城市污水厂污泥浓缩消化一体化处理生产性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,污泥处理处置已成为我国污水处理领域亟待解决的难题之一,特别是小城镇污水处理厂,由于其处理规模小、水质水量不稳定,导致污泥产量少,且性质不稳定,迫切需要开发一种简易、高效、低成本的污泥处理技术和装备。针对小城镇污水处理厂污泥处理的问题,笔者所在课题组研发了污泥浓缩消化一体化反应器,并进行了小试反应器的三代改良,在流态模拟和优化的基础上,设计出中试反应器。论文对中试反应器开展试验研究,获得了最优运行工况,同时针对中试反应器的弊端,进行改进,设计出生产性试验反应器,并在重庆大渡口污水处理厂进行生产性试验,研究了反应器对污泥的浓缩和消化效果、污泥中重金属稳定效果以及反应器内微生物种群多样性分布。研究取得的主要成果有:
     ①以NaCl为示踪剂,采用阶跃法进行了中试流态试验,试验表明:在没有气体搅拌的条件下,反应器内室下部和底部的无因次方差(σ_θ~2)分别为0.63、0.67,而中上部和中下部的σ_θ~2分别为0.34、0.44;气体回流量分别为8L/min、12L/min、16L/min时,内室顶部到底部的无因次方差分别为0.60-0.63、0.64-0.68、0.65-0.66,内室的流态趋于完全混合流。为达到内室完全混合的目的,并考虑到运行成本,故采用12.0L/min作为气体回流量。
     ②中温(35±2℃)条件进行中试研究,考察了污泥投配率为12%、18%、24%、30%的运行效果,结果表明:污泥投配率为24%时反应器的单位产沼气量最高,为325L/KgVS,其中CH4含量为62.7%。污泥的VS/TS由25%降到20%,含水率由99%降到93%,污泥的浓缩消化效果明显。
     ③常温(25-35℃)条件进行生产性试验研究,考察了污泥投配率为10%、15%、20%、24%的运行效果,结果表明:污泥投配率为15%时,反应器的单位产沼气量最高,为110.5L/kgVS,其中CH4含量达61.4%。采用甲烷势自动测试系统对污泥比产甲烷活性(SMA)进行了测试,在15%的工况下SMA为20.5mgCODCH/gVSS·d。污泥VS/TS由36%降到29%,含水率由98.5降到91%,污泥的浓缩和消化效果明显。
     ④采用BCR重金属形态提取法,对生产性试验过程中反应器内重金属的稳定效果进行了研究,结果表明:和进泥相比,排泥中Cu、Mn、Pb、Cd的酸溶态/可交换态含量分别降低了73.6%、32%、40.7%、19%,Ni的酸溶态/可交换态含量增加了27.6%,Zn、Cd的可氧化态含量分别增加了37%、55%。Fe的可还原态含量降低了30.5%。处理后,污泥中Mn、Cd、Zn的潜在迁移能力下降,污泥重金属的有效态(酸溶态/可交换态和可还原态)转化成相对稳定的金属形态(可氧化态和残渣态)。
     ⑤采用PCR-DGGE技术对生产性试验反应器内微生物种群多样性分布进行了研究,结果表明:反应器内室和外室以及排泥区微生物均呈多样性分布,细菌种类较多。排泥区同种菌群的细菌数量比内室更加丰富。负荷的改变不会使微生物的种群多样性发生变化。内室中微生物的种群组成要多于外室,验证了内外室在功能上的差异。另外反应器内室和普通消化池有共同的细菌菌种,并且内室还具有四种特异性菌群,验证了污泥浓缩消化一体化反应器有较好的污泥处理效果。
     研究成果为污泥浓缩消化一体化反应器的工程设计、启动和运行提供了较系统的理论和技术支撑,对推动污泥浓缩消化一体化处理技术的工程化应用具有重要意义。
Currently, sludge treatment and disposal has become one of the urgent problemspresented in the field of wastewater treatment, especially in small towns of China. Dueto the unstable quantity and quality of inflows in wastewater treatment plants (WWPTs)in small towns, which result in a low sludge production and the unsteady properties, it isrequired that some simple, cost-effective and innovative sludge treatment technologiesand facilities should be developed. Aiming at the problems in sludge treatment in smalltowns, our research team has developed an integrated sludge thickening and digestionreactor. Three generations of the reactor have been modified and improved successfullythrough investgiations of small-scale experiments. Moreover, on the basis of thenumeric simulation and optimization of flow condition, the pilot-scale reactor has beendeveloped. Study on the pilot-scale experiment has been carried out in a WWPT.Optimized operation conditions have been obtained and the disadvantages of the reactorhave been analyzed simultaneously. After improvement of the pilot-scale reactor, thefull-scale reactor has been developed and studied in Dadukou WWPT of Chongqing.The efficiency of sludge thickening and digestion, stabilization of heavy metals andmacrobiotic population diversities in the full-scale reactor have been investigated andstudied. The results are shown as follows,
