et al. The Physical Mechanism of Flow-Induced PressureFluctuations in Cavities and Concepts for Their Suppression [J]. AIAA75-491