二十二碳六烯酸对大鼠心室肌及冠状动脉平滑肌的细胞电生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:二十二碳六烯酸(DHA)在预防、减少心血管疾病发生,尤其是在抗心律失常、扩张血管、降低血压、增加冠状动脉血流量及预防心源性猝死等方面的有益作用受到广泛重视。但DHA引起的对心血管有益作用的机制尚不完全清楚。本研究拟采用膜片技术探讨DHA对大鼠心室肌细胞静息电位(RP)、动作电位(AP)、离子通道动力学以及对冠状动脉平滑肌细胞离子通道动力学的影响,旨在从细胞离子通道电生理水平上阐述DHA起到的抗心律失常、扩张血管等心血管有益作用的可能机制。为临床使用DHA提供理论依据。
     方法:(1)采用“四步”酶消化法,即无钙台氏液灌流、50μmol/L低钙酶液灌流、200μmol/L低钙台氏液灌流和室温下KB液中孵育。分离大鼠心室肌细胞后,记录正常大鼠心室肌细胞RP、AP、钠离子电流(I_(Na))、L-型钙离子电流(I_(Ca-L))、瞬时外向钾离子电流(I_(to))、延迟整流性钾离子电流(I_k)和内向整流性钾离子电流(I_(kl))。分别加入20、40、60、80、100和120μmol/L DHA,观察不同浓度DHA对RP、AP、I_(Na)、I_(Ca-L)、I_(to)、I_k和I_(kl)影响。
     (2)采用“三步”酶消化法,即含0.125%牛血清白蛋白(Bovine serum albumin,BSA)缓冲液室温孵育10分钟,酶液Ⅰ消化20分钟,酶液Ⅱ消化15分钟。分离大鼠冠状动脉平滑肌细胞后,记录正常大鼠冠状动脉平滑肌细胞大电导钙激活性钾(BK_(Ca))电流、电压依赖性钾(K_v)电流。分别加入10、20、40、60和80μmol/L DHA,观察不同浓度DHA对IBK_(Ca)、IK_v影响
     结果:(1)通过“四步”酶消化法,可获得70%~90%的耐钙细胞。
     (2)正常大鼠心室肌细胞RP、AP和离子流:①心室肌细胞RP分别为-75.96±4.52mV(n=100)。②心室肌细胞AP最大上升速率(Vmax)、动作电位幅度(APA)和超射(OS)分别为226.37±15.36V/s、116.59±11.63mV、31.79±6.35mV(n=50)。③复极25%、50%和90%动作电位时程(APD_(25)、APD_(50)和APD_(90))分别为4.85±1.36ms、11.76±2.23ms和52.81±5.33ms(n=50)。④I_(Na):指令电压-30mV时,峰值电流为-1183.71±315.62pA,相应电流密度为-7.86±2.11pA/pF(n=50);稳态激活的半激活电压V_(1/2)=-44.12±2.68mV;稳态失活的半失活电压V_(1/2)=-81.52±2.07mV;失活后恢复的快、慢时间常数分别为τ_1=0.66±0.32ms和τ_2=10.56±2.51ms。⑤I_(Ca-L):指令电压0mV时,峰值电流为-949.52±213.51pA,相应电流密度为-6.30±1.42 pA/pF(n=60);稳态激活的半激活电压V_(1/2)=-16.67±2.46mV;稳态失活的半失活电压V_(1/2)=-34.03±0.57mV;失活后恢复的时间常数为91.41±10.26 ms。⑥I_(to)指令电压+70mV时,峰值电流为4936.52±653.61pA,相应电流密度为32.91±4.36 pA/pF(n=50);稳态激活的半激活电压V_(1/2)=36.39±4.17mV;稳态失活的半失活电压V_(1/2)=-25.68±1.01mV;失活后恢复时间常数为83.07±10.25ms。⑦I_k:指令电压+60mV时,峰值电流大小为1530.15±512.2pA,相应电流密度为10.20±3.41pA/pF(n=30);稳态激活的半激活电压V_(1/2)=35.71±3.81mV;稳态失活的半失活电压V_(1/2)=-33.36±1.07mV;失活后恢复时间常数为168.18±16.67ms。⑧I_(kl)峰值电流和电流密度:指令电压-120mV时,I_(kl)为-4735.5±721.6pA,相应电流密度为-31.57±4.81pA/pF(n=28)。
     (3)DHA对心室肌细胞基本电生理影响:加入0、20、40、60、80、100和120μmol/LDHA,RP、Vmax、APA和OS差异无显著性(P>0.05,n=10),但加入上述浓度DHA后,APD_(25)分别为4.85±1.36ms、5.76±1.92ms、7.28±2.21ms、10.97±3.25ms、13.26±4.19ms、14.35±4.96ms和15.83±5.26ms(P<0.05,n=10);APD_(50)分别为11.76±2.23ms、13.21±3.02ms、14.59±3.37ms、18.92±4.16ms、20.53±4.77ms、22.19±5.34ms和23.87±5.66ms(P<0.05,n=12);APD_(90)分别为52.81±5.33ms、56.64±5.73ms、59.16±6.11ms、88.45±8.92ms、103.37±10.25ms、121.57±11.81ms和133.65±12.34ms(P<0.05,n=10)。
     (4)DHA对心室肌细胞离子流影响:加入20、40、60、80、100和120μmol/L DHA后:①I_(Na)呈浓度依赖性阻滞、I-V曲线上移、稳态失活曲线左移、失活后恢复时间延长,对稳态激活曲线无影响。在指令电压-30mV时,上述浓度DHA对I_(Na)阻滞分别为1.51±1.32%、21.13±4.62%、51.61±5.73%、67.62±6.52%、73.49±7.59%和79.95±7.62%(P<0.05,n=10),DHA对I_(Na)阻滞半效抑制浓度(IC_(50))为47.91±1.57μmol/L。②I_(Ca-L)呈浓度依赖性阻滞、I-V曲线上移、稳态失活曲线左移、失活后恢复时间延长,对稳态激活曲线无影响。在指令电压0mV时,上述浓度DHA对I_(Ca-L)阻滞分别为2.72±1.63%、21.97±3.35%、44.16±4.59%、67.89±4.87%、70.51±5.39%和72.32±5.57%(P<0.05,n=10),DHA对I_(Ca-L)抑制的IC_(50)为52.01±3.24μmol/L。③I_(to)呈浓度依赖性阻滞、I-V曲线下移、稳态失活曲线左移、失活后恢复时间延长,对稳态激活曲线无影响。在指令电压+70mV时,上述浓度DHA对I_(to)阻滞分别为2.61±0.26%、21.79±4.85%、63.11±6.57%、75.52±7.26%、81.82±7.63%和84.33±8.25%(P<0.05,n=10),DHA对I_(to)抑制的IC_(50)为49.11±2.68μmol/L。④I_K呈浓度依赖性阻滞、I-V曲线下移、稳态失活曲线左移、失活后恢复时间延长,对稳态激活曲线无影响。在指令电压+60mV时,上述浓度DHA对I_K阻滞分别为2.78±0.26%、27.23±3.97%、64.18±6.73%、77.59±7.36%、83.26±8.31%和87.93±9.35%(P<0.05,n=10),DHA对I_K抑制的IC_(50)为47.52±2.32μmol/L。⑤I_(Kl)峰值电流、I-V曲线无影响(P>0.05,n=10)。
     (5)正常大鼠冠状动脉平滑肌细胞IBK_(Ca)和IK_V:①单通道BK_(Ca):在钳制电压分别为+20、+40、+60、+80和+100mV,通道开放概率(Po)分别为:0.009±0.001、0.017±0.002、0.072±0.003、0.362±0.043和0.637±0.071(P<0.05,n=10),半激活电压及斜率分别为79.47±4.68mV和8.53±0.14。IBK_(Ca)单通道电导值为230.42±20.13pS(n=10)。②全细胞BK_(Ca):指令电压+150mV时,BK_(Ca)峰值电流大小为784.81±261.63pA,相应电流密度为68.24±22.75pA/pF(n=20)。在指令电压+90mV,BK_(Ca)尾电流大小为1046.73±113.67pA,相应电流密度为91.02±13.52pA/pF(n=20)。③全细胞K_V:指令电压+50mV时,K_V峰值电流大小为553.85±106.77pA,相应电流密度为48.16±9.28pA/pF(n=20)。在指令电压+40mV,K_V尾电流大小为388.24±81.26pA,相应电流密度为33.76±7.68pA/pF(n=20)。
     (6) DHA对大鼠冠状动脉平滑肌细胞IBK_(Ca)和IK_V影响:①加入0、10、20、40、60和80μmol/L的DHA后,在钳制电压+60mV时,单通道BK_(Ca
     的Po分别为:0.072±0.003、0.077±0.004、O.136±0.070、0.436±0.083、0.592±0.109和0.676±0.115(P<0.05,n=10)。DHA对单通道BK_(Ca)开放激活的IC_(50)为36.30±2.15μmol/L。在钳制电压分别为+20、+40、+60、+80和+100mV时,35μmol/LDHA作用前后的半激活电压及斜率分别为79.47±4.68mV、8.53±0.14和69.16±3.57mV、10.16±0.20,DHA使通道开放相对概率与钳制电压关系曲线左移。②加入10、20、40、60和80μmol/L的DHA后,IBK_(Ca)和BK_(Ca)尾电流均呈浓度依赖性增加,IBK_(Ca)电流密度分别为72.40题部量.49、120.44±37.96、237.48±53.22、323.60±74.83和370.61±88.16pA/pF。BK_(Ca)尾电流密度分别为100.23±17.34、224.02±38.76、369.19±65.39、511.39±82.77和700.14±96.64A/pF。IBK_(Ca)I-V曲线和BK_(Ca)尾电流I-V曲线均上移,对稳态激活曲线无影响。在指令电压+150mV时,上述浓度DHA对IBK_(Ca)增加分别为6.1±0.3%、76.5±3.8%、248.0±12.3%、374.2±18.7%和443.1±22.1%(P<0.05,n=10)。DHA对IBK_(Ca)激活的IC_(50)为36.22±2.17μmol/L。在测试电压+90mV时,上述浓度DHA对BK_(Ca)尾电流增加分别为10.12±0.33%、146.12±4.97%、305.62±9.89%、461.85±14.92%和669.22±20.37%(P<0.05,n=10)。③加入10、20、40、60和80μmol/L的DHA后,IK_V和K_V尾电流均呈浓度依赖性抑制,IK_V电流密度分别为45.96±7.63、42.97±5.01、31.15±3.87、14.33±2.94和10.35±2.17 pA/pF。K_V尾电流密度分别为31.51±6.72、28.62±5.13、19.04±3.43、8.85±1.76和5.73±1.02 pA/pF。IK_V I-V曲线和K_V尾电流I-V曲线均下移,稳态激活曲线右移、稳态失活曲线左移。在指令电压+50mV时,上述浓度的DHA对IK_V的抑制分别为4.57±0.23%、10.77±0.54%、35.32±1.76%、70.25±3.51%和78.51±3.93%(P<0.05,n=10),DHA对IK_V抑制的IC_(50)为42.19±1.59μmol/L。在指令电压+40mV时,上述浓度的DHA对IK_V尾电流的抑制分别为6.65±0.27%、15.22±2.76%、43.59±7.82%、73.80±11.79%和83.02±13.65%(P<0.05,n=10)。
     结论:(1)对大鼠心室肌细胞电生理影响:①DHA使APD_(25)、APD_(50)、APD_(90)延长,对Vmax、APA、OS无影响。②DHA对I_(Na)、I_(Ca-L)、I_(to)、I_K均有阻滞作用,使这些通道电流稳态失活曲线左移、失活后恢复时间延长,对稳态激活曲线无影响。③DHA对I_(KI)电流大小和通道动力学参数均无影响。④DHA具备多通道阻滞,从而对预防心律失常和心源性猝死起有益作用。
     (2)对大鼠冠状动脉平滑肌细胞电生理影响:①DHA对单通道BK_(Ca)有激活作用,使单通道BK_(Ca)开放相对概率与钳制电压关系曲线左移。②DHA对全细胞BK_(Ca)有激活作用,对稳态激活曲线无影响。③DHA对全细胞K_V有抑制作用,稳态激活曲线右移、稳态失活曲线左移。④DHA激活BK_(Ca)通道作用大,抑制K_V通道作用小,综合电生理影响增加冠脉复极电流,从而起舒血管作用。
Objective Recently,more attentions have been paid on the beneficial effects of docosahexaenoic acid(DHA) on prevention and reduction of cardiovascular diseases, especially in anti-arrhythmia,vasodilatation,lowering blood pressure,improvement of coronary artery blood flow,prevention of sudden death,and so on.However,the molecular mechanisms underlying thatω-3 PUFAs exert their cardioprotective effects are not fully understood.
     The study was to investigate DHA effects on resting potentials(RP),action potentials (AP),ionic currents of rat ventricular myocytes and effects on ionic currents of rat in rat coronary artery smooth muscle cells(CASMCs) by patch clamp technique.Investigating DHA mechanisms from the level of cell,molecule,and ion can provide theoretical evidences for applying rationally in clinical practice.
     Methods(1) RP,AP,sodium current(I_(Na)),L-type calcium current(I_(Ca-L)),transient outward potassium current(I_(to)),delayed rectification potassium current(I_k),and inwardly rectified potassium current(I_(kl)) of normal rat ventricular myocytes were respectively recorded by patch clamp after "four-step" enzyme digestion method,i.e.,perfusion with Tyrode's solution without Ca~(2+),perfusion with 50μmol/L Ca~(2+),perfusion with 200μmol/L Ca~(2+),incubation with KB solution in room temperature.Effects on RP,AP,I_(Na),I_(Ca-L),I_(to),I_k and I_(kl) were observed by addition of 20,40,60,80,100 and 120μmol/L DHA respectively.
     (2) BK_(Ca) and K_V currents in individual CASMC were recorded by patch-clamp technique after CASMCs were isolated by "three-step" enzyme digestion,i.e.,incubated in buffer soluition containing 0.125%BSA for about 10min at room temperature,digested in enzymeⅠfor about 20min and then for about 15 min in enzymeⅡ.Effects on BK_(Ca) and K_V currents were studied by addition of 10,20,40,60 and 80μmol/L DHA respectively.
     Results(1) 70~90%calcium-tolerant ventricular myocytes from rat were obtained by "four-step" enzyme digestion method.
     (2) RP,AP and ionic currents of normal rat ventricular myocytes:a.RP of ventricular myocytes was -75.96±4.52mV(n=100).b.AP maximal velocity(Vmax),AP amplitude (APA) and AP overshoot(OS) were 226.37±15.36V/s,116.59±11.63mV,31.79±6.35mV (n=50) respectively,c.25%,50%and 90%of action potential durations(APD_(25),APD_(50), and APD_(90)) of ventricular myocytes were 4.85±1.36ms,11.76±2.23ms and 52.81±5.33ms(n=50),respectively,d.I_(Na):I_(Na) currents at -30mV were-1183.71±315.62pA, and corresponding current densities were -7.86±2.11pA/pF(n=50).50%stably activated potential was -44.12±2.68mV;50%stably inactivated potential was -81.52±2.07mV;the fast and slow recovered time from inactivation wasτ_1=0.66±0.32ms,τ_2=10.56±2.51ms.e. I_(Ca-L):I_(Ca-L) currents at 0mV were-949.52±213.51pA,and corresponding current densities were -6.30±1.42 pA/pF(n=60).50%stably activated potential was-16.67±2.46mV;50% stably inactivated potential was -34.03±0.57mV;recovered time from inactivation was 91.41±10.26 ms.f.I_(to):I_(to) currents at +70mV were 4936.52±653.61pA,and corresponding current densities were 32.91±4.36 pA/pF(n=50).50%stably activated potential was36.39±4.17 mV;50%stably inactivated potential was -25.68±1.01 mV;recovered time from inactivation was 83.07±10.25ms.g.I_k:I_k currents at +60mV were 1530.15±512.2pA, and corresponding current densities were10.20±3.41pA/pF(n=30).50%stably activated potential was35.71±3.81mV;50%stably inactivated potential was -33.36±1.07mV; recovered time from inactivation was 168.18±16.67ms.h.Peak currents and current densities of I_(kl):I_(kl) currents at -120mV were -4735.5±721.6pA,and corresponding current densities were -31.57±4.81pA/pF(n=28).