     ①The flow test is carried out to study the characteristics of flow condition in thepilot-scale reactor using NaCl as tracer. The results illustrate that the dimensionlessvarianceσ (σ_θ~2) in the lower section and base of inner reactor are0.63,0.67and0.34,0.44in the upper section and mid-upper section under no gas recirculation. The innerreactor from upper section to base under8L/min,12L/min and16L/min are0.60-0.63,0.64-0.68, and0.65-0.66, respectively. And the flow condition has a tendency to amixing flow condition completely. For the purpose of completely mixing in innerreactor and the operation cost,12.0L/min of gas flow has been adopted in the operationtest of the pilot-scale reactor.②The efficiency of sludge treatment of the pilot-scale under mesospheric
     condition(35±2℃)is studied under four different excess sludge inflows of12%,18%,24%, and30%. The results indicate that the biogas production per unit (325L/kgVS)under sludge inflow of24%is the highest. The methane content of biogas is62.7%.VS/TS has been dropped down from25%to20%and the water content in the outlet sludge has been decreased from99%to93%. The efficiency of sludge thickening anddigestion is better than that of thickener and digester in the WWPT.
     ③The efficiency of sludge treatment of the full-scale under ambient temperature(25-35℃)is studied under the four different excess sludge inflows of10%,15%,20%,and24%. The results demonstrate that the biogas production per unit (110.5L/kgVS)under sludge inflow of15%is the highest. The methane content of biogas is61.4%.VS/TS has been decreased from36%to29%and the water content in the outlet sludgehas been decreased from98.5%to91%. The specific methane activity of sludge under15%of sludge inflow is20.5and20.5mgCODCH/gVSS·d tested by automated methanepotential system.
     ④Chemical fraction of heavy metals in the full-scale reactor is studied bysequential extraction using the BCR method. Compared to the sewage sludge, thepercentage of Cu, Mn, Pb, and Cd in acid soluble/exchangeable fraction is reduced by73.6%,32.0%,40.7%,19.0%, respectively, whereas the percentage of Ni in acidsoluble/exchangeable fraction is increased by27.6%. The percentage of Fe in reduciblefraction is reduced by30.5%. The percentage of Zn and Cd in oxidizable fraction isincreased by37.0%and55.0%, respectively. The index of mobile ability about Mn, Cd,and Zn are reduced from0.68,0.62,0.92to0.53,0.50, and0.77. The results show thatafter the treatment of the full-scale reactor, the mobile and easily available heavy metalfractions (acid soluble/exchangeable and reducible fractions) are transformed mainlyinto the relatively stable heavy metal fractions (oxidizable and residual fractions).
     ⑤The microbial population diversity in the full-scale reactor has beeninvestigated by the PCR-DGGE technology. The results illustrate that microbialdiversity distribution is shown in the reactor. Amount of microbial in the area of outletsludge is more than that in the inner reactor, so the outlet sludge can be recircled intothe inner reactor to increase the amount of microbial. The microbial population diversityis similar under different inlet sludge ratios. In fact, the only difference is the quantity. Itis concluded that the microbial population diversity do not change with inlet sludgeratio. The microbial population diversity is more than that in the outer reactor, and it canbe concluded that there is functional difference between the inner reactor and outerreactor. The same microbial populations exist both in the inner reactor and anaerobicdigester, but four special microbial populations are found in the inner reactor.
