环境中病原微生物荧光检测新方法及仿生酶污泥减量化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境污染问题的日益严重,环境中的病原微生物在人们的生活中到处可见,因对其严重性以及危害性的忽视,所以经常出现由致病菌引起的传染性疾病的爆发事件。传统的微生物学检验方法已不能满足这种突发性与规模性疾病检测的需要,所以,亟需开发出准确、快速、高效的环境中病原微生物的检测技术。此外,城镇污水处理厂污泥产量的剧增与普遍未得到有效处理处置的现状,同样成为十分严峻的环境问题。污泥中含有大量的病原微生物、重金属以及持久性有机物等有毒有害物质,可能会对地下水、土壤等造成二次污染,严重威胁到环境安全与人们的健康。所以,污泥有效的处理和处置问题,亦成为了众多环保人士关注的焦点。
     本课题组在荧光分析检测方面有着扎实的研究基础,同时对卟啉及卟啉衍生物的合成与应用等方面同样开展了大量的基础性研究,并取得了一定的研究成果。基于上述两大环境问题以及本课题组的研究基础,本论文对环境中病原微生物的快速检测方法以及对剩余污泥的减量化方面进行探讨,研究的具体内容主要有以下五部分:
     (1)建立了一种基于双探针串联DNA杂交以及时间分辨荧光分析法的大肠杆菌的快速检测方法。实验结果显示,固定在玻片表面的最佳捕获探针浓度为1.0×10-7mol/L,最适的杂交时间是10h,最适的杂交温度在43℃,最佳的洗涤时间为6min;该检测方法具有良好的特异性及灵敏度,且该方法还成功地运用到了土壤以及景观水中的大肠杆菌的检测中。此外,实验中检测的目标DNA是纯培养后从大肠杆菌菌体中提取的核酸成分,未经PCR的扩增以及DNA纯化过程,该方法能够达到令人满意的特异性和灵敏度,说明该方法具有操作方便、简单可行以及成本节约等优点,为其在环境微生物检测领域的进一步推广提供了有利的条件。
     (2)在上述双探针串联DNA杂交模型的基础上,建立了一种对金黄色葡萄球菌的快速检测方法。优化了杂交温度、杂交时间以及洗涤时间等条件,实验结果显示,最适的杂交时间是9h,最适的杂交温度在53℃,最佳的洗涤时间为4.5min;该检测方法具有良好的特异性及灵敏度,且该方法还成功地检测了模拟污染的果汁与牛奶中的金黄色葡萄球菌的检测。
     (3)采用微乳液法有效地合成了三种核壳型纳米颗粒,其中用IgG修饰铕配合物纳米颗粒具有良好的稳定性能。将其标记到DNA探针,与大肠杆菌及金黄色葡萄球菌的目标DNA杂交反应,结果表明,杂交体系的荧光信号强度提高不明显,可能由于纳米颗粒之间的团聚现象使得实验的重现性欠佳,若改善该纳米颗粒在水溶液中的分散性能,将会成为分子生物学中具发展前景的生物标记物。
     (4)采用萘酰亚胺类物质EEN(N-羟乙基-4-(2-氨基乙烷氨基)-1,8萘酰亚胺)作为供体染料、花青素类物质Cy5作为受体染料,建立了一种基于荧光共振能量转移的核酸竞争杂交检测方法。考察了不同浓度的Acceptor probe-1与连接了EEN的Donor probe的杂交反应,得到令人满意的荧光能量转移的效果;在核酸竞争杂交的实验中,不同浓度的Target probe可以将与相对应浓度的Acceptor probe-1有效地杂交竞争替换,检测得到EEN荧光强度得以恢复以及Cy5荧光强度的减弱现象,建立了这种基于荧光共振能量转移的核酸竞争杂交检测方法。
     (5)将合成的具有仿生细胞色素P450酶的金属铁卟啉Fe(TAPP)Cl应用于剩余污泥的厌氧消解处理过程,结果发现将铁卟啉可固定于普通玻璃珠表面,对于污泥的消解效果明显。铁卟啉的乙醇溶液作为仿生细胞色素P450单加氧酶在污泥消解过程中,最佳处理条件为:处理时间7h,处理温度在40℃,投量百分比约为1%。实验的操作条件较温和,对处理设备的要求简单经济,降低了其应用成本;同时,作为化学合成的仿生酶,对比天然酶而言在适用条件及范围上更具优势。
With the growing problem of environmental pollution, pathogenic microorganisms are present in our lives everywhere. Because of neglected the seriousness and danger of pathogens, there are many infectious disease outbreak events all around the world. The traditional microbiological testing methods can not meet the needs of rapid and efficient testing of the large scale and paroxysmal disease. Therefore, it is an urgent need to develop an accurate, fast and efficient method for detecting pathogenic microorganisms in environment. In addition, it is the other serious and easy to ignore environmental problem that the sludge production from urban sewage treatment plant are increasing but not to be sufficient treatment and disposal. As we all know, sludge contains large amounts of pathogenic microorganisms, heavy metals, persistent organic compounds and other toxic substances, which will cause secondary pollution and pollute the groundwater, soil and atmosphere. And there will be a serious threat to human health and environmental safety. For this reason, many environmentalists have started to focus on the sludge issue of effective treatment and disposal.