     (3) Effects on basic electrophysiology of rat ventricular myocytes by DHA:RP,Vmax, APA and OS were not significant(P>0.05,n=10),but APD changed after application 20, 40,60,80,100 and 120μmol/L DHA.APD_(25) were 4.85±1.36ms,5.76±1.92ms, 7.28±2.21ms,10.97±3.25ms,13.26±4.19ms,14.35±4.96ms and 15.83±5.26ms respectively (P<0.05,n=10).APD_(50) were 11.76±2.23ms,13.21±3.02 ms,14.59±3.37ms,18.92±4.16ms, 20.53±4.77ms,22.19±5.34ms and 23.87±5.66ms respectively(P<0.05,n=12).APD_(90) were 52.81±5.33ms,56.64±5.73ms,59.16±6.11ms,88.45±8.92ms,103.37±10.25ms, 121.57±11.81ms and 133.65±12.34ms respectively(P<0.05,n=10).
     (4) Effects on ionic currents of ventricular myocytes by DHA:when 20,40,60,80,100 and 120μmol/L DHA were gradually applicated:a.I_(Na) were gradually blocked,Ⅰ-Ⅴcurves were upward,stably inactivated curves were shifted to the left,and recovered time from inactivation was prolonged(P<0.05,n=10),and stably activated curves were no remarkable significance(P>0.05,n=10).I_(Na) was blocked to 1.51±1.32%,21.13±4.62%, 51.61±5.73%,67.62±6.52%,73.49±7.59%and 79.95±7.62%under manding potential equal to -30mV(P<0.05,n=10),and 50%inhibition concentration(IC_(50)) of DHA was 47.91±1.57μmol/L.c.I_(Ca-L) were gradually blocked,Ⅰ-Ⅴcurves were upward,stably inactivated curves were shifted to the left,and recovered time from inactivation was prolonged with augmentation of DHA(P<0.05,n=10),and stably activated curves were no remarkable significance(P>0.05,n=10).I_(Ca-L) was blocked to 2.72±1.63%,21.97±3.35%, 44.16±4.59%,67.89±4.87%,70.51±5.39%and 72.32±5.57%under manding potential equal to 0mV(P<0.05,n=10),and IC_(50) of DHA was 52.01±3.24μmol/L.d.I_(to) were gradually blocked,Ⅰ-Ⅴcurves were downward,stably inactivated curves were shifted to the left,and recovered time from inactivation was prolonged with augmentation of DHA (P<0.05,n=10),and stably activated curves were no remarkable significance(P>0.05, n=10).I_(to) was blocked to 2.61±0.26%,21.79±4.85%,63.11±6.57%,75.52±7.26%, 81.82±7.63%and 84.33±8.25%under manding potential equal to +70mV(P<0.05,n=10), and IC_(50) of DHA was49.11±2.68μmol/L,e.I_K were gradually blocked,Ⅰ-Ⅴcurves were downward,stably inactivated curves were shifted to the left,and recovered time from inactivation was prolonged with augmentation of DHA(P<0.05,n=10),and stably activated curves were no remarkable significance(P>0.05,n=10).I_(to) was blocked to 2.78±0.26%,27.23±3.97%,64.18±6.73%,77.59±7.36%,83.26±8.31%and 87.93±9.35% under manding potential equal to +60mV(P<0.05,n=10),and IC_(50) of DHA was47.52±2.32μmol/L,f.DHA at different concentrations did not have any effect on I_(Kl) (P>0.05,n=10).
     (5) BK_(Ca) and K_V currents of normal rat CASMCs:a.Open probability(Po) of BK_(Ca) channel in individual CASMCs were observed using a patch-clamp technique in an inside-out configuration.Under manding potential equal to +20,+40,+60,+80 and +100mV,Po of BK_(Ca) channel were 0.009±0.001,0.017±0.002,0.072±0.003,0.362±0.043 and 0.637±0.071 respectively(P<0.05,n=10),and half activated voltage and slope rate of BK_(Ca) channel was 79.47±4.68mV and 8.53±0.14.Conductance of BK_(Ca) channel was 230.42±20.13pS(n=10).b.Peak currents and current densities of IBK_(Ca) under whole-cell configuration:BK_(Ca) currents at +150mV were 784.81±261.63pA,and corresponding current densities were 68.24±22.75pA/pF(n=20).BK_(Ca) tail currents at +90mV were 1046.73±113.67pA,and corresponding current densities were 91.02±13.52pA/pF(n=20).d. Peak currents and current densities of IK_V under whole-cell configuration:K_V currents at +50mV were 553.85±106.77pA,and corresponding current densities were 48.16±9.28pA/pF(n=20).K_V tail currents at +40mV were 388.24±81.26pA,and corresponding current densities were 33.76±7.68pA/pF(n=20)
     (6) Effects on BK_(Ca) and K_V currents of normal rat CASMCs by DHA:a.Po of BK_(Ca) channel at +60mV were 0.072±0.003,0.077±0.004,0.136±0.070,0.436±0.083, 0.592±0.109 and 0.676±0.115(P<0.05,n=10) by addition of 0,10,20,40,60 and 80μmol/L DHA respectively,and IC_(50) of DHA on BK_(Ca) channel was 36.30±2.15μmol/L. Curves of relative Po and manding potential relation were shifted to the left under manding potential equal to +20,+40,+60,+80 and +100mV respectively,and half activated voltage and slope rate of BK_(Ca) channel was 69.16±3.57mV and 10.16±0.20 after addition of 35μmol/LDHA,b.IBK_(Ca) were gradually increased,Ⅰ-Ⅴcurves were upward,and BK_(Ca) tail currents were gradually increased,BK_(Ca) tail currentsⅠ-Ⅴcurves were upward with augmentation of DHA(P<0.05,n=10),and stably activated curves were no remarkable significance(P>0.05,n=10).IBK_(Ca) were increased to 6.1±0.3%,76.5±3.8%,248.0±12.3%, 374.2±18.7%and 443.1±22.1%(P<0.05,n=10) with 20,40,60,80 and 100μmol/L of DHA under manding potential equal to +150mV,and IC_(50) of DHA was 36.22±2.17μmol/L. BK_(Ca) tail currents were increased to 10.12±0.33%,146.12±4.97%,305.62±9.89%, 461.85±14.92%and 669.22±20.37%with augmentation of DHA under manding potential equal to +90mV(P<0.05,n=10),c.IK_V and K_V tail currents were gradually blocked,Ⅰ-Ⅴcurves were downward,stably activated curves were shift to the right,and stably inactivated curves were shifted to the left.IK_V were decreased to 4.57±0.23%, 10.77±0.54%,35.32±1.76%,70.25±3.51%and 78.51±3.93%(P<0.05,n=10) with 20,40, 60,80 and 100μmol/L of DHA under manding potential equal to +50mV,and IC_(50) of DHA was 42.19±1.59μmol/L.K_V tail currents were decreased to 6.65±0.27%,15.22±2.76%, 43.59±7.82%,73.80±11.79%and 83.02±13.65%with augmentation of DHA under lnanding potential equal to +40mV(P<0.05,n=10).
     Conclusion(1) Effects on Electrophysiology of rat ventricular myocytes:a.APDs are gradually prolonged with augmentation of DHA,but DHA has no effects on Vmax,APA and OS.b.DHA have blocked effects on I_(Na),I_(Ca-L),I_(to) and I_K,stably inactivated curves of these currents were shifted to the left,and recovered time from inactivation were prolonged with augmentation of DHA,and stably activated curves were no remarkable significance,c. DHA with different concentrations has no effects on I_(Kl) and its channel dynamics,d.The blocked effects of DHA on I_(Na),I_(Ca-L),I_(to) and I_K,are beneficial to prevent arrhythmia and sudden death.
     (2) Effects on Electrophysiology of rat CASMCs:a.DHA actived BK_(Ca) channel in an inside-out configuration.Curves of relative Po and manding potential relation were shifted to the left.b.DHA actived BK_(Ca) channel in an whole-cell configuration,and stably activated curves were no remarkable significance,c.DHA blocked K_V channel,tably activated curves were shift to the right,and stably inactivated curves were shifted to the left.d.The activation effects on BK_(Ca) channel by DHA are larger than its inhibitation effects on K_V channel.The complex action on BK_(Ca) channel and K_V channel induced by DHA result in vasodilatation.
引文
1.Calder PC.n-3 Fatty acids and cardiovascular disease:evidence explained and mechanisms explored.Clin Sci(Lond) 2004;107(1):1-11.
    2.Wang C,Harris WS,Chung M,et al.n-3 Fatty acids from fish or fish-oil supplements,but not alphalinolenic acid,benefit cardiovascular disease outcomes in primary- and secondary-prevention studies:a systematic review.Am J Clin Nutr 2006;84(1):5-17.
    3.Marchioli R,Levantesi G,Macchia A,et al.Antiarrhythmic mechanisms of n-3 PUFA and the results of the GISSI-Prevenzione trial.J Membr Biol 2005;206(2):117-128.
    4.Marchioli R,Barzi F,Bomba E,et al.Early protection against sudden death by n-3polyunsaturated fatty acids after myocardial infarction:time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione.Circulation 2002;105(16):1897-1903.
    5.Franzosi MG,Brunetti M,Marchioli R,et al.Cost-effectiveness analysis of n-3polyunsaturated fatty acids(PUFA) after myocardial infarction:results from Gruppo Italiano per lo Studio della Sopravvivenza nelrInfarto(GISSI)-Prevenzione Trial.Pharmacoeconomics.2001;19(4):411-420.
    6.Macchia A,Levantesi G,Franzosi MG,et al.Left ventricular systolic dysfunction,total mortality,and sudden death in patients with myocardial infarction treated with n-3polyunsaturated fatty acids.Eur J Heart Fail 2005;7(5):904-909.
    7.Deckelbaum RJ,Leaf A,Mozaffarian D,et al.Conclusions and recommendations from the symposium,Beyond Cholesterol:Prevention and Treatment of Coronary Heart Disease with n-3 Fatty Acids.Am J Clin Nutr 2008;87(6):2010S-2012S.
    8.Pepe S,McLennan PL.Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function.Circulation 2002;105(19):2303-2308.
    9.Leaf A,Xiao YF,Kang JX,et al.Prevention of sudden cardiac death by n-3polyunsaturated fatty acids.Pharmacol Ther 2003;98(3):355-377.
    10.Watkins SM,Lin TY,Davis RM,et al.Unique phospholipid metabolism in mouse heart in response to dietary docosahexaenoic or a -linolenic acids. Lipids 2001; 36(3):247-254.
    