     The results from this study can be the basis of practical application for theintegrated sludge thickening and digestion reactor, including design, start-up and operating of reactor, which will be of great significance to engineering application ofintegrated sludge digestion and thickening processing technology in the future.
引文
[1]住房和城乡建设部.关于全国城镇污水处理设施2012年第一季度建设和运行情况的通报
    [EB/OL].[2012-05-07], http://www.mohurd.gov.cn/zcfg/jsbwj_0/jsbwjcsjs/201205/t20120518_209946.html.
    [2] Song U, Lee E J. Environmental and economical assessment of sewage sludge compostapplication on soil and plants in a landfill [J]. Resources, Conservation and Recycling,2010,54(12):1109-1116.
    [3] Horttanainen M, Kaikko J, Bergman R, et al. Performance analysis of power generating sludgecombustion plant and comparison against other sludge treatment technologies [J]. AppliedThermal Engineering,2010,30(2-3):110-118.
    [4] FECC. Business opportunities in the Fields of MSW, Sludge and E-waste in China: MarketStudy[R], Beijing: Poyry (Beijing) Consulting Company Limited,2007.
    [5]莫测辉,蔡全英,吴启堂,等.城市污泥中有机污染物的研究进展[J].农业环境保护,2001,20(4):273-276.
    [6] U. S. Environmental Protection Agency (EPA). Targeted National Sewage Sludge SurveyStatistical Analysis Report (EPA-822-R-08-018)[R]. Washington, DC: Office of Water,2009.
    [7] Sarmah A K, Meyer M T, Boxall A B. A global perspective on the use, sales, exposure pathways,occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J].Chemosphere,2006,65(5):725-759.
    [8] Boxall A B. The environmental side effects of medication-How are human and veterinarymedicines in soil and water bodies affecting human and environmental healthy?[J]. EMBOReports,2004,5(12):1110-1116.
    [9]宋存义,汪翠萍,李晖.污水处理中几种去除药物及个人护理用品方法的机理及效果比较[J].环境工程学报,2009,3(11):1921-1930.
    [10]桂红艳,曾祥英,盛国英.污水处理厂污泥中多环麝香的初步研究[J].环境科学学报,26(9):1576-1580.
    [11]郭亚文,张晓岚,钱光人.城市污泥中合成麝香的分布特征[J].环境科学,30(5):1493-1498.
    [12] Brown M J, Lester J W. Metal removal in activated sludge: The role of bacterial extracellularpolymer [J]. Water Research,1979,13(9):817-837.
    [13] Lester J N, Sterritt R M, Kirk P W W. Significance and behavior of heavy metals inwastewater treatment process. II. Sludge treatment and disposal [J]. Science of the TotalEnvironment,1983,30:45-83.
    [14]杨军,郭广慧,陈同斌,等.中国城市污泥的重金属含量及其变化趋势[J].中国给水排水,2009,25(13):122-124.
    [15] Davidson M, Uklonsky E. Using Rotary Drum Sludge Thickening to Maximize ProcessPerformance[C]. In: Proceedings of the Water Environment Federation (101-110). Alexandria:Water Environment Federation,2009,6972-6978.
    [16] Zhang P, Wan T, Zhang G. Enhancement of bio-sludge gravitational thickening with weakultrasound [J]. International journal of Environmental Science Technology,2012,9(2):287-296.
    [17]李润东,张万里,孙洋,等.污泥热干化技术适应性分析及未来发展趋势[J].可再生能源,2012,30(5):95-98.
    [18]王睿坤,刘建忠,虞育杰,等.城市污泥特性及其干化技术[J].给水排水,2010,36(S1):153-158.
    [19] Deng W Y, Yan J H, Li X D, et al. Emission characteristics of volatile compounds duringsludges drying process [J]. Journal of Hazardous Materials,2009,162(1):186-192.
    [20] Gendebien A, Carlton-Smith C, Izzo M, et al. UK Sewage Sludge Survey: RegionalPresentation [R]. Swindon: Environment Agency,1999.