     In our research group, we have an abundant foundation of fluorescence detection and also in the field of porphyrins and its derivatives have carry out a large number of basic research and applications, and made some research. And based on the above two major environmental issues and our advantage of research, this work will focus on rapid detection methods of pathogens and the reduction technology of excess sludge. The details are summarized as follows:
     (1) A two-probe tandem DNA hybridization assay based on time-resolved fluorescence analysis method was employed to rapid detect Escherichia coli strain. The results showed that the optimal concentration of capture probe immobilized on glass surface was1.0×10-7mol/L, and the optimal hybridization time and temperature were10h and43℃, respectively. The detection method has good specificity and sensitivity, and the method also successfully applied to the soil and the landscape in the detection of E. coli. Furthermore, without PCR amplification and DNA purification process, the extracted nucleic acid was directly used to the hybridization process, and a satisfactory specificity and sensitivity result was obtained, which shows that the method is easy to operate, simple and feasible, and economical. It can be concluded that this method is a promising technique for monitoring the microorganisms.
     (2) Based on the above method, it was re-established a fast and efficient way to detect Staphylococcus aureus. In this study, the hybridization temperature, hybridization time, washing time and other conditions were re-optimized. Results showed that the optimal hybridization time is9h, the optimal hybridization temperature at53℃,the best time for washing4.5min. The detection method has good specificity and sensitivity, and it also successfully detected a simulated contaminated fruit juice and milk in the detection of Staphylococcus aureus.
     (3) Three kinds of core-shell nanoparticles were successfully synthesized by the microemulsion method. Among these nanoparticles, the one of europium complex Eu(TTA)3(5-NH2-phen) with IgG-modified has satisfactory fluorescence performance and package stability. The nanoparticle was labeled with DNA probes and employed to the hybridization reaction of target nucleic acid from the Escherichia coli and Staphylococcus aureus, respectively. Results showed that the fluorescence intensity of the two hybrid systems were slightly increased, but the reproducible performance of this detection systems were not better than that of the molecular europium complex. It may be due to agglomeration between nanoparticles. So, if improving the dispersion property of the nanoparticles in aqueous, it will be a very promising biomarker in the field of molecular biology.
     (4) A fluorescence resonance energy transfer based competitive hybridization of nucleic acid detection methods was presented, in which naphthalimide EEN (N-hydroxyethyl4-(2-amino ethane) amino-1,8-naphth-alimide) was the donor dye and anthocyanin dye Cy5was the receptor substances. A series of Acceptor probe-1concentrations were employed to hybrid with Donor probe connected the EEN dyes. A satisfactory result of fluorescence resonance energy transfer was obtained. In the nucleic acid competition hybridization procedure, the Acceptor probe-1was effectively replaced by Target probe, which was appeared that the fluorescence intensity of EEN was restored and that of Cy5was weaken. In conclusion, it has successfully established fluorescence resonance energy transfer-based competitive hybridization of nucleic acid detection methods.
     (5) The metal iron porphyrin Fe(TAPP)Cl synthesized by our team, as a biomimetic enzyme cytochrome P450, was applied to the excess sludge anaerobic digestion process. Results showed that the iron porphyrin can be immobilized on the surface of ordinary glass beads, and they worked effectively on the sludge digestion. When used the ethanol solution of iron porphyrin as biomimetic cytochrome monooxygenase in the sludge digestion process, the optimum digestion time was7h, the optimal treated temperature at40℃and the best percentage of dosage is about1%. It is apparent that this method has the advantages of easy operation, mild reaction condition and economical equipment. Therefore, compared with the natural enzymes, the chemical synthesis of biomimetic enzyme has the superiority in the operation condition and application scope.
