采用智能方法的可变剪接调控机制与相关疾病研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可变剪接是调控基因表达的关键机制,它使得一种编码蛋白质的基因可以产生多种转录变体,丰富了遗传信息的应用,可变剪接的异常会导致遗传疾病甚至癌症的发生。本论文在分析可变剪接调控机制与相关疾病研究现状以及存在的问题的基础上,基于不同的数据源,设计不同的生物信息学方法对可变剪接调控机制与疾病的相关性进行分析和研究。研究主要从以下几个方面进行:
     组织特异性可变剪接与疾病的研究。不同组织中特有的可变剪接模式称为组织特异性可变剪接。论文以睾丸及睾丸癌组织为研究对象,基于EST序列数据,设计了一种识别模型,在全转录组范围内预测睾丸及睾丸癌组织特异性可变剪接事件,并进一步对这些识别出的剪接模式进行研究,分析这些剪接模式的核酸倾向性,染色体偏好性,以及与睾丸组织疾病之间的关系。利用所提出的方法,基于GeneBank中的dbEST数据库,哺乳动物EST文库,以及开放阅读框文库的数据,成功预测出具有睾丸及睾丸癌组织特异性的可变剪接模式。
     物种特异性可变剪接与疾病的研究。可变剪接在不同的物种中有着不同的剪接模式,其致病机理也有所不同。论文设计了一种研究物种特异性可变剪接与疾病相关性的生物信息学框架。从各个角度研究物种特异性可变剪接的特点。首先,对人类在小鼠和狗基因组中的保守性剪接模式进行识别,从而确定出具有物种特异性的剪接模式,然后对这些剪接模式进行多方面的分析研究,主要包括可变外显子,可变剪接位点的保守性分析,剪接位点功能倾向性的分析,以及剪接位点的分布等。应用该生物信息学框架,成功预测了人类特异性可变剪接的保守模式,并分析了这些模式的特点;应用Fisher检验方法,对人类具有物种特异性可变剪接的模式与相关疾病数据库进行检验,结果表明,物种特异性可变剪接与疾病密切相关。
     RNA-蛋白质结合区域预测及其与疾病的相关性。RNA-蛋白质调控基因在后转录过程中的众多关键过程。为研究RNA-蛋白质结合区域的特性及其与相关疾病之间的关系。论文提出一种基于HMM的预测方法,对SFRS1蛋白质的结合区域进行从头预测。方法中考虑到RNA二级结构对结合位点的影响,将序列信息与结构信息结合起来对建立的HMM进行训练,应用训练好的HMM对RNA-蛋白质结合位点进行预测;然后应用贝叶斯网络对参与RNA-蛋白质结合区域的可变剪接事件进行预测,以盒式外显子为例,预测参与剪接调控的盒式外显子数目,方法中考虑到结合位点与剪接位点之间距离的远近对结合位点有影响,在构建贝叶斯网络时将距离因素考虑进来;最后对RNA-蛋白质结合区域的点突变与疾病数据库进行搜索,找出二者之间的相关性。通过对SFRS1蛋白质的结合序列的测试表明,HMM方法能准确预测出蛋白质结合RNA的区域,其准确率高于现有的预测方法。以盒式外显子为例,成功预测出119个参与调控RNA-蛋白质结合区域可变剪接的盒式外显子。进一步与疾病数据库的研究发现:结合区域的异常与疾病密切相关。
     癌症特异性可变剪接。可变剪接是癌症表达的天然来源,某些特定剪接模式的改变与癌症具有很强的相关性。论文基于外显子芯片数据,对癌症特异性剪接进行研究,首先,设计外显子芯片数据处理的方法,检测剪接事件;然后建立一种癌症特异性可变剪接模体表达水平的预测模型,预测出具有癌症特异性的剪接事件;通过对结肠癌组织与正常结肠组织的实验,发现许多具有结肠癌特异性的剪接变体,其中一些已经得到注释与癌症相关,大部分识别出的剪接变体影响细胞组织,细胞间质或者综合信号,可能参与细胞迁移与入侵。结果表明,利用外显子芯片技术,结合剪接模体表达水平预测模型对癌症特异性剪接进行研究,不仅可以在基因组范围内识别出不同的可变剪接变体,同时可以提供更为灵活的,更为可靠的基因表达分析。
Alternative splicing is an essential mechanism in gene regulatory network(CRN).Itdiversify the proteomics through generating two or more isoforms by one gene.Mutation inalternative splicing will lead to the Genetic disease or even cancer. This thesis depends on thecurrent progress in the study on alternative splicing and the related disease. Based on differentkinds of experimental data source,we developed different bioinformatics method correspondto them.This thesis mainly contain these topics:
     Tissue-specific alternative splicing and disease.The variety of alternative splicing indifferent kinds of tissue is called the tissue-specific alternative splicing. Here we take normaltestis and cancer testis as an example, based on the known EST database to predict thetissue-specific alternative splicing events in normal testis and cancer testis. Furthermore westudy the pattern of the alternative splicing where the pattern refer to nucleotide tendency,chromatin tendency, and the relationship between alternative splicing and disease in testis.Atlast, we make use of the dbEST data in GeneBank, mammal EST and ORF database, andsuccessfully predict the alternative splicing pattern in both normal testis and cancer testis.