    [21] Lin J G, Chang C N, Chang S C. Enhancement of anaerobic digestion of waste activatedsludge by alkaline solubilization [J]. Bioresource Technology,1997,62(3):85-90.
    [22] Appels L, Baeyens J, Degrevea J, et al. Principles and potential of the anaerobic digestion ofwaste-activated sludge [J]. Progress in Energy and Combustion Science,2008,34(6):755-781.
    [23] Wang Z W, Wu Z C, Hua J, et al. Application of flat-sheet membrane to thickening anddigestion of waste activated sludge (WAS)[J]. Journal of Hazardous Materials,2008,154(1-3):535-542.
    [24] Al-Ghusain I, Hamoda M F, El-Ghany M A. Performance characteristics of aerobic/anoxicsludge digestion at elevated temperatures [J]. Environmental Technology,2004,25(5):501-511.
    [25]冯磊,程洁红,朱南文.污泥的自动升温高温好氧消化工艺介绍[J].给水排水,2006,1(32):41-47.
    [26]应梅娟,赵振凤,崔希龙,等.脱水污泥石灰处理工艺分析[J].中国给水排水,2011,27(18):13-16.
    [27]蒋建国,殷闽,李春萍.添加不同比例的石灰对污泥稳定化的模糊评价[J].环境工程学报,2012,6(2):605-609.
    [28] Natvik O, Zaghi E, Todd R. WAS thickening using ultra-filtration membranes-preliminaryresults at Oxford Water Pollution Control Plant [C]. In: Proceedings of the WaterEnvironment Federation (91-100), Alexandria: Water Environment Federation,2009,6212-6219.
    [29] Van Lier J B, Rietveld L C, Spaniers H. Fundamentals of drinking water and wastewatertreatment [M]. Delft: Delft University of Technology,2010.
    [30]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.
    [31]胡纪萃.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003.
    [32] Rimkus R, Ryan J, Cook E. Full scale thermophilic digestion at the west-southwest sewagetreatment works, Chicago, Illinois [J]. Journal of Water Pollution Control Federation,1982,54(11):1447-1457.
    [33] De la Rubia M A, Perez M, Romero L I, et al. Effect of solids retention time (SRT) on pilotscale anaerobic thermophilic sludge digestion [J]. Process Biochemistry,2006,41(1):79-86.
    [34] Pavlostathis S G, Gomez E G. Kinetics of anaerobic treatment: A critical review [J]. CriticalReviews in Environmental Control,1991,21(5-6):411-490.
    [35] Gossett J M, Belser R L. Anaerobic digestion of waste activated sludge [J]. Journal of theEnvironmental Engineering Division,1982,108(EE6):1101-1120.
    [36] Mottet A, Fran ois E, Latrille E, et al. Estimating anaerobic biodegradability indicators forwaste activated sludge [J]. Chemical Engineering Journal,2010,160(2):488-496.
    [37] Urbain V, Block J C, Manem J. Bioflocculation in activated sludge: an analytic approach [J].Water Research,1993,27(5):829-838.
    [38] Jorand F, Guicherd P, Urbain V, et al. Hydrophobicity of activated sludge flocs andlaboratory-grown bacteria [J]. Water Science and Technology,1994,30(11):211-218.
    [39] Wilén B M, Jin B, Lant P. The influence of key chemical constituents in activated sludge onsurface and flocculating properties [J]. Water Research,2003,37(9):2127-2139.
    [40] Comte S, Guibaud G, Baudu M. Effect of extraction method on EPS from activated sludge:An HPSEC investigation [J]. Journal of Hazardous Materials,2007,140(1-2):129-137.
    [41] Frohlund B, Griebe T, Nielsen P H. Enzymatic activity in the activated-sludge floc matrix [J].Applied Microbiology and Biotechnology,1995,43(4):755-761.
    [42] Carrère H, Dumas C, Battimelli A, et al. Pretreatment methods to improve sludge anaerobicdegradability: a review [J]. Journal of Hazardous Materials,2010,183(1-3):1-15.