    11. Xiao YF, Sigg DC, Leaf A. The antiarrhythmic effect of n-3 polyunsaturated fatty acids: modulation of cardiac ion channels as a potential mechanism. J Membr Biol 2005; 206(2):141-154.
    
    12. Engler MB, Engler MM. Docosahexaenoic acid-induced vasorelaxation in hypertensive rat: mechanisms of action. Biol Res Nurs 2000; 2(2): 85-95.
    
    13. Harris WS. International recommendations for consumption of long-chain omega-3 fatty acids. J Cardiovasc Med (Hagerstown) 2007; 8 (Suppl 1):S50-S52.
    
    14. Mozaffarian D, Prineas RJ, Stein PK, et al. Dietary Fish and n-3 Fatty Acid Intake and Cardiac Electrocardiographic Parameters in Humans. J Am Coll Cardiol 2006; 48 (3): 478-484.
    
    15. Den Ruijter HM, Berecki G, Verkerk AO, et al. Acute Administration of fish oil inhibits triggered activity in isolated myocytes from rabbits and patients with heart failure. Circulation 2008; 117(4):536-544.
    
    16. Abdukeyum GG, Owen AJ, McLennan PL. Dietary n-3 Long-Chain Polyunsaturated Fatty Acids Inhibit Ischemia and Reperfusion Arrhythmias and Infarction in Rat Heart Not Enhanced by Ischemic Preconditioning. J Nutr 2008;138 (10): 1902-1909.
    
    17. Szentandrassy N, Perez-Bido MR, Alonzo E, et al. Protein kinase A is activated by the n-3 polyunsaturated fatty acid eicosapentaenoic acid in rat ventricular muscle. J Physiol 2007; 582 (Pt 1):349-358.
    1.Farmer BB,Mancina M,Williams ES,et al.Watanabe isolation of calcium tolerant myocytes from adult rat hearts:review of the literature and description of a method.Life Sci 1983;33(1):1-18.
    2.T Kono.Roles of collagenases and other proteolytic enzymes in the dispersal of animal tissues.Biochim Biophys Acta 1969;178(2):397-400.
    3.Yazawa K,Kaibara M,Ohara M,et al.An improved method for isolating cardiac myocytes useful for patch-clamp studies.Jpn J Physiol 1990;40(1):157-163.
    4.Takebayashi S,Li Y,Kaku T,et al.Remodeling excitation-contraction coupling of hypertrophied ventricular myocytes is dependent on T-type calcium channels expression.Biochem Biophys Res Commun 2006;345(2):766-773.
    5.Perrier E,Kerfant BG,Lalevee N et al.Mineralocorticoid receptor antagonism prevents the electrical remodeling that precedes cellular hypertrophy after myocardial infarction.Circulation 2004;110(7):776-783.
    6.Shady M.Ashamalla,Navarro D,et al.Gradient of sodium current across the left ventricular wall of adult rat hearts.J Physiol 2001;536(Pt2):439-453.
    7.Isenberg G,Klockner U.Calcium tolerant ventricular myocytes prepared by preincubation in a "KB medium".Pflugers Arch 1982;395(1):6-18.
    8.Balnave CD,Vaughan-Jones RD.Effect of intracellular pH on spontaneous Ca~(2+)sparks in rat ventricular myocyte.J Physiol 2000;528(Pt1):25-37.
    9.Stilli D,Berni R,Bocchi L,et al.Vulnerability to ventricular arrhthmias and heterogeneity of action potential duration in normal rats.Exp Physiol 2004;89(4):387-396.
    10.王如兴,蒋文平.正常耐钙Spraque-Dawley大鼠心室肌细胞分离方法及体会.中国心脏起搏与心电生理杂志2007;21(1):59-62.
    11.Wittenberg BA,Robinson TF.Oxygen requirements,morphology,cell coat and membrane permeability of calcium-tolerant myocytes from hearts of adult rats.Cell Tissue Res 1981;216(2):231-251.
    12.Tytgat J.How to isolate cardiac myocytes.Cardiovasc Res 1994;28(2):280-283.
    13.Dow JW,Harding NG,Powell T.Isolated cardiac myocytes.I.Preparation of adult myocytes and their homology with the intact tissue.Cardiovasc Res 1981;15(9):483-514.
    14.Bustamante JO,Watanabe T,McDonald TF.Single cells from adult mammalian heart:isolation procedure and preliminary electrophysiological studies.Can J Physiol Pharmacol 1981;59(8):907-710.
    15.Mitra R,Morad M.A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates.Am J Physiol Heart Circ Physiol 1985;249(5 Pt2): H1056-H1060.
    
    16. Altschuld R, Gibb L, Ansel A, et al. Calcium tolerance of isolated rat heart cells. J Mol Cell Cardiol 1980; 12 (12): 1383-1395.
    
    17. Haworth RA, Hunter DR, Berkoff HA. The isolation of Ca~(2+) -resistant myocytes from the adult rat. J Mol Cell Cardiol 1980; 12 (7): 715-723.
    
    18. Ruigrok TJ, Boink AB, Spies F, et al. Energy dependence of the calcium paradox. J Mol Cell Cardiol 1978; 10 (11): 991-1002.
    
    19. Toleikis A, Dzeja P, Praskevicius A, et al. Mitochondrial functions in ischemicmyocardium. I. Proton electrochemical gradient, inner membrane permeability, calcium transport and oxidative phosphorylation in isolated mitochondria. J Mol Cell Cardiol 1979; 11 (1): 57-76.
    
    20. Wittenberg BA, Robinson TF. Oxygen requirements, morphology, cell coat and membrane permeability of calcium-tolerant myocytes from hearts of adult rats. Cell Tissue Res 1981; 216 (2): 231-251.
    
    21. Gallego M, Setién R, Puebla L, et al. al-Adrenoceptors stimulate a Gas protein and reduce the transient outward K~+ current via a cAMP/PKA-mediated pathway in the rat heart. Am J Physiol Cell Physiol 2005; 288 (2): C577- C585.
    
    22. Tsushima RG, Wickenden AD, Bouchard RA, et al. Modulation of iron uptake in heart by L-type Ca~(2+) channel modifiers: possible implications in iron overload. Circ Res 1999; 84 (11): 1302-1309.
    
    23. He JY, Kargacin ME, Kargacin GJ, et al. Tamoxifen inhibits Na~+ and K~+currents in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2003; 285 (2): H661-H668.
    
    24. Kaprielian R, Wickenden AD, Kassiri Z, et al. Relationship between K~+ channel down-regulation and [Ca~(2+)] in rat ventricular myocytes following myocardial infarction. J Physiol 1999; 517 (Pt 1): 229-245.
    
    25. Sah R, Ramirez RJ, Kaprielian R, et al. Alterations in action potential profile enhance excitation-contraction coupling in rat cardiac myocytes. J Physiol 2001; 533 (Pt 1):201-214.
    
    26. Yamamoto T, Swietach P, Rossini A, et al. Functional diversity of electrogenic Na~+-HCO3~- co-transport in ventricular myocytes from rat, rabbit and guinea pig. J Physiol 2005; 562 (Pt2): 455-475.
    27.Onorato JJ,Rudolph SA.Regulation of protein phosphorylation by inotropic agents in isolated rat myocardial cells.J Biol Chem1981;256(20):10697-10703.
    28.陈吉球.心肌细胞分离术.中国病理生理杂志.1999;15(5):475-477.
    29.郭晓纲,陈君柱,张雄,等.葛根素对大鼠心肌细胞L-型钙离子通道的影响.中国中药杂志.2004;29(3):248-251.
    30.Despa S,Brette F,Orchard CH,et al.Na/Ca Exchange and Na/K-ATPase function are equally concentrated in transverse tubules of rat ventricular myocytes.Biophys J 2003;85(5):3388-3396.
    31.李洪,肖颖彬.成年大鼠心室肌细胞的分离、培养与鉴定.第三军医大学学报.2004;26(7):644-646.
    32.Fauconnier J,Bedut S,Guennec JY,et al.Ca~(2+) current-mediated regulation of action potential by pacing rate in rat ventricular myocytes.Cardiovasc Res 2003;57(3):670-680.
    33.Huang ZQ,Shi GG,Zheng JH,et al.Effects of N-n-butyl haloperidol iodide on rat myocardial ischemia and reperfusion injury and L-type calcium current.Acta Pharmacol Sin 2003;24(8):757-763.
    34.Lai XG,Yang J,Zhou SS,et al.Involvement of anion channel(s) in the modulation of the transient outward K~+ channel in rat ventricular myocytes.Am J Physiol Cell Physiol 2004;287(1):C163-C170.
    35.Kramer JH,Chovan.JP,Schaffer SW.Effect of taurine on calcium paradox and ischemic heart failure.Am J Physiol Heart Circ Physiol 1981;240(2):H238-H246.
    36.Venetucci LA,Trafford AW,Diaz ME,et al.Reducing ryanodine receptor open probability as a means to abolish spontaneous Ca~(2+) release and increase Ca~(2+)transient amplitude in adult ventricular myocytes.Circ Res 2006;98(10):1299-1305.
    37.Bendukidze Z,Isenberg G,Klockner U.Ca-tolerant guinea-pig ventricular myocytes as isolated by pronase in the presence of 250 microM free calcium.Basic Res Cardiol 1985;80(Suppl 1):13-18.
    38.Despa S,Brette F,Orchard CH,et al.Na/Ca exchange and Na/K-ATPase function are equally concentrated in transverse tubules of rat ventricular myocytes.Biophys J 2003;85(5):3388-3396.
    39.Bφkenes J,Sjaastad I,Sejersted OM.Artifactual contractions triggered by field stimulation of cardiomyocytes.J Appl Physiol 2005;98(5):1712-1719.
    40. Hunton DL, Zou LY, Pang Y, et al. Adult rat cardiomyocytes exhibit capacitative calcium entry. Am J Physiol Heart Circ Physiol 2004; 286 (3):H1124- H1132.
    