     Species-specific alternative splicing and disease. Alternative splicing in different kindsof species have different patterns, so they have a variety of pathogenesis. We build a frame inorder to study the species-specific alternative splicing and the related disease from a broadview. Firstly, we recognize the conserved pattern in mouse and dog, and try to findcorrespond splicing pattern in different species simultaneously; then we analyze the splicingpattern from many aspects, which include alternative exons, motif, function-based splicingtendency and the distribution of splicing sites. Using the frame we developed, we successfullypredict the conserved pattern of human-specific alternative splicing. We test thehuman-specific alternative splicing and the related disease database using Fisher test. Finallywe found that tissue-specific alternative splicing is tightly connected with disease.
     Recognizing the RNA-binding protein (RBP) region and predicting the related disease.RNA-binding proteins play an important role in many processes in post-transcription. In orderto find the relationship between RNA-binding proteins’s binding region and the relateddisease, here we provide an HMM based method to predict the binding sites of SFRS1.The proposed method consider the impact of secondary structure, which means we consider boththe sequence information and secondary structure information. Then we use the establishedHHM frame to predict the binding region of RBP. We use the Bayesian network to predict thealternative splicing events involved in RBP binding. Taking cassette exons as an example, wepredict the number of cassette exons involved in the alternative splicing. We also take thedistant between the binding region and the splice site into consideration; finally we search thepoint mutation of RBP binding region in disease database and find the relationship betweenthem. We used SFRS1as a test and found that HMM based method could correctly find thebinding region of RBP and the precision of our method is higher than current methods. In thestudy of cassette exons, we successfully predicted119exons that involved in RBP binding.Furthermore we found that a tight relationship between the RBP binding region and disease.
     Cancer-specific alternative splicing. Alternative splicing is a direct method to dectetcancer. Some specific alternative splicing may be tightly related to cancer. This thesisanalyzes the cancer-specific alternative splicing using the microarray data source. Firstly, wedesign a method to process the microarray data and detect alternative splicing events; then weestablish a model to predict the level of the motif expression to get the cancer relatedalternative events. Through the experiment on colon cancer and normal colon, we found thatmany colon cancer-specific alternative splicing events, some of which has been annotated.Most of the motif we predict influence the cell tissue, cell stromal, and signal, which maybeinvolved in cell migration and invasion. The result shows that our model can not onlyrecognize alternative splicing events in whole genome using the microarray, but also providea more flexible and reliable method to analyze the gene expression level.
引文
[1] W. Gilbert. WHY GENES IN PIECES[J]. Nature,1978,271:501-501.
    [2] S. M. Berget, C. Moore, and P. A. Sharp. Spliced segments at the5' terminus ofadenovirus2late mRNA[J]. Proc Natl Acad Sci U S A,1977,74:3171-3175.
    [3] R. Maki, W. Roeder, A. Traunecker,et al. The role of DNA rearrangement andalternative RNA processing in the expression of immunoglobulin delta genes[J]. Cell,1981,24:353-365.