    [43] Li Y Y, Noike T. Upgrading of Anaerobic Digestion of Waste Activated Sludge by ThermalPretreatment [J]. Water Science and Technology,1992,26(3-4):857–866.
    [44] Zhang X Q, Bishop P L. Biodegradability of biofilm extracellular polymeric substances [J].Chemosphere,2003,50(1):63-69.
    [45] Wang Z W, Liu Yu, Tay J H. Biodegradability of extracellular polymeric substances producedby aerobic granules [J]. Applied Microbiology and Biotechnology,2007,74(2):462-466.
    [46] Park C, Helm R F, Novak J T. Investigating the fate of activated sludge extracellular proteinsin sludge digestion using sodium dodecyl sulfate polyacrylamide gel electrophoresis [J]. WaterEnvironmental Research,2008,80(12):2219-2227.
    [47] Parkin G F, Owen W F. Fundamentals of anaerobic digestion of wastewater sludges [J].Journal of Environmental Engineering,1986,112(5):867-920.
    [48] Rudlfs W, Heukelekian H. Thermophilic Digestion of Sewage Solids [J]. IndustrialEngineering Chemistry,1931,23(1):67-69.
    [49] Ge H Q, Jensen P D, Batstone D J. Pre-treatment mechanisms during thermophilic-mesophilictemperature phased anaerobic digestion of primary sludge [J]. Water Research,2010,44(1):123-130.
    [50] Cabirol N, Rojas O M, Noyola A. Removal of helminth eggs and fecal coliforms by anaerobicthermophilic sludge digestion [J]. Water Science and Technology,2002,45(10):269-74.
    [51] De León C, Jenkins D. Removal of fecal coliforms by thermophilic anaerobic digestionprocesses [J]. Water Science and Technology,2002,46(10):147-52.
    [52] Yang Q, Luo K, Li X M, et al. Enhanced efficiency of biological excess sludge hydrolysisunder anaerobic digestion by additional enzymes[J]. Bioresource Technology,2010,101(9):2924-2930.
    [53] Wawrzynczyk, J, Recktenwald, M, Norrlow, O, et al. The function of cation-binding agents inthe enzymatic treatment of municipal sludge [J]. Water Research,2008,42(6-7):1555-1562.
    [54] Ahuja S K, Ferreira G M, Moreira A R. Utilization of Enzymes for EnvironmentalApplications [J]. Critical Reviews in Biotechnology,2004,24(2-3):125-154.
    [55] Haug R T, Stuckey D C, Gossett J M. Effect of thermal pretreatment on digestibility anddewaterability of organic sledges[J]. Journal of Water Pollution Control Federation,1978,50(1):73-85.
    [56] Tanaka S, Kobayashi T, Kamiyama K, et al. Effects of thermochemical pretreatment on theanaerobic digestion of waste activated sludge [J]. Water Science and Technology,1997,35(8):209-215.
    [57] Bougrier C, Albasi C, Delgenès J P, et al. Effect of ultrasonic, thermal and ozonepre-treatments on waste activatedsludge solubilisation and anaerobic biodegradability [J].Chemical Engineering and Processing: Process Intensification,2006,45(8):711-718.
    [58] Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes to improvedewaterability [J]. Journal of Hazardous Materials,2003,98(1-3):51-67.
    [59] Dohányos M, Zábranská J, Kutil J, et al. Improvement of anaerobic digestion of sludge [J].Water Science and Technology,2004,49(10):89-96.
    [60] Dwyer J, Starrenburg D, Tait S, et al. Decreasing activated sludge thermal hydrolysistemperature reduces product colour, without decreasing degradability [J]. Water Research,2008,42(18):4699-4709.
    [61] Bougrier C, Delgenès J P, Carrère H. Effects of thermal treatments on five different wasteactivated sludge samples solubilisation, physical properties and anaerobic digestion [J].Chemical Engineering Journal,2008,139(2):236-244.
    [62] Mottet A, Steyer J P, Deleris S, et al. Kinetics of thermophilic batch anaerobic digestion ofthermal hydrolysed waste activated sludge [J]. Biochemical Engineering Journal,2009,46(2):169-175.