引文
[1]何强,井文涌,王翊亭.环境学导论[M].第三版.北京:清华大学出版社,2004.1-10
    [2]中华人民共和国国家统计局.http://www.stats.gov.cn/tjgb/qttjgb/qgqttjgb/ t20100211 402621161.htm
    [3]周群英,高延耀.环境微生物学[M].北京:高等教育出版社,2000,1-8
    [4]中国疾病预防控制中心.http://www.chinacdc.cn/mtdx/crbxx/201010/t201 01027_38305.htm,2010-10-27
    [5]中华人民共和国住房和城乡建设部.城镇污水处理厂污泥处理处置技术指南.http://www.mohurd.gov.cn/zcfg/jswj/jskj/201103/t20110330_203014.htm, 2010-03-30)
    [6]Lakowicz J R. Principles of fluorescence spectroscopy. Third Edtion. Springer, 2006
    [7]许金钩,王尊本.荧光分析法.第三版.科学出版社
    [8]李戎,陈东辉.Optical properties of fluorescent dyes. Journal of DongHua University,2001,(02):27-31
    [9]贾建洪,盛卫坚,高建荣.有机荧光染料的研究进展.化工时刊,2004,18(1):18-22
    [10]Rute J, Perrier S, Ravelet C, et al. Noncompetitive fluorescence polarization aptamer-based assay for small molecule detection. Analytical Chemistry,2009, 81(17):7468-7473
    [11]Berezin M Y, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chemical Reviews,2010,110(5):2641-2684
    [12]Mathai S, Bird D K, Stylli S S, et al. Two-photon absorption cross-sections and time-resolved fluorescence imaging using porphyrin photosensitisers. Photochemical Photobiological Sciences,2007,6(9):1019-1026
    [13]VOS K, LAANE C, WELJERS S R, et al. Time-resolved fluorescence and circular dichroism of porphyrin cytochrome c and Zn-porphyrin cytochrome c incorporated in reversed micelles. European Journal of Biochemistry,1987, 169(2):259-268
    [14]Richardson F S. Terbium(Ⅲ) and europium(Ⅲ) ions as luminescent probes and stains for biomolecular systems. Chemical Reviews,1982,82(5):541-552
    [15]Jaakkola L, Peuralahti J, Hakala H, et al. Solid-phase synthesis of oligonucleotides labeled with luminescent lanthanide(Ⅲ) chelates. Bioconjugate Chemistry,2005,16(3):700-709
    [16]Selvin P R, Hearst J E. Luminescence energy transfer using a terbium chelate: Improvements on fluorescence energy transfer. Proceedings of the National Academy Of Sciences Of The United States Of America,1994,91(21): 10024-10028
    [17]Peng H, Stich M I J, Yu J, et al. Luminescent europium(Ⅲ) nanoparticles for sensing and imaging of temperature in the physiological range. Advanced Materials,2010,22(6):716-719
    [18]Jiang L, Wu J, Wang G, et al. Development of a visible-light-sensitized europium complex for time-resolved fluorometric application. Analytical Chemistry,2010,82(6):2529-2535
    [19]Tanke H J. Imaging of Lanthanide luminescence by time-resolved microscopy. Springer Series on Fluorescence,2011,7:313-328
    [20]De Silva C R, Vagner J, Lynch R, et al. Optimization of time-resolved fluorescence assay for detection of europium-tetraazacyclododecyltetraacetic acid-labeled ligand-receptor interactions. Analytical Biochemistry,2010, 398(1):15-23
    [21]Blomberg K R, Mukkala V, Hakala H H O, et al. A dissociative fluorescence enhancement technique for one-step time-resolved immunoassays. Analytical And Bioanalytical Chemistry,2011,399(4):1677-1682
    [22]Hungerford G, Hussain F, Patzke G R, et al. The photophysics of europium and terbium polyoxometalates and their interaction with serum albumin:a time-resolved luminescence study. Physical Chemistry Chemical Physics,2010, 26(12):7266-7275
    [23]Ma Z, Huang B, Zhang J, et al. Time-resolved fluoroimmunoassay of zearalenone in cereals with a europium chelate as label. Journal of Rare Earths, 2009,27(6):1088-1091
    [24]Akita H, Kudo A, Minoura A, et al. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process. Biomaterials,2009,30(15):2940-2949
    [25]Moretti M, Di Fabrizio E, Cabrini S, et al. An ON/OFF biosensor based on blockade of ionic current passing through a solid-state nanopore. Bisensors and Bioelectronics,2008,24(1):141-147
    [26]Yasutake M, Shirakawabe Y, Okawa T, et al. Performance of the carbon nano-tube assembled tip for surface shape characterization. Ultramicroscopy, 2002,91(1-4):57-62
    [27]白春礼.纳米科技及发展前景.科学通报,2002,46(2):89-92
    [28]Silva G A. Neuroscience nanotechnology:progress, opportunities and challenges. Nature Reviews Neuroscience,2006,7:65-74
    [29]Ferrari M. Cancer nanotechnology:opportunities and challenges. Nature Reviews Cancer,2005,5:161-171
    [30]Daniel M, Astruc D. Gold Nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews,2004,104(1):293-346
    [31]Narayanan S S, Sinha S S, Verma P K, et al. Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA. Chemical Physics Letters,2008,463(1-3):160-165
    [32]Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology,2001,19:631-635