    [4] E. T. Wang, R. Sandberg, S. Luo, et al. Alternative isoform regulation in human tissuetranscriptomes[J]. Nature,2008,456:470-476.
    [5] G. S. Wang and T. A. Cooper. Splicing in disease: disruption of the splicing code andthe decoding machinery[J]. Nat Rev Genet,2007,8:749-761.
    [6] J. P. Venables. Unbalanced alternative splicing and its significance in cancer[J].Bioessays,2006,28:378-386.
    [7] A. Srebrow and A. R. Kornblihtt. The connection between splicing and cancer[J]. JCell Sci,2006,119:2635-2641.
    [8] A. J. Matlin, F. Clark, C. W. Smith. Understanding alternative splicing: towards acellular code[J]. Nat Rev Mol Cell Biol,2005,6:386-398.
    [9] J. M. Johnson, J. Castle, P. Garrett-Engele,et al. Genome-wide survey of humanalternative pre-mRNA splicing with exon junction microarrays[J]. Science,2003,302:2141-2144.
    [10] D. Mathews, M. Disney, J. Childs, et al. Incorporating chemical modificationconstraints into a dynamic programming algorithm for prediction of RNA secondarystructure[J]. Proceedings of the National Academy of Sciences,2004,101:7287-7292.
    [11] R. I. Skotheim and M. Nees. Alternative splicing in cancer: noise,functional, orsystematic?[J]. Int J Biochem Cell Biol,2007,39:1432-1449.
    [12] L. Collins and D. Penny. Complex spliceosomal organization ancestral to extanteukaryotes[J]. Mol Biol Evol,2005,22:1053-1066.
    [13] S. Lin and X. D. Fu. SR proteins and related factors in alternative splicing[J]. Adv ExpMed Biol,2007,623:107-122.
    [14] Y. Huang and J. A. Steitz. Splicing factors SRp20and9G8promote thenucleocytoplasmic export of mRNA[J]. Mol Cell,2001,7:899-905.
    [15] J. R. Sanford, N. K. Gray, K. Beckmann,et al. A novel role for shuttling SR proteins inmRNA translation[J]. Genes Dev,2004,18:755-768.
    [16] B. J. Blencowe. Alternative splicing: new insights from global analyses[J]. Cell,2006,126:37-47.
    [17] Z. Zhang and A. R. Krainer. Involvement of SR proteins in mRNA surveillance[J].Mol Cell,2004,16:597-607.
    [18] D. Longman, I. L. Johnstone, J. F. Caceres. Functional characterization of SR andSR-related genes in Caenorhabditis elegans[J]. EMBO J,2000,19:1625-1637.
    [19] A. P. Goldstone. Prader-Willi syndrome: advances in genetics, pathophysiology andtreatment[J]. Trends Endocrinol Metab,2004,15:12-20.
    [20] M. Briese, B. Esmaeili,D. B. Sattelle. Is spinal muscular atrophy the result of defects inmotor neuron processes?[J]. Bioessays,2005,27:946-957.
    [21] D. Mordes, X. Luo, A. Kar, et al. Pre-mRNA splicing and retinitis pigmentosa[J].Mol Vis,2006,12:1259-1271.
    [22] C. Winkler, C. Eggert, D. Gradl,et al. Reduced U snRNP assembly causes motor axondegeneration in an animal model for spinal muscular atrophy[J]. Genes Dev,2005,19:2320-2330.
    [23] J. Cavaille, K. Buiting, M. Kiefmann,et al. Identification of brain-specific andimprinted small nucleolar RNA genes exhibiting an unusual genomic organization[J].Proc Natl Acad Sci U S A,2000,97:14311-14316.
    [24] E. Xu, M.Lee.Defective splicing, disease and therapy:searching for master checkpointsin exon definition[J]. Nucleic Acids Res.2006,34:3494–3510.
    [25] C. L. Will, R. Luhrmann. Splicing of a rare class of introns by the U12-dependentspliceosome[J]. Biol Chem,2005,386:713-724.