    [63] Eskicioglu C, Terzian N, Kennedy K J, et al. Athermal microwave effects for enhancingdigestibility of waste activated sludge [J]. Water Research,2007,41(11):2457-2466.
    [64] Salsabil M R, Prorot A, Casellas Ma, et al. Pre-treatment of activated sludge: Effect ofsonication on aerobic and anaerobic digestibility [J]. Chemical Engineering Journal,2009,148(2-3):327-335.
    [65] Chu C P, Lee D J, Chang B V, et al.“Weak” ultrasonic pre-treatment on anaerobic digestion offlocculated activated biosolids [J]. Water Research,2002,36(11):2681-2688.
    [66] Show K Y, Mao T, Lee D J. Optimisation of sludge disruption by sonication [J]. WaterResearch,2007,41(20):4741-4747.
    [67] Weemaes M, Grootaerd H, Simoens F, et al. anaerobic digestion of ozonized biosolids [J].Water Research,2000,34(8):2330-2336.
    [68] Yeom I T, Lee K R, Lee K H, et al. effects of ozone treatment on the biodegradability ofsludge from municipal wastewater treatment plants[J]. Water Science and Technology,2002,46(4-5):421-425.
    [69] Bougrier C, Battimelli A, Delgenes J P, et al. Combined ozone pretreatment and anaerobicdigestion for the reduction of biological sludge production in wastewater treatment [J]. Ozone:Science&Engineering: The Journal of the International Ozone Association,2007,29(3):201-206.
    [70] Valo A, Carrère H, Delgenès J P. Thermal, chemical and thermo-chemical pre-treatment ofwaste activated sludge for anaerobic digestion [J]. Journal of Chemical Technology andBiotechnology,2004,79(11):1197-1203.
    [71] Rivero J A C, Madhavan N, Suidan M T, et al. Enhancement of anaerobic digestion of excessmunicipal sludge with thermal and/or oxidative treatment [J]. Journal of EnvironmentalEngineering,2006,132(6):638-644.
    [72] Devlin D C, Esteves S R, Dinsdale R, The effect of acid pretreatment on the anaerobicdigestion and dewatering of waste activated sludge [J]. Bioresource Technology,2011,102(5):4076-4082.
    [73] Kim J, Park C, Kim T H, et al. Effects of various pretreatments for enhanced anaerobicdigestion with waste activated sludge [J]. Journal of Bioscience and Bioengineering,2003,95(3):271-275.
    [74] Mouneimne A H, Carrère H, Bernet N, et al. Effect of saponification on the anaerobicdigestion of solid fatty residues [J]. Bioresource Technology,2003,90(1):89-94.
    [75] Baccay R A, Hashimoto A G. Acidogenic and methanogenic fermentation of causticized straw[J]. Biotechnology Bioengineering,1984,26(8):885-891.
    [76] Sosnowski P, Wieczorek A, Ledakowicz S. Anaerobic co-digestion of sewage sludge andorganic fraction of municipal solid wastes [J]. Advances in Environmental Research,2003,7(3):609–616.
    [77]楼紫阳,李鸿江,赵由才.渗滤液难降解物质物化性质研究[J].环境化学,2011,30(1):293-299.
    [78] Lu S G, Imai T, Ukita M, et al. start-up performances of dry anaerobic mesophilic andthermophilic digestion of organic solid wastes [J]. Journal of Environmental Sciences,2007,19(4):416-420.
    [79] Krupp M, Schubert J, Widmann R. Feasibility study for co-digestion of sewage sludge withOFMSW on two wastewater treatment plants in Germany [J]. Waste Management,2005,25(4):393-399.
    [80] Kayhanian M, RichD.Sludge management using thebiodegradable organic fraction ofmunicipal solid waste as a primary substrate [J].Water Environment Research,1996,68(2):240-252.
    [81]高瑞丽,严群,阮文权.添加厨余垃圾对剩余污泥厌氧消化产沼气过程的影响[J].生物加工过程,2008,6(5):31-35.
    [82] Mata-Alvarez J, Macé S, Llabrés P. Anaerobic digestion of organic solid wastes. An overviewof research achievements and perspectives [J]. Bioresource Technology,2000,74(1):3-16.