    [33]Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281:2016-2018
    [34]Jr M B, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281:2013-2016
    [35]Li M, Wang Q, Shi X, et al. Detection of mercury (Ⅱ) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Analytical Chemistry,2011,83(18):7061-7065
    [36]Wang F, Tan W B, Zhang Y, et al. Luminescent nanomaterials for biological labeling. Nanotechnology,2006,17(1):R1-R13
    [37]Zhang L, Dong S. Electrogenerated chemiluminescence sensors using Ru(bpy)32+ doped in silica nanoparticles. Analytical Chemistry,2006,78(14): 5119-5123
    [38]Bagwe R P, Hilliard L R, Tan W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir,2006,22(9):4357-4362
    [39]Zhang D, Wang X, Qiao Z, et al. Synthesis and characterization of novel lanthanide(Ⅲ) complexes-functionalized mesoporous silica nanoparticles as fluorescent nanomaterials. Journal of Physical Chemistry C,2010,114(29): 12505-12510
    [40]Mahtab F, Yu Y, Lam J W Y, et al. Fabrication of silica nanoparticles with both efficient fluorescence and strong magnetization and exploration of their biological applications. Advanced functional Materials,2011,21(9):1733-1740
    [41]段菁华,王柯敏,谭蔚泓,等.有机荧光染料纳米颗粒的制备及其包埋机制的研究.化学传感器,2002,22(3):14-19
    [42]Guo Q, Yang X, Wang K, et al. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Research,2009,37(3):e20
    [43]Lazaro E, Andres M P S, Vera S. Determination of five polycyclic aromatic hydrocarbons in aqueous micellar media by fluorescence at room temperature. Analytica Chimica Acta,2000,413:159-166
    [44]Xiao Y, Wang H Y, Han J. Simultaneous determination of carvedilol and ampicillin sodium by synchronous fluorimetry. Spectrochim Acta A:Molecular and Biomolecular Spectrosctroscopy,2005,61(4):567-573
    [45]Sanchez F G, Lopez M H. Trace zinc determination by synchronous derivative fluorimetry. Talanta,1986,33(10):785-789
    [46]何立芳,林丹丽,李耀群.导数恒能量同步荧光法同时分析咔唑、苯并(a)芘和2,3-苯并蒽.环境化学,2005,24(1):89-93
    [47]Tam S, Clavijo A, Engelhard E K, et al. Fluorescence-based multiplex real-time RT-PCR arrays for the detection and serotype determination of foot-and-mouth disease virus. Journal of Virological Methods,2009,161(2):183-191
    [48]肖勇.基于分子生物学技术的堆肥微生物群落、功能与应用研究:[博士学位].湖南大学环境科学与工程学院,2011
    [49]Zago M, Bonvini B, Carminati D, et al. Detection and quantification of Enterococcus gilvus in cheese by real-time PCR. Systematic and Applied Microbiology,2009,32:514-521
    [50]Ye K, Zhang Q, Jiang Y, et al. Rapid detection of viable Listeria monocytogenes in chilled pork by real-time reverse-transcriptase PCR. Food Control,2012,25:117-124
    [51]Soini E, Lovgren T, Reimer C B. Time-resolved fluorescence of lanthanide probes and applications in biotechnology. Analytical Chemistry,1987,18(2): 105-154
    [52]Peruski A H, Johnson L H, Jr L F P. Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assays. Journal of Immunological Methods,2002,263(1-2):35-41
    [53]Chosrovian H, Rentsch S, Grebner D, et al. Time-resolved fluorescence studies on thiophene oligomers in solution. Synthetic Metals,1993,60(1):23-26
    [54]Saha A K, Kross K, Kloszewski E D, et al. Time-resolved fluorescence of a new europium chelate complex:demonstration of highly sensitive detection of protein and DNA sample. Journal of the American Chemical Society,1993, 115(23):11032-11033
    [55]Clegg R M. Fluorescence resonance energy transfer. Current Opinion In Biotechnology,1995,6(1):103-110
    [56]Chang H, Tang L, Wang Y, et al. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Analytical Chemistry,2010, 82(6):2341-2346
    [57]Chen X, Estevez M C, Zhu Z, et al. Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Analytical Chemistry,2009,81(16):7009-7014
    [58]Dennis A M, Bao G. Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes. Nano Letters,2008,8(5): 1439-1445
    [59]Fonfria E S, Vilarino N, Molgo J, et al. Detection of 13,19-didesmethyl C spirolide by fluorescence polarization using Torpedo electrocyte membranes. Analytical Biochemistry,2010,403(1-2):102-107
    [60]Maragos C M, Jolley M E, Nasir M S. Fluorescence polarization as a tool for the determination of deoxynivalenol in wheat. Food Additives and Contaminants, 2002,19(4):400-407
    [61]Maragoes C M, Jolley M E, Plattner R D, et al. Fluorescence polarization as a means for determination of fumonisins in maize. Journal of Agricultural and Food Chemistry,2001,49(2):596-602