    [26] L. Hui, X. Zhang, X. Wu, et al. Identification of alternatively spliced mRNA variantsrelated to cancers by genome-wide ESTs alignment[J]. Oncogene,2004,23:3013-3023.
    [27] T. A. Clark, A. C. Schweitzer, T. X. Chen, et al. Discovery of tissue-specific exonsusing comprehensive human exon microarrays[J]. Genome Biol,2007,8:R64.
    [28] M. Cuperlovic-Culf, N. Belacel, A. S. Culf, et al. Data analysis of alternative splicingmicroarrays[J]. Drug Discov Today,2006, Vol.11:983-990.
    [29] R. M. Evans, S. G. Amara, M. G. Rosenfeld. RNA processing regulation ofneuroendorcrine gene expression[J]. DNA,1982,1:323-328.
    [30] H. Nawa, H. Kotani, S. Nakanishi. Tissue-specific generation of two preprotachykininmRNAs from one gene by alternative RNA splicing[J]. Nature,1984,312:729-734.
    [31] Y. Nabeshima, Y. Nonomura,Y. Fujii-Kuriyama. Nonmuscle and smooth musclemyosin light chain mRNAs are generated from a single gene by the tissue-specificalternative RNA splicing[J]. J Biol Chem,1987,262:10608-10612.
    [32] Q. Xu, B. Modrek,C. Lee. Genome-wide detection of tissue-specific alternativesplicing in the human transcriptome[J]. Nucleic Acids Res,2002,30:3754-3766.
    [33] K. Srinivasan, L. Shiue, J. Hayes, et al. Detection and measurement of alternativesplicing using splicing-sensitive microarrays[J]. Methods,2005,37:345-359.
    [34] X. Wang, K. Wang, G. Wang,et al. Model-based prediction of cis-acting RNAelements regulating tissue-specific alternative splicing.8th IEEE InternationalConference on BioInformatics and BioEngineering,2008,1-6.
    [35]王鑫. Pre-mRNA选择性剪接机制研究[D].哈尔滨工程大学博士论文,2009.
    [36] S. Minovitsky, S. L. Gee, S. Schokrpur, et al. The splicing regulatory element,UGCAUG, is phylogenetically and spatially conserved in introns that flanktissue-specific alternative exons[J]. Nucleic Acids Res,2005,33:714-724.
    [37] C. W. Sugnet, K. Srinivasan, T. A. Clark, et al. Unusual intron conservation neartissue-regulated exons found by splicing microarrays[J]. PLoS Comput Biol,2006,2:e4.
    [38] P.J. Gardina, T.A. Clark, B. Shimada et al. Alternative splicing and differential geneexpression in colon cancer detected by a whole genome exon array[J]. BMC Genomics2006,7:325.
    [39] R. French, C. Rensing, E. Otto,et al. Children with ocular motor apraxia type Cogancarry deletions in the gene (NPHP1) for juvenile nephronophthisis[J]. J Pediatr,2000,136:828-831.
    [40]张晓娜.中国人群组织特异性剪接研究[D].上海交通大学硕士论文,2008.
    [41] Q. Pan, M. A. Bakowski, Q. Morris,et al. Alternative splicing of conserved exons isfrequently species-specific in human and mouse[J]. Trends Genet,2005,21:73-77.
    [42] R.N. Nurtdinov, I.I.Artamonova, A.A.Mironov,et al. Low conservation of alternativesplicing patterns in the human and mouse genomes[J].Hum Mol Genet2003,12:1313-1320.
    [43] B Modrek, C.J.Lee. Alternative splicing in the human, mouse and rat genomes isassociated with an increased frequency of exon creation and/or loss[J]. Nat Genet2003,34:177-180.
    [44] T.A.Thanaraj, F Clark, J Muilu. Conservation of human alternative splice events inmouse[J].Nucleic Acids Res2003,31:2544-2552.
    [45] Q Pan, O Shai, C Misquitta, et al.Revealing global regulatory features of mammalianalternative splicing using a quantitative microarray platform[J].Mol Cell2004,16:929-941.