    [83] Bailey R S. Anaerobic digestion of restaurant grease wastewater to improve methane gasproduction and electrical power generation potential [C]. In: Proceedings of the WaterEnvironment Federation, Alexandria: Water Environment Federation,2007,6793-6805.
    [84] Muller C, Lam P, Lin E, et al. Co-digestion at Annacis Island WWTP: metro Vancouver’s pathto renewable energy and greenhouse gas emission reductions [C]. In: Proceedings of theWater Environment Federation, Alexandria: Water Environment Federation,2010,2706-2722.
    [85] Crawford G, Sandino J. Energy efficiency in wastewater treatment in North America: acompendium of best practices and case studies of novel approaches [M]. London: IWAPublishing,2010.
    [86]何强,王祥勇,方俊华,等.新型内循环污泥浓缩消化反应器研究[J].中国给水排水,2005,21(4):5-8.
    [87]刘鸿霞,何强,李进丰,等.改良型污泥浓缩消化反应器的试验研究[J].中国给水排水,2009,25(11):63-65.
    [88]何强,杨巍,刘鸿霞,等.两相一体式污泥浓缩消化反应器的性能研究[J].中国给水排水,2009,25(11):15-17
    [89]戚以政,汪叔雄.生化反应动力学与反应器(第二版)[M].北京:化学工业出版社,1999.
    [90]许保玖,龙腾锐.当代给水与废水处理原理(第二版)[M].北京:高等教育出版社,2000..
    [91] APHA. Standard Methods for the Examination of Water and Wastewater [S]. Washington:American Public Health Association,2005.
    [92]刘中芳.初沉污泥的连续厌氧消化和硫化物的抑制研究[D].西安建筑科技大学,2011.
    [93]付胜涛,于水利,严晓菊.初沉污泥和厨余垃圾的混合中温厌氧消化[J].给水排水,2006,32(1):24-28.
    [94]戴前进,李艺,方先金.城市污泥处理厂不同污泥厌氧消化的产气研究[J].给水排水,2007,33(3):42-45.
    [95] Mahmoud N, Zeeman G, Gijzen H, et al.2004. Anaerobic sewage treatment in a one-stageUASB reactor and a combined UASB-Digester system [J]. Water Research,38(9):2348-2358
    [96] Souto T F, Aquino S F, Silva S Q, et al. Influence of incubation conditions on the specificmethanogenic activity test [J]. Biodegradation,2010,21(3):411-424.
    [97] Balzonella D, Cavinato C, Fatone F, et al. High rate mesophilic, thermophilic, andtemperature phased anaerobic digestion of waste activated sludge: A pilot scale study [J].Waste Management,2012,32(6):1196-1201.
    [98] Pastor L, Marti N, Bouzas A., et al. Sewage sludge management for phosphorus recovery asstruvite in EBPR wastewater treatment plants [J]. Bioresource Technology,2008,99(11):4817-4824.
    [99] Marti N, Bouzas A, Seco A, et al. Struvite precipitation assessment in anaerobic digestionprocesses [J]. Chemical Engineering Journal,2008,141(1-3):67-74.
    [100] Leitao R C, Santaellla S T, van Haandel A C, et al. The effect of operational conditions onthe sludge specific methanogenic activity and sludge biodegradability [J]. Water Science andTechnology,2009,59(9):1847-1853.
    [101] Jenicek P, Koubova J, Bindzar J, et al. Adavantages of anaerobic digestion of sludge inmicroaerobic conditions [J]. Water Science and Technology,2010,62(2):427-434.
    [102] Houghton J I, Quarmby J, Stephenson T. The impact of digestion on sludge dewaterability[J]. Process safety and environmental protection,2000,78(2):153–159.
    [103] Lawler D F, Chung YJ, Hwang S-J, Hull BA. Anaerobic digestion: effects on particle sizeand dewaterability [J]. Water Pollution Control Federation1986,58(12):1107–17.
    [104] Houghton J I, Stephenson T. Effect of influent organic content on digested sludgeextracellular polymer content and dewaterability [J]. Water Research,2002,36(14):3620–3628.