    41. Shimoni Y, Liu XF. Gender differences in ANG II levels and action on multiple K~+ current modulation pathways in diabetic rats. Am J Physiol Heart Circ Physiol 2004; 287(1):H311-H319.
    1.He JY,Kargacin ME,Kargacin G J,et al.Tamoxifen inhibits Na~+ and K~+ currents in rat ventricular myocytes.Am J Physiol Heart Circ Physiol 2003;285(2):661-668.
    2.Stadnicka A,Marinovic J,Bienengraeber M,et al.Impact of in vivo preconditioning by isoflurane on adenosine triphosphate-sensitive potassium channels in the rat heart:lasting modulation of nucleotide sensitivity during early memory period.Anesthesiology 2006;104(3):503-510.
    3.Liu QY,Rosen MR,McKinnon D,et al.Sympathetic innervation modulates repolarizing K~+ currents in rat epicardial myocytes.Am J Physiol Heart Circ Physiol 1998;274(3):915-922.
    4.Fauconnier J,Bedut S,Guennec JY,et al.Ca~(2+) current-mediated regulation of action potential by pacing rate in rat ventricular myocytes.Cardiovasc Res 2003;57(3):670-680.
    5.Brette F,Orchard CH.No apparent requirement for neuronal sodium channels in excitation-contraction coupling in rat ventricular myocytes. Circ Res 2006; 98 (5): 667-674.
    
    6. Snyders DJ, Hondeghem LM. Effects of quinidine on the sodium current of guinea pig ventricular myocytes. Evidence for a drug-associated rested state with altered kinetics. Circ Res 1990; 66 (2): 565-579.
    
    7. Hung CF, Wu MH, Tsai CH, et al. Electrophysiological mechanisms for the antiarrhythmic activities of naloxone on cardiac tissues. Life Sci 1998; 63(14): 1205-1219.
    
    8. Orta-Salazar G, Bouchard RA, Morales-Salgado F, et al. Inhibition of cardiac Na~+ current by primaquine. Br J Pharmacol 2002; 135 (3): 751-763.
    
    9. 李泱,程芮主编.离子通道学.湖北科学技术出版社 2007; 26-27.
    
    10. Josephson IR, Chapula JS, Brown AM. A comparison of calcium currents in rat and guinea pig single ventricular cells. Circ Res 1984; 54 (2): 144-156.
    
    11. Apkon M, Nerbonne JM. Characterization of two distinct depolarization activated K~+ currents in isolated adult rat ventricular myocytes. J Gen Physiol 1991; 97 (5): 973-1011.
    
    12. Scamps F. Characterization of a beta-adrenergically inhibited K~+ current in rat cardiac ventricular cells. J Physiol 1996; 491 (1): 81-97.
    
    13. Fauconnier J, Lacampagne A, Rauzier JM, et al. Frequency-dependent and proarrhythmogenic effects of FK-506 in rat ventricular cells. Am J Physiol Heart Circ Physiol 2005; 288 (2): H778-H786.
    
    14. Bodi I, Koch SE, Yamaguchi H, et al. The role of region IVS_5 of the human cardiac calcium channel in establishing inactivated channel conformation, use-dependent block by benzothiazepines. J Biol Chem 2002; 277 (23): 20651 -20659.
    
    15. Bers DM. Cardiac excitation-contraction coupling. Nature 2002; 415 (6868): 198-205.
    
    16. Anita GO, Srivastava S, Collis L, et al. Negative inotropic effect of nifedipine in the immature rabbit heart is due to shortening of the action potential. Pediatr Res 2005; 57 (3): 399-403.
    
    17. Fukumoto GH, Lamp ST, Motter C, et al. Metabolic inhibition alters subcellular calcium release patterns in rat ventricular myocytes: implications for defective excitation-contraction coupling during cardiac ischemia and failure. Circ Res 2005; 96(5):551 -557.
    
    18. Fox AP, Nowycky MC, Tsien RW. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurons. J Physiol 1987; 394(1): 149-172.
    
    19. Ahmmed GU, Dong PH, Song GJ, et al. Changes in Ca~(2+) cycling proteins underlie cardiac action potential prolongation in a pressure-overloaded guinea pig model with cardiac hypertrophy and failure. Circ Res 2000; 86 (5): 558-570.
    
    20. Lipscombe D. L-type calcium channels: highs and new lows. Circ Res 2002; 90 (9): 933-935.
    
    21. Bryant SM, Shipsey SJ, Hart G. Normal regional distribution of membrane current density in rat left ventricle is altered in catecholamine-induced hypertrophy. Cardiovasc Res 1999; 42 (2): 391-401.
    
    22. Weissgerber P, Held B, Bloch W, et al. Reduced cardiac L-type Ca~(2+) current in Ca(v)beta2-/-embryos impairs cardiac development and contraction with secondary defects in vascular maturation. Circ Res 2006; 99 (7): 749-757.
    
    23. Yeola SW, Snyders DJ. Electrophysiological and pharmacological correspondence between Kv4.2 current and rat cardiac transient outward current. Cardiovasc Res 1997; 33(3): 540-547.
    
    24. Hulme JT, Orchard CH. Effect of acidosis on transient outward potassium current in isolated rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2000; 278 (1):50-59.
    
    25. Volk T, Nguyen TH, Schultz JH, et al. Relationship between transient outward K~+ current and Ca~(2+) influx in rat cardiac myocytes of endo and epicardial origin. J Physiol 1999; 519(3): 841-850.
    
    26. Aimond F, Rauzier JM, Bony C, et al. Simultaneous Activation of p38 MAPK and p42/44 MAPK by ATP Stimulates the K~+ Current, I_(Trek) in Cardiomyocytes. J Biol Chem 2000; 275 (50): 39110-39116.
    
    27. Bogdanov KY, Spurgeon HA, Vinogradova TM, et al. Modulation of the transient outward current in adult rat ventricular myocytes by polyunsaturated fatty acids. Am J Physiol Heart Circ Physiol 1998; 274 (2): 571-579.
    
    28. Xu HD, Guo WN, Nerbonne JM. Four kinetically distinct depolarization-activated K~+ currents in adult mouse ventricular myocytes. J Gen Physiol 1999; 113 (6): 661-667.
    29. Casis O, Iriarte M, Gallego M, et al. Differences in regional distribution of K~+ current densities in rat ventricle. Life Sci 1998; 63 (5): 391-400.
    
    30. Schultz JH, Volk T, Ehmke H. Heterogeneity of Kv2.1 mRNA expression and delayed rectifier current in single isolated myocytes from rat left ventricle. Circ Res 2001; 88(5): 483-490.
    
    31. Castle NA. Slawsky MT. Characterization of 4-aminopyridine block of the transient outward K~+ current in adult rat ventricular myocytes. J Pharmacol Exp Ther 1993; 264(3): 1450-1459.
    
    32. Dhamoon AS, Pandit SV, Sarmast F, et al. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K~+ current. Circ Res 2004; 94 (10): 1332-1339.
    
    33 Heidbuchel H , Vereecke J , Carmeliet E. Different K+channels in human atrial cells. Pflugers Arch 1989 ,414 (Suppl 1) :S171 - S172.
    34. Irisawa H , Brown HF , Giles W. Cardiac pacemaking inthe sinoatrial node. Physiol Rev 1993, 73(1): 197-227.
    1.Albert CM,Hennekens CH,Donnetl CJ,et al.Fish consumption and risk of sudden cardiac death.JAMA 1998;279(1):23-28.
    2.Harris WS,Kris-Etherton PM,Harris KA.Intakes of long-chain omega-3 fatty acid associated with reduced risk for death from coronary heart disease in healthy adults.Curr Atheroscler Rep.2008;10(6):503-509.
    3.Albert CM.Dietary n-3 Fatty Acid Intake and Risk of Sudden Death and Coronary Artery Disease.Curr Treat Options Cardiovasc Med.2007,9(1):71-77.
    4.Bogdanov KY,Spurgeon HA,Vinogradova TM,et al.Modulation of the transient outward current in adult rat ventricular myocytes by polyunsaturated fatty acids. Am J Physiol 1998; 274(2): 571-582.
    
    5. Poling JS, Karanian JW, Salem N Jr, et al. Time-and-voltage dependent block of delayed rectifier potassium channels by docosahexaenoic acid. Mol Pharmacol 1995; 47(2): 381-392.
    
    6. Cruz SL, Orta-Salazar G, Gauthereau MY, et al. Inhibition of cardiac sodium currents by toluene exposure. Br J Pharmacol 2003; 140 (4): 653-660.
    
    7. Xiao YF, Morgan JP, Leaf A. Effects of polyunsaturated fatty acids on cardiac voltage-activated K~+ currents in adult ferret cardiomyocytes. Sheng Li Xue Bao 2002;54(4): 271-282.
    
    8. Johnathan A N. Plumbing the depths of PUFA biosynthesis: a novel polyketide synthase-like pathway from marine organisms. Trends in Plant Science 2002; 7(11): 51-54.
    
    9. Calder PC. n-3 Fatty acids and cardiovascular disease: evidence explained and mechanisms explored. Clin Sci (Lond) 2004;107(1):1-11.
    
    10. Wang C, Harris WS, Chung M, et al. n-3 Fatty acids from fish or fish-oil supplements, but not alphalinolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr 2006; 84(1): 5-17.
    
    11. Marchioli R, Levantesi G, Macchia A, et al. Antiarrhythmic mechanisms of n-3 PUFA and the results of the GISSI-Prevenzione trial. J Membr Biol 2005; 206(2): 117-128.
    
    12. Marchioli R, Barzi F, Bomba E, et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Soprawivenza nell'Infarto Miocardico (GISSI)-Prevenzione. Circulation 2002;105(16):1897-1903.
    
    13. Franzosi MG, Brunetti M, Marchioli R, et al. Cost-effectiveness analysis of n-3 polyunsaturated fatty acids (PUFA) after myocardial infarction: results from Gruppo Italiano per lo Studio della Soprawivenza nell'Infarto (GISSI)-Prevenzione Trial. Pharmacoeconomics 2001; 19(4):411-420.
    14. Macchia A, Levantesi G, Franzosi MG, et al. Left ventricular systolic dysfunction, total mortality, and sudden death in patients with myocardial infarction treated with n-3 polyunsaturated fatty acids. Eur J Heart Fail 2005; 7(5):904-909.
    
    15. Deckelbaum RJ, Leaf A, Mozaffarian D, et al. Conclusions and recommendations from the symposium, Beyond Cholesterol: Prevention and Treatment of Coronary Heart Disease with n-3 Fatty Acids. Am J Clin Nutr 2008; 87(6): 2010S-2012S.
    
    16. Leaf A, Kang JX, Xiao YF, et al. Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n- 3 fish oils. Circulation 2003; 107(21): 2646-2652.
    
    17. Marchioli R, Valagussa F. The results of the GISSI-Prevenzione trial in the general framework of secondary prevention. Eur Heart J 2000; 21 (12):949-952
    
    18. Lee JH, O'Keefe JH, Lavie CJ, et al. Omega-3 fatty acids for cardioprotection. Mayo Clin Proc 2008; 83(3):324-332.
    
    19. Mozaffarian D, Ascherio A, Hu FB, et al. Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation 2005 ;111(2):157-164.
    