    [46] W Wang, H Zheng, S Yang, et al.Origin and evolution of new exons inrodents[J].Genome Res2005,9:1258-1264.
    [47] X.H. Zhang, L.A. Chasin. Comparison of multiple vertebrate genomes reveals thebirth and evolution of human exons[J].Proc Natl Acad Sci USA2006,36:13427-1332.
    [48] A.V.Alekseyenko, N Kim, C.J.Lee.Global analysis of exon creation versus loss andthe role of alternative splicing in17vertebrate genomes[J].RNA2007,5:661-670.
    [49] D.B.Malko, V.J.Makeev, A.A.Mironovet et al.Evolution of exon-intron structure andalternative splicing in fruit flies and malarial mosquito genomes[J].Genome Res2006,16:505-509.
    [50] B.B Wang,V.Brendel.Genomewide comparative analysis of alternative splicing inplants[J].Proc Natl Acad Sci USA2006,103:7175-7180.
    [51] F.C.Chen,C.J.Chen,J.Y.Ho, et al.Identification and evolutionary analysis of novelexons and alternative splicing events using cross-species EST-to-genome comparisonsinhuman, mouse and rat[J].BMC Bioinformatics2006,15:136.
    [52] Q. Pan, A. L. Saltzman, Y. K. Kim, et al. Quantitative microarray profiling providesevidence against widespread coupling of alternative splicing with nonsense-mediatedmRNA decay to control gene expression[J]. Genes Dev,2006,20:153-158.
    [53] J. Castle, P. Garrett-Engele, C. D. Armour, et al. Optimization of oligonucleotidearrays and RNA amplification protocols for analysis of transcript structure andalternative splicing[J].Genome Biol,2003,4:R66.
    [54] J. R. Sanford and J. F. Caceres. Pre-mRNA splicing: life at the centre of the centraldogma[J]. J Cell Sci,2004,117:6261-6263.
    [55] R. S. Huang, S. Duan, W. K. Bleibel, et al. A genome-wide approach to identifygenetic variants that contribute to etoposide-induced cytotoxicity[J]. Proc Natl AcadSci U S A,2007,104:9758-9763.
    [56] J. C. Marioni, C. E. Mason, S. M. Mane,et al, RNA-seq: an assessment of technicalreproducibility and comparison with gene expression arrays[J].Genome Res,2008,18:1509-1517.
    [57] K. Srinivasan, L. Shiue, J. D. Hayes,et al. Detection and measurement of alternativesplicing using splicing-sensitive microarrays[J].Methods,2005,37:345-359.
    [58] M. S. Cline, J. Blume, S. Cawley,et al. ANOSVA: a statistical method for detectingsplice variation from expression data[J].Bioinformatics,2005,1:107-115.
    [59] O. Shai, Q. D. Morris, B. J. Blencowe,et al. Inferring global levels of alternativesplicing isoforms using a generative model of microarray data[J].Bioinformatics,2006,22:606-613.
    [60] H. Zheng, X. Hang, J. Zhu, et al. REMAS: a new regression model to identifyalternative splicing events from exon array data[J].BMC Bioinformatics,2009,10:S18.
    [61] C. He, Z. Zuo, H. Chen, et al. Genome-wide detection of testis-and testicularcancer-specific alternative splicing[J].Carcinogenesis,2007,28:2484-2490.
    [62] T. Kashima and J. L. Manley. A negative element in SMN2exon7inhibits splicing inspinal muscular atrophy[J].Nat Genet,2003,34:460-463.
    [63] D. D. Licatalosi, A. Mele, J. J. Fak, et al. HITS-CLIP yields genome-wide insightsinto brain alternative RNA processing[J].Nature,2008,456:464-469.
    [64] A. Mortazavi, B. A. Williams, K. McCue,et al.Mapping and quantifying mammaliantranscriptomes by RNA-Seq[J].Nat Methods,2008,5:621-628.
    [65] M. Sultan, M. H. Schulz, H. Richard, et al. A global view of gene activity andalternative splicing by deep sequencing of the human transcriptome[J]. Science,2008,321:956-960.