    [62]中华人民共和国卫生部卫生应急办公室.卫生部办公厅关于2011年第一季度全国食物中毒事件情况的通报http://www.moh.gov.cn/publicfiles/ business/htmlfiles/mohwsyjbgs/s3586/201106/51977.htm
    [63]Agarwal R, Shukla S, Dharmani S, et al. Biological warfare-an emerging threat. The Journal of the Association of Physicians of India,2004,52:733-738
    [64]JM F. Conducting recreational water quality surveys:Some problems and suggested remedies. Marine Pollution Bulletin,1990,21(12):562-567
    [65]Rahman I, Shahamat M, Chowdhury M A, et al. Potential virulence of viable but nonculturable Shigella dysenteriae type 1. Applied and Environmental Microbiology,1996,62(1):115-120
    [66]Kubista M, Andrade J M, Bengtsson M, et al. The real-time polymerase chain reaction. Molecular Aspects of Medicine,2006,27(2-3):95-125
    [67]Kiss M M, Donnelly L O, Beer N R, et al. High-throughput quantitative plymerase chain reaction in picoliter droplets. Analytical Chemistry,2008, 80(23):8975-8981
    [68]Sasaki T, Tsubakishita S, Tanaka Y, et al. Multiplex-PCR method for species identification of coagulase-positive staphylococci. Journal of Clinical Microbiology,2010,48(3):765-769
    [69]Lei I F, Roffey P, Blanchard C, et al. Development of a multiplex PCR method for the detection of six common foodborne pathogens. Journal of Food And Drug Analysis,2008,16(4):37-43
    [70]Kong R, So C, Law W, et al. A sensitive and versatile multiplex PCR system for the rapid detection of enterotoxigenic (ETEC), enterohaemorrhagic (EHEC) and enteropathogenic (EPEC) strains of escherichia coli. Marine Pollution Bulletin, 1999,38(12):1207-1215
    [71]Kong R, Lee S, Law T, et al. Rapid detection of six types of bacterial pathogens in marine waters by multiplex PCR. Water Research,2002,36(11):2802-2812
    [72]Pedram G, S J S, E M L, et al. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. American Journal of Surgical Pathology,2009,33(8):1146-1156
    [73]Peleg A Y, Tilahun Y, Fiandaca M J, et al. Utility of peptide nucleic acid fluorescence in situ hybridization for rapid detection of acinetobacter spp. and pseudomonas aeruginosa. Journal of Clinical Microbiology,2009,47(3): 830-832
    [74]Stender H, Oliveira K, Rigby S, et al. Rapid detection, identification, and enumeration of Escherichia coli by fluorescence in situ hybridization using an array scanner. Journal of Microbiological Methods,2001,45(1):31-39
    [75]Gautier L, Cope L, Bolstad B M, et al. Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics,2004,20(3):307-315
    [76]Knauer M, Ivleva N P, Liu X, et al. Surface-enhanced raman scattering-based label-free microarray readout for the detection of microorganisms. Analytical Chemistry,2010,82(7):2766-2772
    [77]de J L, MT S, M J, et al. DNA microarray technology in the clinical environment:the AmpliChip CYP450 test for CYP2D6 and CYP2C19 genotyping. CNS Spectrums,2009,14(1):19-34
    [78]Lin Y, Lu J, Zhang J, et al. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell,2009,136(6): 1073-1084
    [79]Werner T. Bioinformatics applications for pathway analysis of microarray data. Current Opinion In Biotechnology,2008,19(1):50-54
    [80]He Y, Liu H, Xian M, et al. Detection and identification of Staphylococcus aureus in raw milk by hybridization to oligonucleotide microarray. African Journal of Biotechnology,2010,9(15):2284-2289
    [81]孙君社,江正强,刘萍.酶与酶工程及其应用.北京:化学工业出版社,2006
    [82]陈石根,周润琦.酶学.上海:复旦大学出版社,1997
    [83]de Montellano P R O. Cytochrome P450 structure,mechanism,and biochemistry. Third Edition. New York:Kluwer Academic/Plenum Publisher,2004
    [84]Meunier B, de Visser S P, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chemical Reviews,2004,104(9):3947-3980
    [85]Denisov I G, Makris T M, Sligar S G, et al. Structure and chemistry of cytochrome P450. Chemical Reviews,2005,105(6):2253-2278
    [86]Shaik S, Kumar D, de Visser S P, et al. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chemical Reviews,2005,105(6): 2279-2328
    [87]Guengerich F P. Cytochrome P450 and chemical toxicology. Chemical Research in Toxicology,2008,21(1):70-83
    [88]Sundberg M I. Polymorphism of cytochrome P450 and xenobiotic toxicity. Toxicology,2002,181-182:447-452
    [89]de Montellano P R O. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chemical Reviews,2010,110(2):932-948
    [90]Syed K, Doddapaneni H, Subramanian V, et al. Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochemical and Biophysical Research Communications,2010,399(4):492-497
    [91]Urlacher V B, Eiben S. Cytochrome P450 monooxygenases:perspectives for synthetic application. Trends in Biotechnology,2006,24(7):324-330