    20. Albert CM, Campos H, Stampfer MJ, et al. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med 2002; 346(15): 1113-1118.
    
    21. Harris WS, Poston WC, Haddock CK. Tissue n-3 and n-6 fatty acids and risk for coronary heart disease events.Atherosclerosis 2007;193(1):1-10.
    
    22. Balk EM, Lichtenstein AH, Chung M, et al. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis 2006; 189 (1): 19-30.
    
    23. Pepe S, McLennan PL. Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function. Circulation 2002; 105 (19):2303-2308.
    
    24. Leaf A, Xiao YF, Kang JX, et al. Prevention of sudden cardiac death by n-3 polyunsaturated fatty acids. Pharmacol Ther 2003; 98(3): 355-377.
    
    25. Watkins SM, Lin TY, Davis RM, et al. Unique phospholipid metabolism in mouse heart in response to dietary docosahexaenoic or a -linolenic acids. Lipids 2001; 36(3): 247-254.
    26. Xiao YF, Sigg DC, Leaf A. The antiarrhythmic effect of n-3 polyunsaturated fatty acids: modulation of cardiac ion channels as a potential mechanism. J Membr Biol 2005; 206(2): 141-54.
    
    27. Dan Ye, David Z, Christine O, et al. Cytochrome P-450 epoxygenase metabolites of docosahexaenoate potently dilate coronary arterioles by activating large-conductance calcium-activated potassium channels. pharmacology and experimental therapeutics 2002; 303(2): 768-776.
    
    28. Mary B, Marguerite M. Docosahexaenoic acid-induced vasorelaxation in hypertensive rat: mechanisms of action. Biol Res Nurs 2000; 2(2): 85-95.
    
    29. von Schacky C, Harris WS. Cardiovascular benefits of omega-3 fatty acids. Cardiovasc Res 2007; 73(2): 310-315.
    
    30. Harris WS. International recommendations for consumption of long-chain omega-3 fatty acids. J Cardiovasc Med (Hagerstown) 2007;8 (Suppl 1):S50-S52.
    
    31. Den Ruijter HM, Berecki G, Opthof T, et al. Pro- and antiarrhythmic properties of a diet rich in fish oil. Cardiovasc Res 2007; 73 (2): 316 - 325.
    
    32. Mozaffarian D, Prineas RJ, Stein PK, et al. Dietary Fish and n-3 Fatty Acid Intake and Cardiac Electrocardiographic Parameters in Humans. J Am Coll Cardiol 2006; 48 (3):478-484.
    
    33. Den Ruijter HM, Berecki G, Verkerk AO, et al. Acute Administration of fish oil inhibits triggered activity in isolated myocytes from rabbits and patients with heart failure. Circulation 2008;117(4):536-544.
    
    34. Abdukeyum GG, Owen AJ, McLennan PL. Dietary n-3 Long-Chain Polyunsaturated Fatty Acids Inhibit Ischemia and Reperfusion Arrhythmias and Infarction in Rat Heart Not Enhanced by Ischemic Preconditioning. J Nutr 2008;138 (10): 1902-1909.
    
    35. Szentandrassy N, Perez-Bido MR, Alonzo E, et al. Protein kinase A is activated by the n-3 polyunsaturated fatty acid eicosapentaenoic acid in rat ventricular muscle. J Physiol 2007; 582 (Pt 1):349-358.
    
    36. Kang JX, Xiao YF, Leaf A. Prevention of fatal cardiac arrhythmias by polyunsaturated fatty acids. Natl Acad Sci 1995;92(9): 3997-4001.
    
    37. Xiao YF, Gomez AM, Morgan JP, et al. Suppression of voltage-gated L-type Ca2~+ currents by polyunsaturated fatty acids in adult and neonatal rat ventricular myocytes. Proc Natl Acad Sci USA 1997; 94 (8): 4182-4193.
    38.S.C.O'Neill,M.R.Perez,K.E.Hammond,et al.Direct and indirect modulation of rat cardiac sarcoplasmic reticulum function by n-3 polyunsaturated fatty acids.J Physiol 2002;538(2):179-184.
    39.Fauconnier J,Lacampagne A,Rauzier JM,et al.Frequency-dependent and proarrhythmogenic effects of FK-506 in rat ventricular cells.Am J Physiol Heart Circ Physiol 2005;288(2):H778-H786.
    40 Shigematsu S,Kiyosue T,Sato T,et al.Rate-dependent prolongation of action potential duration in isolated rat ventricular myocytes.Basic Res Cardiol 1997;92(3):123-128.
    41 Xiao YF,Wright SN,Wang GK,et al.Coexpression with beta(1) subunit modifies the kinetics and fatty acid block of hill(alpha) Na~+ channels.Am J Physiol Heart Circ Physiol 2000;279(1):35-46.
    42.刘泰摓编著.心肌细胞电生理学.人民卫生出版社.2005;62-6挺
    43.Xiao YF,Ke Q,Wang SY,et al.Electrophysiologic properties of lidocaine,cocaine,and n-3 fatty-acids block of cardiac Na~+ channels.Eur J Pharmacol 2004;485(3):31-42.
    44.Xiao,YF,Wright,SN,Wang,OK,et al.Fatty acids suppress voltage-gated Na~+currents in HEK293t cells transfected with the a-subunit of the human cardiac Na~+channel.Proc Natl 1998;95(4):2680-2691.
    45.Das UN.Biological significance of essentiaI fatty acids.J Assoc Physicians India 2006;54:309-319.
    46.Wayne R,Leifert,Edward J,McMurchie.et al.Inhibition of cardiac sodium currents in adult rat myocytes by n-3 polyunsaturated fatty acids.Journal of Physiology 1999;520(3):671-679.
    47.Pound EM,Kang JX,Leaf A.Partitioning of polyunsaturated fatty acids,which prevent cardiac arrhythmias,into phospholipid cell membranes.J Lipid Res 2001;42(3):346-351.
    48.Fauconnier J,Bedut S,Guermec JY,et al.Ca~(2+) current-mediated regulation of action potential by pacing rate in rat ventricular myocytes.Cardiovasc Res 2003;57(3):670-680.
    49.Bers DM.Cardiac excitation-contraction coupling.Nature 2002;415(6868):198-205.
    50.Anita GO,Srivastava S,Collis L,et al.Negative inotropic effect of nifedipine in the immature rabbit heart is due to shortening of the action potential.Pediatr Res 2005;57(3):399-403.
    51.Fukumoto GH,Lamp ST,Motter C,et al.Metabolic inhibition alters subcellular calcium release patterns in rat ventricular myocytes:implications for defective excitation-contraction coupling during cardiac ischemia and failure.Circ Res 2005;96(5):551-557.
    52.Ahrnmed GU,Dong PH,Song GJ,et al.Changes in Ca~(2+) cycling proteins underlie cardiac action potential prolongation in a pressure-overloaded guinea pig model with cardiac hypertrophy and failure.Circ Res 2000;86(5):558-570.
    53.Lipscombe D.L-type calcium chaunels:highs and new lows.Circ Res 2002;90(9):933-935.
    54.Akahane SA,Cleemann L,Morad M.Cross-signaling between L-type Ca~(2+) channels and ryanodine receptors in rat ventricular myocytes.J Gen Physiol 1996;108(5):435-454.
    55.蒋文平.膜离子通道与心律失常.中华心血管病杂志2002;30(4):198-199.
    56.Swan JS,Dibb K,Negretti N,et al.Effects of eicosapentaenoic acid on cardiac SR Ca~(2+)-release and ryanodine receptor function.Cardiova sc Res 2003;60(2):337-348.
    57.Ferrier GR,Redondo I,Zhu J.Differential effects of docosahexaenoic acid on contractions and L-type Ca~(2+)current in adult cardiac myocytes.Cardiovasc Res 2002;54(3):601-612.
    58.Leaf A,Xiao YF,Kang JX,et al.Membrane Effects of the n-3 Fish Oil Fatty Acids,which Prevent Fatal Ventricular Arrhythmias Membrane Biol 2005;206(2):129-139.
    59.Leonardo Calo,Leopoldo Bianconi,Furio Colivicchi,et al.n-3 fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery.American College of Cardiology 2005;45(10):1723-1728.
    60.Kang J X,Leaf A.Protective effects of free polyunsaturated fatty acids on arrhythmias induced by lysophosphatidylcholine or palmitoylcarnitine in neonatal rat cardiac myocytes.Eur J Pharmacol 1996;297(1-2):97-106.
    61.O'Neill S.Cardiac Ca~(2+) regulation and the tuna fish sandwich.News Physiol Sci 2002;17:162-165.
    62. Negretti N, Perez MR, Walker D, et al. Inhibition of sarcoplasmic reticulum function by polyunsaturated fatty acids in intact, isolated myocytes from rat ventricular muscle. J Physiol. 2000; 523(Pt 2):367-375.
    
    63. Yeola SW, Snyders DJ. Electrophysiological and pharmacological correspondence between Kv4.2 current and rat cardiac transient outward current. Cardiovasc Res 1997; 33(3): 540-547.
    
    64. Volk T, Nguyen TH, Schultz JH, et al. Relationship between transient outward K~+ current and Ca~(2+) influx in rat cardiac myocytes of endo and epicardial origin. J Physiol 1999; 519(3): 841-850.
    
    65. Xu HD, Guo WN, Nerbonne JM. Four kinetically distinct depolarization-activated K~+ currents in adult mouse ventricular myocytes. J Gen Physiol 1999; 113 (6): 661-667.
    
    66. 李泱,程芮主编.离子通道学.湖北科学技术出版社 2007; 54-55.
    
    67. Dhamoon AS, Pandit SV, Sarmast F, et al. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K~+ current. Circ Res 2004; 94 (10): 1332-1339.
    
    68. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002; 19;106(21):2747-57.
    
    69. Konig A, Bouzan C, Cohen JT, et al. A quantitative analysis of fish consumption and coronary heart disease mortality. Am J Prev Med. 2005;29(4):335-46.
    
    70. Siscovick DS, Raghunathan T, King I, et al. Dietary intake of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. Am J Clin Nutr 2000; 71(1 Suppl):208S-12S.
    
    71. Schrepf R, Limmer, T, Claus Weber P, et al. Immmediate effects of n-3 fatty acid infusion on the induction of sustained ventricular tachycardia. Lancet 2004; 363(9419): 1412-1413.
    
    72. Mozaffarian D, Psaty B, Rimm EB, et al. Fish intake and risk of incident atrial fibrillation. Circulation 2004; 110(4):368-373.
    
    73. Zipes DP, Camm AJ, Borggrefe M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death-executive summary: a report of the American College of Cardiology/American Heart Association Task Force and the European Society for Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death).Eur Heart J 2006;27(17):2099-2140.
    1.Quayle JM,Nelson MT,Standen NB.ATP-sensitive and inwardly rectifying potassium channels in smooth muscle.Physiol.Rev 1997;77(4):1165-1232.
    2.Nelson M T,Quayle J M.Physiological roles and properties of potassium channels in arterial smooth muscle.Am.J.Physiol 1995;268(4 Pt 1):C799-C822.
    3.Park WS,Son YK,Kim NR,et al.The protein kinase A inhibitor,H-89,directly inhibits K_(ATP) and Kir channels in rabbit coronary arterial smooth muscle cells.Biochem Biophys Res.Commun 2006;340:1104-1110.
    4.Park WS,Han J,Kim N,et al.Endothelin-1 inhibits inward rectifier K~+ channels in rabbit coronary arterial smooth muscle cells through protein kinase C.Cardiovasc Pharmacol 2005;46(5):681-689.
    5.Wu SN.Large-conductance Ca~(2+) -activated K~+ channels:physiological role and pharmacology.Curr Med Chem 2003;10(8):649-661.
    6.Calderone V.Large-conductance Ca~(2+)-activated K~+ channels:function,pharmacology and drugs.Curt Med Chem 2002;9(14):1385-1395.
    7.Ko EA,Han J,Jung I D,et al.Physiological roles of K~+ channels in vascular smooth muscle cells.J.Smooth Muscle Res 2008;44(2):65-81.
    8.Robert HC.Molecular determinants of voltage-gated potassium currents in vascular smooth muscle.Cell Biochemistry and Biophysics.2005;42(2):167-195.
    9.Sobey CG.Potassium channel function in vascular disease.Arterioscler.Thromb.Vasc.Biol 2001,21(1):28-38.
    10.Korovkina VP,England SK.Molecular diversity of vascular potassium channel isoforms.Clin Exp Pharmacol Physiol 2002;29(4):317-323.
    11.Takebayashi S,Li Y,Kaku T,et al.Remodeling excitation-contraction coupling of hypertrophied ventricular myocytes is dependent on T-type calcium channels expression. Biochem Biophys Res Cornmun 2006; 345 (2): 766-773.
    