    [66] J. Ule, G. Stefani, A. Mele, et al. An RNA map predicting Nova-dependent splicingregulation[J].Nature,2006,444:580-586.
    [67] J. R. Sanford, X. Wang, M. Mort, et al. Splicing factor SFRS1recognizes afunctionally diverse landscape of RNA transcripts[J].Genome Res,2009,19:381-394.
    [68] G. Yeo, N. Coufal, T. Liang, et al. An RNA code for the FOX2splicing regulatorrevealed by mapping RNA-protein interactions in stem cells[J]. Nature Structural&Molecular Biology,2009,130-137.
    [69] K. Le, K. Mitsouras, M. Roy, et al. Detecting tissue-specific regulation of alternativesplicing as a qualitative change in microarray data[J]. Nucleic Acids Res,2004,32:e180.
    [70] H. Shen, J. L. Kan, M. R. Green. Arginine-serine-rich domains bound at splicingenhancers contact the branchpoint to promote prespliceosome assembly[J]. Mol Cell,2004,13:367-376.
    [71] J. Ule, K. B. Jensen, M. Ruggiu, et al. CLIP identifies Nova-regulated RNA networksin the brain[J].Science,2003,302:1212-1215.
    [72] S. Kim, H. Shi, D. K. Lee, et al. Specific SR protein-dependent splicing substratesidentified through genomic SELEX[J].Nucleic Acids Res,2003,31:1955-1961.
    [73] H. Hieronymus and P. A. Silver. A systems view of mRNP biology[J].Genes Dev,2004,18:2845-2860.
    [74] N. Lopez-Bigas, B. Audit, C. Ouzounis, et al. Are splicing mutations the mostfrequent cause of hereditary disease?[J].FEBS Lett,2005,579:1900-1903.
    [75] M. Briese, B. Esmaeili,D. B. Sattelle. Is spinal muscular atrophy the result of defectsin motor neuron processes?[J]. Bioessays,2005,27:946-957.
    [76] D. Mordes, X. Luo, A. Kar, et al. Pre-mRNA splicing and retinitis pigmentosa[J].MolVis,2006,12:1259-1271.
    [77] C. Winkler, C. Eggert, D. Gradl, et al. Reduced U snRNP assembly causes motoraxon degeneration in an animal model for spinal muscular atrophy[J]. Genes Dev,2005,19:2320-2330.
    [78] A. P. Goldstone. Prader-Willi syndrome: advances in genetics, pathophysiology andtreatment[J]. Trends Endocrinol Metab,2004,15:12-20.
    [79] S. Kishore and S. Stamm. The snoRNA HBII-52regulates alternative splicing of theserotonin receptor2C[J]. Science,2006,311:230-232.
    [80] R. Karni, E. de Stanchina, S. W. Lowe, et al. The gene encoding the splicing factorSF2/ASF is a proto-oncogene[J]. Nat Struct Mol Biol,2007,14:185-193.
    [81] C. Ghigna, S. Giordano, H. Shen, et al. Cell motility is controlled by SF2/ASFthrough alternative splicing of the Ron protooncogene[J]. Mol Cell,2005,20:881-890.
    [82] J. D. Hoheisel. Microarray technology: beyond transcript profiling and genotypeanalysis[J]. Nat Rev Genet,2006,7:200-210.
    [83] M. Spingola, L. Grate, D. Haussler, et al. Genome-wide bioinformatic and molecularanalysis of introns in Saccharomyces cerevisiae[J].RNA,1999,5:221-234.
    [84] T. C. Mockler, S. Chan, A. Sundaresan, et al. Applications of DNA tiling arrays forwhole-genome analysis[J].Genomics,2005,85:1-15.
    [85] P. Sanchez-Diaz and L. O. Penalva. Post-transcription meets post-genomic: the sagaof RNA binding proteins in a new era[J]. RNA Biol,2006,3:101-109.
    [86] J. Ule, A. Ule, J. Spencer, et al. Nova regulates brain-specific splicing to shape thesynapse[J].Nat Genet,2010,37:844-852.
    [87] P. J. Grabowski. Genetic evidence for a Nova regulator of alternative splicing in thebrain[J].Neuron,2011,25:254-256.