    [92]Bedioui F, Devynck J, Bied-Charreton C. Electropolymerized manganese porphyrin films as catalytic electrode materials for biomimetic oxidations with molecular oxygen. Journal of Molecular Catalysis A-Chemical,1996,113(1-2): 3-11
    [93]Wang L, She Y, Zhong R, et al. A Green process for oxidation of p-nitrotoluene catalyzed by metalloporphyrins under mild conditions. Organic Process Research & Development,2006,10(4):757-761
    [94]Fu B, Yu H, Huang J, et al. Mn(Ⅲ) porphyrins immobilized on magnetic polymer nanospheres as biomimetic catalysts hydroxylating cyclohexane with molecular oxygen. Journal of Molecular Catalysis A-Chemical,2009,298(1-2): 74-80
    [95]Celano G, Smejkalova D, Spaccini R, et al. Reduced toxicity of olive mill waste waters by oxidative coupling with biomimetic catalysis. Environmental Science & Technology,2008,42(13):4896-4901
    [96]Maid H, Bohm P, Huber S M, et al. Iron catalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen:a synthetic metalloporphyrin as a biomimetic NAD(P)H oxidase. Angewandte Chemie-International Edition,2011,50(10):2397-2400
    [97]Serra A C, Docal C, Gonsalves A M D R. Efficient azo dye degradation by hydrogen peroxide oxidation with metalloporphyrins as catalysts. Journal of Molecular Catalysis A-Chemical,2005,238(1-2):192-198
    [98]Bohlin C, Lundquist K, Jonsson L J. Oxidation of the erythro and threo forms of the phenolic lignin model compound 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol by laccases and model oxidants. Bioorganic Chemistry,2009,37(5):143-148
    [99]Rebelo S L H, Simoes M M Q, Neves M G P, et al. An efficient approach for aromatic epoxidation using hydrogen peroxide and Mn(Ⅲ) porphyrins. Chemical Communications,2004:608-609
    [100]尹军,谭学军.污水污泥处理处置与资源化利用.北京:化学工业出版社,2005
    [101]何晶晶,顾国维,李笃中.城市污泥处理与利用.北京:科学技术出版社,2003
    [102]Fytili D, Zabaniotou A. Utilization of sewage sludge in EU application of old and new methods-A review. Renewable & Sustainable Energy Reviews,2008, 12(1):116-140
    [103]汪群慧.固体废弃物处理与资源化.北京:化学工业出版社,2004
    [104]Tiehm A, Nickel K, Zellhorn M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Research,2001, 35(8):2003-2009
    [105]Lee J W, Cha H Y, Park K Y, et al. Operational strategies for an activated sludge process in conjunction with ozone oxidation for zero excess sludge production during winter season. Water Research,2005,39(7):1199-1204
    [106]Menendez J A, Inguanzo M, Pis J J. Microwave-induced pyrolysis of sewage sludge. Water Research,2002,36(13):3261-3264
    [107]Debosz K, Petersen S O, Kure L K, et al. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Applied Soil Ecology,2002,19(3):237-248
    [108]Ohm T I, Chae J S, Kim J E, et al. A study on the dewatering of industrial waste sludge by fry-drying technology. Journal of Hazardous Materials,2009,168(1): 445-450
    [109]Roca-Perez L, Martinez C, Marcilla P, et al. Composting rice straw with sewage sludge and compost effects on the soil-plant system. Chemosphere,2009, 75(6):781-787
    [110]Jung J, Xing X, Matsumoto K. Recoverability of protease released from disrupted excess sludge and its potential application to enhanced hydrolysis of proteins in wastewater. Biochemical Engineering Journal,2002,10(1):67-72
    [111]Roman H, Burgess J, Pletschke B. Enzyme treatment to decrease solids and improve digestion of primary sewage sludge. African Journal of Biotechnology, 2006,5(10):963-967
    [112]Whiteley C G, Heron P, Pletschke B, et al. The enzymology of sludge solubilisation utilising sulphate reducing systems:Properties of proteases and phosphatases. Enzyme And Microbial Technology,2002,31(4):419-424
    [113]Niu C, Qin P, Zeng G, et al. Fluorescence sensor for water in organic solvents prepared from covalent immobilization of 4-morpholinyl-1,8-naphthalimide. Analytical and Bioanalytical Chemistry,2007,387:1067-1074
    [114]Qin P, Niu C, Zeng G, et al. Determination of trace levels of Cu(Ⅱ) or Hg(Ⅱ) in waters by thiourea-based fluorescent probe. Analytical Sciences,2008,24(9): 1205-1208
    [115]Qin P, Niu C, Zeng G, et al. Time-resolved fluorescence based DNA detection using novel europium ternary complex doped silica nanoparticles. Talanta,2009, 80:991-995
    [116]Niu C, Liu J, Qin P, et al. A novel bifunctional europium chelate applied in quantitative determination of human IgG using a time-resolved fluoroimmunoassay. Analytical Biochemistry,2011,409:244-248