    12. Perrier E, Kerfant BG, Lalevee N et al. Mineralocorticoid receptor antagonism prevents the electrical remodeling that precedes cellular hypertrophy after myocardial infarction. Circulation 2004; 110 (7): 776-783.
    
    13. Shady M. Ashamalla, Navarro D, et al. Gradient of sodium current across the left ventricular wall of adult rat hearts. J Physiol 2001; 536 (Pt2): 439-453.
    
    14. Dan Ye, David Z, Christine O, et al. Cytochrome P-450 epoxygenase metabolites of docosahexaenoate potently dilate coronary arterioles by activating large-conductance calcium-activated potassium channels. pharmacology and experimental therapeutics 2002; 303(2): 768-776.
    
    15. Lu T, Wang XL, He T, et al. Impaired arachidonic acid-mediated activation of largeconductance Ca~(2+)-activated K~+ channels in coronary arterial smooth muscle cells in Zucker Diabetic Fatty rats. Diabetes 2005; 54(7): 2155-2163.
    
    16. Tong Lu, Prasad V G, Katakam Mike, et al. Dihydroxyeicosatrienoic acids are potent activators of Ca~(2+)-activated K~+ channels in isolated rat coronary arterial myocytes. Journal of Physiology 2001; 534(Pt3): 651-667.
    
    17. Wang XL, Ye D, Timothy E, et al. Caveolae targeting and regulation of large conductance Ca~(2+)-activated K~+ channels in vascular endothelial cells. Biological chemistry 2005; 280(12): 11656-11664.
    
    18. Bubolz AH, Li HW, Wu QP, et al. Enhanced oxidative stress impairs cAMP-mediated dilation by reducing K_v channel function in small coronary arteries of diabetic rats. Am J Physiol Heart Circ Physiol 2005; 289(5): H1873-H1880.
    
    19. Hayabuchi Y, Standen NB, Davies NW. Angiotensin II inhibits and alters kinetics of voltage gated K~+ channels of rat arterial smooth muscle. Am J Physiol Heart Circ Physiol 2001; 281(6): H2480-H2489.
    
    20. Cai Q, Zhu ZL, Fan XL, et al. Whole-cell recordings of calcium and potassium currents in acutely isolated smooth muscle cells .World J Gastroenterol 2006; 12(25): 4086-4088.
    
    21. Hong Z, Weir EK, Nelson DP, et al. Subacute hypoxia decreases voltage-activated potassium channel expression and function in pulmonary artery myocytes . Am J Respir Cell Mol Biol 2004; 31(3): 337-343.
    22. Liu XS, Xu YJ, Zhang ZX, et al. Isoprenaline and aminophylline relax bronchial smooth muscle by cAMP-induced stimulation of large-conductance Ca~(2+)-activated K~+ channels. Acta Pharmacol Sin 2003; 24(5): 408-414.
    
    23. Gurney AM. Electrophysiological recording methods used in vascular biology. Phannacel Toxicol Methods 2000; 44(2):409-420.
    
    24. Jackson WF, Huebner JM, Rusch NJ. Enzymatic isolation and characterization of single vascular smooth muscle cells from cremasteric arterioles. Microcirculation 1997; 4 (1):35-50.
    
    25. Engler MM, Engler MB, Pierson DM, et al. Effects of docosahexaenoic acid on vascular pathology and reactivity in hypertension. Exp Biol Med (Maywood) 2003; 228(3):299-307.
    
    26. Frenoux JM, Prost ED, Belleville JL, et al. A polyunsaturated fatty acid diet lowers blood pressure and improves antioxidant status in spontaneously hypertensive rats. Nutr. 2001; 131(1):39-45.
    
    27. Watkins SM, Lin TY, Davis RM, et al. Unique phospholipid metabolism in mouse heart in response to dietary docosahexaenoic or a -linolenic acids. Lipids 2001;36(3):247-254.
    
    28. Engler MB, Engler MM. Docosahexaenoic acid-induced vasorelaxation in hypertensive rat: mechanisms of action. Biol Res Nurs 2000; 2(2): 85-95.
    
    29. Tong Lu, Prasad V G, Katakam M, et al. Dihydroxyeicosatrienoic acids are potent activators of Ca~(2+)-activated K~+ channels in isolated rat coronary arterial myocytes. Journal of Physiology 2001; 534(Pt 3): 651-667.
    
    30. Tanaka Y, Koike K, Toro L. Maxi K channel roles in blood vessel relaxations induced by endothelium-derived relaxing factors and their molecular mechanisms. Smooth Muscle Res. 2004; 40(4-5): 125-153.
    
    31. Wallner M, Meera P, Toro L. Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca~(2+) sensitive K~+ channels: An additional transmembrane region at the N terminus. Proc Natl ACad Sci USA 1996;93(25): 14922-14927.
    
    32. Meera P, Wallner M, Song M, et al. Large conductance voltage and calcium-dependent K~+ channels, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane (S0-S6), an extracellular N terminus, and an intracellular(S9-S10) C terminus.Proc Natl Acad Sci USA 1997;94(25):14066-14071.
    33.Eichhorn B,Dobrev D.Vascular large conductance calcium-activated potassium channels:Functional role and therapeutic potential.Naunyn-Schmiedeberg's Arch Pharmacol 2007;376(3):145-155.
    34.Park WS,Son YK,Kim NR,et al.Direct modulation of Ca~(2+)-activated K~+ current by H-89 in rabbit coronary arterial smooth muscle cells.Vascul.Pharmacol.2007;46(2):105-113.
    35.Ledoux J,Werner ME,Brayden JE,et al.Calcium-activated potassium channels and the regulation of vascular tone.Physiol 2006;21:69-78.
    36.Brenner R,Perez GJ,Bonev AD,et al Vasoregulation by the betal subunit of the calcium-activated potassium channel.Nature 2000;407(6806):870-876.
    37.刘泰摓编著.心肌细胞电生理学.人民卫生出版社.2005;62-63.
    38.Waldron GJ,Cole WC.Activation of vascular smooth muscle K~+ channels by endothelium derived relaxing factors.Clin Exp Pharmacol Physiol 1999;26(2):180-184.
    39.Thorneloe KS,Chen TT,Grier EF,et al.Molecular composition of 4-aminopyridine-sensitive voltage-gated K~+ channels of vascular smooth muscle.Circ.Re.2001;89(11):1030-1037.
    40.Bahring R,Milligan C J,Vardanyan V,et al.Coupling of voltage-dependent potassium channel inactivation and oxidoreductase active site of Kv beta subunits.J.Biol.Chem 2001;276(25):22923-22929.
    41.Fountain S J,Cheong R,Flemming R.Functional up-regulation of KCNA gene family expression in murine mesenteric resistance artery smooth muscle.Physiol.2004;556(Pt1):29-39.
    42.Osipenko O N,Tate R J,Gumey A M.Potential role of Kv3.1 b channels as oxygen sensors.Circ Res 2000;86(5):534-540.
    43.Coppock E A,Tamkun M M.Differential expression of Kv channel α- and β-subunits in the bovine pulmonary arterial circulation.Am J Physiol 2001;281(6):L1350-L1360.
    44.Xu C,Tang G,Lu T,et al.Molecular basis of voltage-dependent delayed rectifier K~+channels in smooth muscle cells from rat tail artery.Life Sci 2000;66(21): 2023-2033.
    45.任亚军,张晋,王晓良.Kv4.2钾通道mRNA在大鼠血管平滑肌中的表达.中国药理学通报.2000;16(5):584-585.
    46.Cheong A,DedmanA M,Beech D J.Expression and function of native potassium channels(Kvα1) subunits in terminal arterioles of rabbit.J Physiol 2001;534(Pt 3):691-700.
    47.Cheong A,Dedman A M,Xu S Z,et al.Kvα1 channels in murine arterioles:differential cellular expression and regulation of diameter.Am J Physiol 2001;281(3):H1057-H1065.
    48.Cox RH.Molecular determinants of voltage-gated potassium currents in vascular smooth muscle.Cell Biochem Biophys 2005;42(2):167-95.
    49.Park WS,Son YK,Han J,et al.Staurosporine inhibits voltage-dependent K~+ current through a PKC-independent mechanism in isolated coronary arterial smooth muscle cells.Cardiovasc.Pharmacol 2005;45(3):260-269.
    50.Park WS,Son YK,Ko EA,et al.The protein kinase C inhibitor,bisindolylmaleimide (I) inhibits voltage-dependent K~+ channels in coronary arterial smooth muscle cells.Life Sci 2005;77(5):512-527.
    51.Albarwani S,Nemetz L T,Madden J A,et al.Voltage-gated K~+ channels in rat small cerebral arteries:molecular identity of the functional channels.Physiol 2003;551(Pt 3):751-763.
    52.Fergus D J,Martens J R,England S K.Kv channel subunits that contribute to voltage-gated K~+ current in renal vascular smooth muscle.Pflugers Arch 2003;445(6):697-704.
    53.Cox R H,Rusch N J.New expression profiles of voltage-gated ion channels in arteries exposed to high blood pressure.Microcirculation 2002;9(4):243-257.
    1.Calder PC.n-3 Fatty acids and cardiovascular disease:evidence explained and mechanisms explored.Clin Sci(Lond) 2004;107(1):1-11.
    2.Wang C,Harris WS,Chung M,et al.n-3 Fatty acids from fish or fish-oil supplements,but not alphalinolenic acid,benefit cardiovascular disease outcomes in primary- and secondary-prevention studies:a systematic review.Am J Clin Nutr 2006;84(1):5-17.
    3.Xiao YF,Sigg DC,Leaf A.The antiarrhythmic effect of n-3 polyunsaturated fatty acids:modulation of cardiac ion channels as a potential mechanism.J Membr Biol 2005;206(2):141-154.
    4.Marchioli R,Barzi F,Bomba E,et al.Early protection against sudden death by n-3polyunsaturated fatty acids after myocardial infarction:time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione.Circulation 2002;105(16):1897-1903.
    5.von Schacky C,Harris WS.Cardiovascular benefits of omega-3 fatty acids.Cardiovasc Res 2007;73(2):310-315.
    6.Harris WS,Kris-Etherton PM,Harris KA.Intakes of long-chain omega-3 fatty acid associated with reduced risk for death from coronary heart disease in healthy adults.Curr Atheroscler Rep 2008;10(6):503-509.
    7.Lee JH,O'Keefe JH,Lavie CJ,et al.Omega-3 fatty acids for cardioprotection.Mayo Clin Proc 2008;83(3):324-332.
    8.Mozaffarian D,Ascherio A,Hu FB,et al.Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men.Circulation 2005;111(2):157-164.
    9.Engler MM,Engler MB,Pierson DM,et al.Effects of docosahexaenoic acid on vascular pathology and reactivity in hypertension.Exp Biol Med(Maywood) 2003;228(3):299-307.
    10. Frenoux JM, Prost ED, Belleville JL, et al. A polyunsaturated fatty acid diet lowers blood pressure and improves antioxidant status in spontaneously hypertensive rats. Nutr.2001;131(1):39-45.
    