    [88] Z. Wang and C. B. Burge. Splicing regulation: from a parts list of regulatory elementsto an integrated splicing code[J].RNA,2011,14:802-813.
    [89] R. Lemaire, J. Prasad, T. Kashima, et al. Stability of a PKCI-1-related mRNA iscontrolled by the splicing factor ASF/SF2: a novel function for SR proteins[J].GenesDev,2011,16:594-607.
    [90] K. M. Kotovic, D. Lockshon, L. Boric, et al. Cotranscriptional recruitment of the U1snRNP to intron-containing genes in yeast[J].Mol Cell Biol,2010,23:5768-5779.
    [91] M. Hiller, Z. Zhang, R. Backofen,et al. Pre-mRNA secondary structures influenceexon recognition[J].PLoS Genet,2007,3:e204.
    [92] M. K. Das and H. K. Dai. A survey of DNA motif finding algorithms[J]. BMCBioinformatics,2007,8:S21.
    [93] T. L. Bailey, N. Williams, C. Misleh, et al. MEME: discovering and analyzing DNAand protein sequence motifs[J].Nucleic Acids Res,2006,34:W369-373.
    [94] E. Buratti and F. E. Baralle. Influence of RNA secondary structure on the pre-mRNAsplicing process[J]. Mol Cell Biol,2010,24:10505-10514.
    [95] H. Hieronymus and P. A. Silver. Genome-wide analysis of RNA-protein interactionsillustrates specificity of the mRNA export machinery[J]. Nat Genet,2003,33:155-161.
    [96] S. Olson, M. Blanchette, J. Park, et al. A regulator of Dscam mutually exclusivesplicing fidelity[J].Nat Struct Mol Biol,2011,15:584-597.
    [97] M. Gama-Carvalho, N. L. Barbosa-Morais, A. S. Brodsky,16:594-607..Genome-wide identification of functionally distinct subsets of cellular mRNAsassociated with two nucleocytoplasmic-shuttling mammalian splicingfactors[J].Genome Biol,2006,7:R113.
    [98] Q. Pan, O. Shai, C. Misquitta. Revealing global regulatory features of mammalianalternative splicing using a quantitative microarray platform[J]. Mol Cell,2011,16:929-941.
    [99] E. D. Neto, R. G. Correa, S. Verjovski-Almeida,Shotgun sequencing of the humantranscriptome with ORF expressed sequence tags[J].Proc Natl Acad Sci U S A,2010,97:3491-3496.
    [100] J. Hanke, D. Brett, I. Zastrow,et al. Alternative splicing of human genes: more therule than the exception?[J].Trends Genet,1999,15:389-390.
    [101] D. Brett, J. Hanke, G. Lehmann, S. Haase, et al. EST comparison indicates38%ofhuman mRNAs contain possible alternative splice forms[J]. FEBS Lett,2011,474:83-86.
    [102] A. A. Mironov, J. W. Fickett, M. S. Gelfand. Frequent alternative splicing of humangenes[J].Genome Res,1999,9:1288-1293.
    [103] B. Modrek, A. Resch, C. Grasso, et al. Genome-wide detection of alternative splicingin expressed sequences of human genes[J]. Nucleic Acids Res,2001,29:2850-2859.
    [104] Z. Kan, D. States, W. Gish. Selecting for functional alternative splices in ESTs[J].Genome Res,2002,12:1837-1845.
    [105] L. Hui, X. Zhang, X. Wu, et al. Identification of alternatively spliced mRNA variantsrelated to cancers by genome-wide ESTs alignment[J]. Oncogene,2004,23:3013-3023.
    [106] D. A. Kulesh, D. R. Clive, D. S. Zarlenga, et al. Identification ofinterferon-modulated proliferation-related cDNA sequences[J].Proc Natl Acad Sci US A,1987,84:8453-8457.
    [107] M. Schena, D. Shalon, R. W. Davis, et al. Quantitative monitoring of gene expressionpatterns with a complementary DNA microarray[J].Science,1995,270:467-470.