    [117]Huang D, Niu C, Zeng G, et al. Time-resolved fluorescence biosensor for adenosine detection based on home-made europium complexes. Biosensors & Bioelectronics,2011,29:178-183
    [118]彭博,牛承岗,秦品珠,等.荧光猝灭法检测水中痕量钴镍的方法研究.理化检验-化学分册,2011,47(3):302-304
    [119]Straub T M, Chandler D P. Towards a unified system for detection waterborne pathogens. Journal of Microbiological Methods,2003,53(2):185-197
    [120]Ram S, Vajapayee P, Shanker R. Rapid culture-independent quantitative detection of enterotoxigenic Escherichia coli in surface waters by real-time PCR with molecular beacon. Environ. Environmental Science & Technology,2008, 42(12):4577-4582
    [121]Pohlmann C, Wang Y, Humenik M, et al. Rapid, specific and sensitive electrochemical detection of foodborne bacteria. Biosensors & Bioelectronics, 2009,24(9):2766-2771
    [122]Heijnen L, Medema G. Method for rapid detection of viable Escherichia coli in water using real-time NASBA. Water Research,2009,43(12):3124-3132
    [123]Scott T M, Rose J B, Jenkins T M, et al. Microbial source tracking:current methodology and future directions. Applied and Environmental Microbiology, 2002,68(12):5796-5803
    [124]Kostic T, Weiharter A, Rubino S, et al. A microbial diagnostic microarray technique for the sensitive detection and identification of pathogenic bacteria in background of nonpathogens. Analytical Biochemistry,2007,360(2):244-254
    [125]Bauer A P, Ludwig W, Schleifer K. A novel DNA microarray design for accurate and straighforward identification of Escherichia coli safety and laboratory strains. Systematic And Applied Microbiology,2008,31(1):50-61
    [126]Teles F R R, Fonseca L P. Trends in DNA biosensors. Talanta,2008,77(2): 602-623
    [127]Sandhya S, Chen W, Mulchandani A. A real-time polymerase chain reaction assay for detection Escherichia coli from fresh produce and water. Analytica Chimica Acta,2008,614(2):208-212
    [128]Fedio W M, Jinneman K C, Yoshitomi K J, et al. Detection of E. coli O157:H7 in raw ground beef by PathatrixTM immunomagnetic-separation, real-time PCR and cultural methods. International Journal of Food Microbiology,2011,148(2): 87-92
    [129]Chern E C, Siefring S, Paar J, et al. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes. Letters In Applied Microbiology,2011,52(3):298-306
    [130]Hugler M, Bockle K, Eberhagen I, et al. Development and validation of a FISH-based method for the detection and quantification of E. coli and coliform bacteria in water samples. Water Science And Technology,2011,64(7): 1435-1442
    [131]Morgan M, Marlowe E, Della-Latta P, et al. Multicenter evaluation of a new shortened peptide nucleic acid fluorescence in situ hybridization procedure for species identification of select gram-negative bacilli from blood cultures. Journal of Clinical Microbiology,2010,48(6):2268-2270
    [132]Batchelor M, Hopkins K L, Liebana E, et al. Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria. International Journal of Antimicrobial Agents, 2008,31(5):440-451
    [133]Langer V, Niessner R, Seidel M. Stopped-flow microarray immunoassay for detection of viable E. coli by use of chemiluminescence flow-through microarrays. Analytical and Bioanalytical Chemistry,2011,399(3):1041-1050
    [134]Yang Z, Huang J, Zeng G, et al. Optimization of flocculation conditions for kaolin suspension using the composite flocculant of MBFGA1 and PAC by response surface methodology. Bioresource Technology,2009,100(18): 4233-4239
    [135]Baeumner A J, Cohen R N, Miksic V, et al. RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosensors & Bioelectronics,2003,18(4):405-413
    [136]Mao X, Yang L, Su X, et al. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosensors & Bioelectronics,2006,21(7):1178-1185
    [137]Balaban N, Rasooly A. Staphylococcal enterotoxins. International Journal of Food Microbiology,2000,61(1):1-10
    [138]Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning. Genetics and Molecular Research,2003,2(1):63-76
    [139]Martin M C, Fueyo J M, Gonzalez-Hevia M A, et al. Genetic procedures for identification of enterotoxigenic strains of Staphylococcus aureus from three food poisoning outbreaks. International Journal of Food Microbiology,2004, 94(3):279-286
    [140]Vautor E, Magnone V, Rios G, et al. Genetic differences among Staphylococcus aureus isolates from dairy ruminant species:A single-dye DNA microarray approach. Veterinary Microbiology,2009,133(1-2):105-114