    11. Watkins SM, Lin TY, Davis RM, et al. Unique phospholipid metabolism in mouse heart in response to dietary docosahexaenoic or a -linolenic acids. Lipids 2001; 36(3):247-254.
    
    12. Engler MB, Engler MM. Docosahexaenoic acid-induced vasorelaxation in hypertensive rat: mechanisms of action. Biol Res Nurs 2000; 2(2): 85-95.
    
    13. Tong Lu, Prasad V G, Katakam M, et al. Dihydroxyeicosatrienoic acids are potent activators of Ca ~(2+)-activated K~+ channels in isolated rat coronary arterial myocytes. Journal of Physiology 2001; 534(Pt 3): 651-667.
    
    14. Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev 1997; 77(4): 1165-1232.
    
    15. Nelson M T, Quayle J M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol 1995; 268(4 Pt 1): C799-C822.
    
    16. Park WS, Son YK, Kim NR, et al. The protein kinase A inhibitor, H-89, directly inhibits Katp and Kir channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res. Commun 2006; 340: 1104-1110.
    
    17. Park WS, Han J, Kim N, et al. Endothelin-1 inhibits inward rectifier K~+ channels in rabbit coronary arterial smooth muscle cells through protein kinase C. Cardiovasc Pharmacol 2005; 46(5): 681-689.
    
    18. Wu SN. Large-conductance Ca~(2+) -activated K~+ channels: physiological role and pharmacology. Curr Med Chem 2003; 10(8): 649-661.
    
    19. Calderone V. Large-conductance Ca~(2+)-activated K~+ channels: function, pharmacology and drugs. Curt Med Chem 2002; 9(14): 1385-1395.
    
    20. Brenner R, Perez GJ, Bonev AD, et al Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 2000; 407(6806):870-876.
    
    21. Sobey CG. Potassium channel function in vascular disease. Arterioscler. Thromb. Vasc. Biol 2001; 21(1):28-38.
    
    22. Korovkina VP, England SK. Molecular diversity of vascular potassium channel isoforms. Clin. Exp. Pharmacol. Physiol 2002; 29(4): 317-323.
    
    23. Mori TA, Watts GF, Burke V,et al. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic,overweight men.Circulation 2000;102(11):1264-1269.
    24.Dan Ye,David Z,Christine O,et al.Cytochrome P-450 epoxygenase metabolites of docosahexaenoate potently dilate coronary arterioles by activating large-conductance calcium-activated potassium channels,pharmacology and experimental therapeutics,2002;303(2):768-776.
    25.Minami K,Hirata Y,Tokumura A,et al.Protein kinase C independent inhibition of the Ca~(2+)-activated K~+ channel by angiotensin Ⅱ and endothelin-1.Biochem.Pharmacol 1995;49(8):1051-1056.
    26.Crozatier B.Central role of PKCs in vascular smooth muscle cell ion channel regulation.J.Mol.Cell.Cariol.2006;41(6):952-955.
    27.Ledoux J,Werner ME,Brayden JE,et al.Calcium-activated potassium channels and the regulation of vascular tone.Physiology(Bethesda) 2006;21:69-78.
    28.Standen NB,Quayle JM.K~+ channel modulation in arterial smooth muscle.Acta Physiol Scand 1998;164(4):549-557.
    29.Robertson B E,Schubert R,Hescheler J,et al.cGMP-dependent protein kinase activates Ca~(2+)-activated K~+ channels in cerebral artery smooth muscle cells.Am.J.Physiol 1993;265(1 Pt 1):C299-C303.
    30.Wu KT,Huang CT,Wei J,,et al.Vasodilator action of docosahexaenoic acid(DHA)in human coronary arteries in vitro.Chin J Physiol 2007;50(4):164-70.
    31.Poling JS,Vicini S,Rogawski MA,et al.Docosahexaenoic acid block of neuronal voltage-gated K+ channels:subunit selective antagonism by zinc.Nneuronpharmacology 1996;35(7):969-982.
    32.Xiao YF,Morgan JP,Leaf A.Effects of polyunsaturated fatty acids on cardiac voltage-activated K(+) currents in adult ferret cardiomyocytes.Sheng Li Xue Bao.2002;54(4):271-281.
    33.Guizy M,David M,Arias C,et al.Modulation of the atrial specific Kv1.5 channel by the n-3 polyunsaturated fatty acid,alpha-linolenic acid.J Mol Cell Cardiol 2008;44(2):323-35.
    34.任亚军,张晋,王晓良.Kv4.2钾通道mRNA在大鼠血管平滑肌中的表达.中国药理学通报.2000;16(5):584-585.
    35.Cheong A,Dedman A M,Beech D J.Expression and function of native potassium channels(Kval) subunits in terminal arterioles of rabbit. J Physiol 2001; 534(Pt 3): 691-700.
    
    36. Cheong A, Dedman A M, Xu S Z, et al. Kval channels in murine arterioles: differential cellular expression and regulation of diameter. Am J Physiol 2001; 281(3): H1057-H1065.
    
    37. Yeola SW, Snyders DJ. Electrophysiological and pharmacological correspondence between Kv4.2 current and rat cardiac transient outward current. Cardiovasc Res 1997; 33(3): 540-547.
    
    38. Park WS, Kim N, Youm JB, et al. Angiotensin II inhibits inward rectifier K~+ channels in rabbit coronary arterial smooth muscle cells through protein kinase Ca. Biochem. Biophys Res Commun 2006; 341(3): 728-735.
    
    39. Hayabuchi Y, Standen NB, Davies NW, et al. Angiotensin II inhibits and alters kinetics of voltage-gated K~+ channels of rat arterial smooth muscle. Am. J. Physiol.2001; 281(6): H2480-H2489.
    
    40 Cogolludo A, Moreno L, Bosca L, et al. Thromboxane A2-induced inhibition of voltage-gated K~+ channels and pulmonary vasoconstriction: role of protein kinase Czeta. Circ. Res. 2003; 93(7): 656-663.
    
    41. von Schacky C. Omega-3 fatty acids and cardiovascular disease. Curr Opin Nutr Metab Care 2004; 7(2): 131-136.
    
    42. von Schacky C, Harris WS. Cardiovascular benefits of omega-3 fatty acids. Cardiovasc Res 2007; 73(2): 310-315.
    
    43. Morgan DR, Dixon LJ, Hanratty CG, et al. Effects of dietary omega-3 fatty acid supplementation on endothelium-dependent vasodilatation in patients with chronic heart failure. Am J Cardiol 2006; 97(4):547-551.
    
    44. Engler MM, Engler MB, Malloy M, et al. Docosahexaenoic acid restores endothelial function in children with hyperlipidemia: results from the early study. Int J Clin Pharmacol Ther 2004; 42(12):672-679.
    
    45. Mori TA, Woodman RJ. The independent effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans. Curr Opin Nutr Metab Care 2006; 9(2):95-104.
    
    46. Goodfellow J, Bellamy MF, Ramsay MW, et al. Dietary supplementation with marine omega-3 fatty acids improve systemic large artery endothelial function in subjects with hypercholesterolemia. J Am Coll Cardiol 2000; 35(2): 265-270.
    
    47. Mori TA, Beilin LJ. Long-chain omega 3 fatty acids, blood lipids and cardiovascular risk reduction. Curr Opin Lipidol 2001; 12(1):11-17.
    
    48. Rasmussen BM, Vessby B, Uusitupa M, et al., The KANWU Study Group. Effects of dietary saturated, monounsaturated, and n-3 fatty acids on blood pressure in healthy subjects. Am J Clin Nutr 2006; 83(2):221-226.
    
    49. Clemens von Schacky. Omega-3 fatty acids and cardiovascular disease. Curr Opin Nutr Metab Care 2007; 10(2):129-135.
    
    50. Morris MC, Sacks F, Rosner B. Does fish oil lower blood pressure? A metaanalysis of controlled trials. Circulation 1993; 88(2):523-533.
    
    51. Erkkil(a|¨) AT, Lichtenstein AH, Mozaffarian D, et al. Fish intake is associated with a reduced progression of coronary artery atherosclerosis in postmenopausal women with coronary artery disease. Am J Clin Nutr 2004; 80(3): 626-632.
    
    52. Erkkil(a|¨) AT, Matthan NR, Herrington DM, et al. Higher plasma docosahexaenoic acid is associated with reduced progression of coronary atherosclerosis in women with CAD. J Lipid Res. 2006; 47(12): 2814-2819.
    
    53. Angerer P, Kothny W, von Schacky C, et al. Effect of dietary supplementation with omega-3 fatty acids on progression of atherosclerosis in carotid arteries. Cardiovasc Res 2002; 54(1):183-190.
    
    54. Hjerkinn EM, Abdelnoor M, Breivik L, et al. Effect of diet or very long-chain omega-3 fatty acids on progression of atherosclerosis, evaluated by carotid plaques, intima-media thickness and by pulse wave propagation in elderly men with hypercholesterolaemia. Eur J Cardiovasc Prev Rehabil 2006; 13(3):325-333.
    
    55. Balk EM, Lichtenstein AH, Chung M, et al. Effects of omega-3 fatty acids on coronary restenosis, intima-media thickness and exercise tolerance: a systematic review. Atherosclerosis 2006; 184(2):237-246.
    
    56. Smith SC, Allen J, Blair SN, et al. AHA/ACC Guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update. Circulation 2006; 113(19):2363-2372.
    
    57. Van der Werf F, Ardissino D, Betriu A, et al. Management of acute myocardial infarction in patients presenting with ST-segment elevation. The Task Force on the Management of Acute Myocardial Infarction of the European Society of Cardiology.Eur Heart J 2003;24(1):28-66.
    1.Korovkina VP,England SK.Molecular diversity of vascular potassium channel isoforms.Clin Pharmacol Physiol 2002;29(4):317-323.
    2.Bahring R,Milligan C J,Vardanyan V,et al.Coupling of voltage-dependent potassium channel inactivation and oxidoreductase active site of Kv beta subunits.J.Biol.Chem.2001,276(25):22923-22929.
    3.Fountain S J,Cheong R,Flemming R.Functional up-regulation of KCNA gene family expression in murine mesenteric resistance artery smooth muscle.J.Physiol.2004;556(Pt 1):29-39.
    4.Osipenko O N,Tate R J,Gurney A M.Potential role of Kv3.1b channels as oxygen sensors.Circ.Res.2000;86(5):534-540.
    5.Coppock E A,Tamkun M M.Differential expression of Kv channel α-and β-subunits in the bovine pulmonary arterial circulation.Am J Physiol 2001;281(6):L1350-L1360.
    6.Xu C,Tang G,Lu T,et al.Molecular basis of voltage-dependent delayed rectifier K~+channels in smooth muscle cells from rat tail artery.Life Sci 2000;66(21):2023-2033.
    7.任亚军,张晋,王晓良.Kv4.2钾通道mRNA在大鼠血管平滑肌中的表达.中国药理学通报.2000;16(5):584-585.
    8.Cheong A,Dedman A M,Beech D J.Expression and function of native potassium channels(Kvα1) subunits in terminal arterioles of rabbit.J Physiol.2001;534(Pt 3):691-700.
    9.Cheong A,Dedman A M,Xu S Z,et al.Kvα1 channels in murine arterioles:differential cellular expression and regulation of diameter.Am J Physiol.2001;281(3):H1057-H1065.
    10.Sobey CG.Potassium channel function in vascular disease.Arterioscler.Thromb.Vasc Biol 2001;21(4):28-38.
    11.Cox RH.Molecular determinants of voltage-gated potassium currents in vascular smooth muscle.Cell Biochem Biophys 2005;42(2):167-95.
    12.Park WS,Son YK,Han J,et al.Staurosporine inhibits voltage-dependent K~+ current through a PKC-independent mechanism in isolated coronary arterial smooth muscle cells.J.Cardiovasc.Pharmacol 2005;45(3):260-269.
    13 Park WS,Son YK,Ko EA,et al.The protein kinase C inhibitor,bisindolylmaleimide (I) inhibits voltage-dependent K~+ channels in coronary arterial smooth muscle cells.Life Sci 2005;77(5):512-527.
    14.Robert H.C.Molecular determinants of voltage-gated potassium currents in vascular smooth muscle.Cell Biochemistry and Biophysics.2005;42(2):167-195.
    15.Ko EA,Han J,Jung DI,et al.Physiological roles of K~+ channels in vascular smooth muscle cells.Smooth Muscle Res.2008;44(2):65-81.
    16.Albarwani S,Nemetz L T,Madden J A,et al.Voltage-gated K~+ channels in rat small cerebral arteries:molecular identity of the functional channels.J Physiol.2003; 551(Pt 3): 751-763.
    