    [105] Dabrowska L, Rosinska A. Change of PCBs and forms of heavy metals in sewage sludgeduring thermophilic anaerobic digestion [J]. Chemosphere,2012,88(2):168-173.
    [106] Chen M, Li X M, Yang Q, et al. Total concentrations and speciation of heavy metals inmunicipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south region of China[J]. Journal of Hazardous Materials,2008,160(2-3):324-329.
    [107] Yuan X Z, Huang H J, Zeng G M, et al. Total concentrations and chemical speciation ofheavy metals in liquefaction residues of sewage sludge [J]. Bioresource Technology,2011,102(5):4104-4110.
    [108]刘晓光,董滨,戴翎翎,等.剩余污泥厌氧消化过程重金属形态转化及生物有效性分析[J].农业环境科学学报,2010,31(8):1630-1638.
    [109] Fuentes A, Llorens M, Saez J, et al. Simple and sequential extractions of heavy metals fromdifferent sewage sludges [J]. Chemosphere,2004,54(8):1039-1047.
    [110] Lasheen M R, Ammar N S. Assessment of metals speciation in sewage sludge and stabilizedsludge from different Wastewater Treatment Plants, Greater Cairo, Egypt [J]. Journal ofHazardards. Materials.2009,164(2-3):740–749.
    [111] Van Hullebusch E D, Utomo S, Zandvoort M H, et al. Comparison of three sequentialextraction procedures to describe metal fractionation in anaerobic granular sludges [J].Talanta,2005,65(2):549–558.
    [112] Pathak A, Dastidar M G., Sreekrishnan T R. Bioleaching of heavy metals from sewagesludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate andferrous sulfate as energy sources: a comparative study [J]. Journal of Hazardards. Materials,2009,171(1-3):273-278.
    [113] Jamali M K, Kazi T G, Arain M B, et al. Speciation of heavy metals in untreated sewagesludge by using microwave assisted sequential extration procedure[J]. Journal of Hazardards.Materials,2009,163(2-3):1157-1164.
    [114] Walker D J, Clemente R, Roig A, et al. The effects of soil amendments on heavy metalbioavailability in two contaminated Mediterranean soils [J]. Environmental Pollution,2003,122(2):303-312.
    [115]沈晓南,谢经良,阚薇莉,等.厌氧消化后污泥中的重金属形态分析[J].中国给水排水,2002,18(11):51-52.
    [116]曹军,谭云飞,邢磊,等.污泥中重金属在厌氧消化前后的形态分布分析[J].河南化工,2003,(6):33-34.
    [117]张志凡,王光辉,于冰,等.城市污泥中重金属稳定性的研究[J].矿冶,2007,16(3):69-72.
    [118] Perin G. Bonardi M. Fabris R. et al. Heavy metal pollution in central Venice Lagoon bottomsediments: Evaluation of the metal bioavailability by geochemical speciation procedure [J].Environmental Technology,1997,18(6):593-604.
    [119]叶姜瑜,罗固源,吉芳英,等.污水生物处理功能微生物的多样性分析[J].重庆大学学报(自然科学版),2005,28(10):119-123.
    [120]叶姜瑜,丁维,何强,等. TISTD反应器中的菌群结构及生态变化[J].土木建筑与环境工程,2011,433(1):147-152.
    [121] Talbot G, Topp E, Palin M F, et al. Evaluation of molecular methods used for establishing theinteractions and functions of microorganisms in anaerobic bioreactors [J]. Water Research,2008,42(3):513-537.
    [122]刘春,马俊科,吴根,等.阿维菌素废水工业化UASB颗粒污泥产甲烷菌群分析[J].环境科学,2010,31(3):725-730
    [123]肖勇,杨朝晖,曾光明,等. PCR-DGGE研究处理垃圾渗滤液序批式生物膜反应器(SBBR)中的细菌多样性[J].环境科学,2007,28(5):1095-1101.
    [124] Perry L M, Anaerobic waste treatment fundamentals. Part I. Chemistry and Microbiology [J].Public works,1964,95(9):107-112.