    [141]Lawson T S, Connally R E, Vemulpad S, et al. Optimization of a two-step permeabilization fluorescence in situ hybridization (FISH) assay for the detection of Staphylococcus aureus. Journal of Clinical Laboratory Analysis, 2011,25(5):359-365
    [142]Xue X, Pan J, Xie H, et al. Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria. Talanta,2009,77(5):1808-1813
    [143]Cho J, Tiedje J M. Bacterial species determination from DNA-DNA hybridization by using genome fragments and DNA microarrays. Applied and Environmental Microbiology,2001,67(8):3677-3682
    [144]Plata M R, Contento A M, Rios A. Simplified determination of bacterial contamination by Escherichia coli using a flow injection system with piezoelectric detection. Microchimica Acta,2011,172(3-4):447-454
    [145]Boujday S, Briandet R, Salmain M, et al. Detection of pathogenic Staphylococcus aureus bacteria by gold based immunosensors. Microchimica Acta,2008,163(3-4):203-209
    [146]Mao T, Wang Z, Li S, et al. Sensitive fluorescent detection of Staphylococcus aureus using nanogold linked CdTe nanocrystals as signal amplification labels. Microchimica Acta,2011,172(3-4):431-437
    [147]Chen S, Wu V C, Chuang Y, et al. Using oligonucleotide-functionalized Au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. Journal of Microbiological Methods,2008,73(1):7-17
    [148]Jain R, Mehra A. Monte Carlo Models for nanoparticle formation in two microemulsion systems. Langmuir,2004,20(15):6507-6513
    [149]Bagwe R P, Yang C, Hilliard L R, et al. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir,2004, 20(19):8336-8342
    [150]Clapp A R, Medintz I L, Mauro J M, et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Journal of the American Chemical Society,2004,126(1):301-310
    [151]Willard D M, Carillo L L, Jung J, et al. CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Letters, 2001,1(9):469-474
    [152]Marras S A E, Kramer F R, Tyagi S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Research,2002,30(21):e122
    [153]Bagalkot V, Zhang L, Nissenbaum E L, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters,2007,7(10): 3065-3070
    [154]Lai S, Chang X, Fu C. Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (Ⅱ) ion determination. Microchimica Acta,2009, 165(1-2):39-44
    [155]Chen L, Algar W R, Tavares A J, et al. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer. Analytical And Bioanalytical Chemistry,2011,399(1):133-141
    [156]Kumar M, Zhang D, Broyles D, et al. A rapid, sensitive, and selective bioluminescence resonance energy transfer (BRET)-based nucleic acid sensing system. Biosensors & Bioelectronics,2011,30(1):133-139
    [157]Li H, Luo Y, Sun X. Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection:An effective strategy to greatly improve discrimination ability toward single-base mismatch. Biosensors & Bioelectronics,2011,27(1):167-171
    [158]Massey M, Algar W R, Kurll U J. Fluorescence resonance energy transfer (FRET) for DNA biosensors:FRET pairs and F"orster distances for various dye-DNA conjugates. Analytica Chimica Acta,2006,568(1-2):181-189
    [159]Nikiforov T T, Beechem J M. Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores. Analytical Biochemistry,2006,357(1):68-76
    [160]Sen T, Patra A. Resonance energy transfer from rhodamine 6G to gold nanoparticles by steady-state and time-resolved spectroscopy. Journal of Physical Chemistry C,2008,112(9):3216-3222
    [161]Sueda S, Yuan J, Matsumoto K. A homogeneous DNA hybridization system by using a new luminescence terbium chelate. Bioconjugate Chemistry,2002, 13(2):200-205
    [162]Wei Y, Van Houten R T, Borger A R, et al. Minimization of excess sludge production for biological wastewater treatment. Water Research,2003,37(18): 4453-4467
    [163]Liu Y, Tay J. Strategy for minimization of excess sludge production from the activated sludge process. Biotechnology Advances,2001,19(2):97-107
    [164]Yang Q, Luo K, Li X, et al. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresource Technology,2010,101(9):2924-2930
    [165]Yu G, He P, Shao L, et al. Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment. Water Research,2008,42(8-9):1925-1934
    [166]Parmar N, Singh A, Ward O P. Enzyme treatment to reduce solids and improve settling of sewage sludge. Journal of Industrial Microbiology & Biotechnology, 2001,26(6):383-386
    [167]刘洋.金属卟啉仿生催化诱导空气氧化环己烷反应中的取代基效应的研究:[硕士].湖南大学,2002
    [168]Chen G, An K, Saby S, et al. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process). Water Research, 2003,37(16):3855-3866