    17. Fergus D J, Martens J R, England S K. Kv channel subunits that contribute to voltage-gated K~+ current in renal vascular smooth muscle. Pflugers Arch. 2003; 445(6): 697-704.
    
    18. Cox R H, Rusch N J. New expression profiles of voltage-gated ion channels in arteries exposed to high blood pressure. Microcirculation 2002; 9(4): 243-257.
    
    19. Thorneloe K S, Chen T T, Grier E F, et al. Molecular composition of 4-aminopyridine-sensitive voltage-gated K~+ channels of vascular smooth muscle.Circ. Res. 2001; 89(11): 1030-1037.
    
    20. Nelson M T, Quayle J M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol 1995; 268(4 Pt 1): C799-C822.
    
    21. Tanaka Y, Koike K, Toro L. Maxi K channel roles in blood vessel relaxations induced by endothelium-derived relaxing factors and their molecular mechanisms. J. Smooth Muscle Res. 2004; 40(4-5): 125-153.
    
    22. Wallner M P, Meera P, Toro L. Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca~(2+)sensitiveK~+channels:An additional transmembrane region at the N terminus. Proc Natl ACad Sci USA 1996;93(25): 14922-14927.
    
    23. Meera P, WallnerM P, Song M, et al. Large conductance voltage and calcium-dependent K~+ channels, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane (S0-S6), an extracellular N terminus, and an intracellular(S9-S10) C terminus . Proc Natl Acad Sci USA 1997;94(25): 14066-14071.
    
    24. Birgit E, Dobromir D. Vascular large conductance calcium-activated potassium channels: Functional role and therapeutic potential. Naunyn-Schmiedeberg's Arch Pharmacol 2007; 376(3): 145-155. 25. Park WS, Son YK, Kim NR, et al. Direct modulation of Ca~(2+)-activated K~+ current by H-89 in rabbit coronary arterial smooth muscle cells. Vascul. Pharmacol. 2007; 46(2): 105-113.
    
    26. Brenner R, Perez GJ, Bonev AD, et al Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 2000; 407(6806):870-876.
    
    27. Waldron GJ, Cole WC. Activation of vascular smooth muscle K~+ channels by endothelium derived relaxing factors. Clin Exp Pharmacol Physiol 1999; 26(2): 180-184.
    
    28. Teramoto N. Physiological roles of ATP-sensitive K~+ channels in smooth muscle. Physiol.(Lond.) 2006; 572(Pt 3): 617-624.
    
    29. Brayden J E. Functional roles of K_(ATP) channels in vascular smooth muscle. Clin. Exp. Pharmacol Physiol 2002; 29(4): 317-323.
    
    30. Cao K, Tang G, Hu D el al. Molecular basis of ATP-sensitive K~+ channels in rat vascular smooth muscles.Biochem Biophy Res Commun 2002; 296(2): 463-469.
    
    31. Cui Y, Tran S, Tinker A, et al. The molecular composition of Katp channels in human pulmonary artery smooth muscle cells and their modulation by growth. Am J Respir Cell Mol Biol 2002; 26(1):135-143.
    
    32. Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev 1997; 77(4): 1165-1232.
    
    33. Kubo Y, Baldwin TJ, Jan YN, et al. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature. 1993; 362(6416): 127-133.
    
    34. Kubo Y, Adelman JP, Clapham DE, et al. International union of pharmacology. LIV. nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev 2005; 57(4): 509-526.
    
    35. Chrissobolis S, Ziogas J, Chu Y, et al. Role of inwardly rectifying K~+ channels in K~+-induced cerebral vasodilatation in vivo. Am J Physiol 2000; 279(6): H2704-H2712.
    
    36. Park WS, Han J, Kim NR, et al. Endothelin-1 inhibits inward rectifier K~+ channels in rabbit coronary arterial smooth muscle cells through the protein kinase C, J. Cardiovasc. Pharmacol 2005; 46(5):681-689.
    
    37. Zaritsky JJ, Eckman DM, Wellman GC, et al. Targeted disruptionof Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K~+ current in K~+-mediated vasodilation. Circ Res 2000; 87(2): 160-166.
    
    38. Wu BN, Luykenaar KD, Brayden JE, et al. Hyposmotic challenge inhibits inward rectifying K~+ channels in cerebral arterial smooth muscle cells. Am. J. Physiol. 2007; 292(2): H1085-H1094.
    
    39. Tennant BP, Cui Y, Tinker A, et al. Functional expression of inward rectifier potassium channels in cultured human pulmonary smooth muscle cells: evidence for a major role of Kir2.4 subunits. J. Membrane Biol. 2006; 213(1): 19-29.
    
    40. Park WS, Han J, Kim NR, et al. Activation of inward rectifier K~+ channels by hypoxia in rabbit coronary arterial smooth muscle cells, Am. J. Physiol. 2005; 289(6): H2461-H2467.
    
    41. Park WS, Ko JH, Kim NR, et al. Increased inhibition of inward rectifier K~+ channels by angiotensin II in small-diameter coronary artery of isoproterenol-induced hypertrophied model. Arterioscler. Thromb. Vasc. Biol 2007; 27(8): 1768-1775.
    
    42. Park WS, Son YK, Kim NR, et al. Acute hypoxia induces vasodilation and increases coronary blood flow by activating inward rectifier K~+ channel. Pfliigers Arch 2007; 454(6): 1023-1030.
    
    43. Rivers RJ, Hein TW, Zhang C, et al. Activation of barium-sensitive inward rectifier potassium channels mediates remote dilation of coronary arterioles. Circulation 2001; 104(15): 1749-1753.
    
    44. Eckman DM, Nelson MT. Potassium ions as vasodilators: role of inward rectifier potassium channel. Circ Res 2001; 88(2): 132-133.
    
    45. Qu Z, Zhuq Yang Z, et al. Identification of a critical motif responsible for gating of Kir2.3 channel by intracellular protons. J Biol Chem 1999; 274(20): 13783-3789.
    
    46. Xu X, Rials SJ, Wu Y, et al. The properties of the inward rectifier potassium currents in rabbit coronary arterial smooth muscle cells. Pfliigers Arch. 1999; 438(2): 187-194.
    
    47. Robertson BE, Bonev AD, Nelson MT, et al. Inward rectifier K~+ currents in smoothmuscle cells from rat coronary arteries: block by Mg ~(2+), Ca~(2+), and Ba~(2+). Am. J.Physiol 1996; 271(2 Pt 2): H696-H705.
    
    48. Park WS, Kim NR, Youm JB, et al. Angiotensin II inhibits inward rectifier K~+ channels in rabbit coronary arterial smooth muscle cells through protein kinase Ca. Biochem. Biophys. Res. Commun 2006; 341(3): 728-735.
    
    49. Hayabuchi Y, Standen NB, Davies NW, et al. Angiotensin II inhibits and alters kinetics of voltage-gated K+ channels of rat arterial smooth muscle. Am. J. Physiol 2001; 281(6): H2480-H2489.
    
    50. Cogolludo A, Moreno L, Bosca L, et al. Thromboxane A2-induced inhibition of voltage-gated K~+ channels and pulmonary vasoconstriction: role of protein kinase Czeta. Circ Res 2003; 93(7): 656-663.
    51. Crozatier B. Central role of PKCs in vascular smooth muscle cell ion channel regulation. Mol Cell Cariol 2006; 41(3): 952-955.
    
    52. Minami K, Hirata Y, Tokumura A, et al. Protein kinase Cindependent inhibition of the Ca~(2+)-activated K~+ channel by angiotensin II and endothelin-1.Biochem. Pharmacol 1995; 49(2): 1051-1056.
    
    53. Crozatier B. Central role of PKCs in vascular smooth muscle cell ion channel regulation. J. Mol Cell Cariol 2006; 41(6): 952-955.
    
    54. Ledoux J, Werner ME, Brayden JE, et al. Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda). 2006, 21: 69-78.
    
    55. Hayabuchi Y, Davies NW, Standen NB, et al. Angiotensin II inhibits rat arterial K_(ATP) channels by inhibiting steady-state protein kinase A activity and activating protein kinase Cε. J. Physiol.(Lond.) 2001; 530(Pt 2): 193-205.
    
    56. Park WS, Ko EA, Han J, et al. Endothelin-1 acts via protein kinase C to block K_(ATP) channels in rabbit coronary and pulmonary arterial smooth muscle cells. J Cardiovasc Pharmacol 2005; 45(2): 99-108.
    
    57. Dessy C, Matsuda N, Hulvershorn J, et al. Evidence for involvement of the PKC-alpha isoform in myogenic contractions of the coronary microcirculation. Am. J. Physiol 2000; 279(3): H916-H923.
    
    58. Standen NB, Quayle JM. K~+ channel modulation in arterial smooth muscle. Acta Physiol. Scand. 1998; 164(4):549-557.
    
    59. Son YK, Park WS, Ko JH, et al. Protein kinase A-dependent activation of inward rectifier potassium channels by adenosine in rabbit coronary smooth muscle cells. Biochem. Biophys. Res Commun 2005; 337(4): 1145-1152.
    
    60. Robertson B E, Schubert R, Hescheler J, et al .cGMP-dependent protein kinase activates Ca~(2+)-activated K~+ channels in cerebral artery smooth muscle cells. Am Physiol 1993; 265(1 Pt 1): C299-C303.
    
    61. Wellman GC, Cartin L, Eckman DM, et al. Membrane depolarization, elevated Ca~(2+) entry, and gene expression in cerebral arteries of hypertensive rats. Am Physiol 2001; 281(6):H2559-H2567.
    
    62. Kim NR, Han J, Kim EY, et al. Altered delayed rectifier K~+ current of rabbit coronary arterial myocytes in isoproterenol-induced hypertrophy. Korean J Physiol Pharmacol 2001; 5: 33-40.
    63. Bari F, Louis TM, Meng W, et al. Global ischemia impairs ATP-sensitive K~+channel function in cerebral arterioles in piglets. Stroke 1996; 27(10): 1874-1880.
    
    64. Ghosh M, Hanna ST, Wang R, et al. Altered vascular reactivity and Katp channel currents in vascular smooth muscle cells from deoxycorticosterone acetate (DOCA)-salt hypertensive rats. J Cardiovasc Pharmacol 2004; 44(5): 525-531.
    
    65. Liu Y, Hudetz AG, Knaus HG, et al. Increased expression of Ca -sensitive K channels in the cerebral microcirculation of genetically hypertensive rats: evidence for their protection against cerebral vasospasm. Circ Res 1998; 82(6): 729-737.
    
    66. Kim NR, Chung JY, Kim EY, et al. Changes in the Ca~(2+)-activated K~+ channels of the coronary artery during left ventricular hypertrophy. Circ Res 2003; 93: 541-547.
    
    67. Bari F, Louis TM, Busija DW, et al. Calcium-activated K~+ channels in cerebral arterioles in piglets are resistant to ischemia. J. Cereb. Blood Flow Metab 1997; 17(11): 1152-1156.
    
    68. Mayhan WG, Mayhan JF, Sun H, et al. In vivo properties of potassium channels in cerebral blood vessels during diabetes Millitus. Microcirculation 2004; 11(7): 605-613.