    [108] W. J. Kent. BLAT--the BLAST-like alignment tool[J].Genome Res,2002,12:656-664.
    [109] G. Yeo, D. Holste, G. Kreiman, et al. Variation in alternative splicing across humantissues[J].Genome Biol,2009,5:R74.
    [110] C. Shin and J. L. Manley. Cell signalling and the control of pre-mRNAsplicing[J].Nat Rev Mol Cell Biol,2004,5:727-738.
    [111] R. Singh and J. Valcarcel. Building specificity with nonspecific RNA-bindingproteins[J].Nat Struct Mol Biol,2009,12:645-653.
    [112] M. Blanchette, R. E. Green, S. E. Brenner, et al. Global analysis of positive andnegative pre-mRNA splicing regulators in Drosophila[J]. Genes Dev,2005,19:1306-1314.
    [113] A. Goren, O. Ram, M. Amit, et al. Comparative analysis identifies exonic splicingregulatory sequences--The complex definition of enhancers and silencers[J].MolCell,2006,22:769-781.
    [114] B. A. Friedman, M. B. Stadler, N. Shomron, et al. Ab initio identification offunctionally interacting pairs of cis-regulatory elements[J].Genome Res,2008,18:1643-1651.
    [115] K. Kapur, Y. Xing, Z. Ouyang, et al. Exon arrays provide accurate assessments ofgene expression[J].Genome Biol,2007,8:R82.
    [116] S. F. Altschul, W. Gish, W. Miller, et al. Basic local alignment search tool[J].J MolBiol,1990,215:403-410.
    [117] S. Siebert and R. Backofen. MARNA: multiple alignment and consensus structureprediction of RNAs based on sequence structure comparisons[J].Bioinformatics,2008,21:3352-3359.
    [118] A. R. Grosso, A. Q. Gomes, N. L. Barbosa-Morais, et al. Tissue-specific splicingfactor gene expression signatures[J].Nucleic Acids Res,2008,36:4823-4832.
    [119] P. J. Smith, C. Zhang, J. Wang, et al. An increased specificity score matrix for theprediction of SF2/ASF-specific exonic splicing enhancers[J].Hum Mol Genet,2006,15:2490-2508.
    [120] GeneBank.http://www.genebank.nlm.nih.gov/UniGen,EntrezGene,GenePept html
    [121] OMIM http://www.ncbi.nlm.gov/db=OMIM
    [122] HGMD http://www.hgmd.org
    [123] J. Ule, K. Jensen, A. Mele, et al. CLIP: a method for identifying protein-RNAinteraction sites in living cells[J].Methods,2010,37:376-386.
    [124] J. Ule and R. B. Darnell. RNA binding proteins and the regulation of neuronalsynaptic plasticity[J]. Curr Opin Neurobiol,2006,16:102-110.
    [125] X. Li and J. L. Manley. Inactivation of the SR protein splicing factor ASF/SF2resultsin genomic instability[J].Cell,2011,122:365-378.
    [126] T. Glisovic, J. L. Bachorik, J. Yong, et al. RNA-binding proteins andpost-transcriptional gene regulation[J].FEBS Lett,2008,582:1977-1986.
    [127] S. A. Tenenbaum, P. J. Lager, C. C. Carson, et al. Ribonomics: identifying mRNAsubsets in mRNP complexes using antibodies to RNA-binding proteins and genomicarrays[J].Methods,2010,26:191-198.
    [128] A. P. Gerber, D. Herschlag, P. O. Brown. Extensive association of functionally andcytotopically related mRNAs with Puf family RNA-binding proteins in yeast[J].PLoSBiol,2004,2:E79.
    [129] S. Mili and J. A. Steitz. Evidence for reassociation of RNA-binding proteins after celllysis: implications for the interpretation of immunoprecipitationanalyses[J].RNA,2004,10:1692-1694.
    [130] E. Buratti, A. F. Muro, M. Giombi, et al. RNA folding affects the recruitment of SRproteins by mouse and human polypurinic enhancer elements in the fibronectin EDAexon[J]. Mol Cell Biol,2011,24:1387-1400.
    [131] J. Ngo, K. Giang, S. Chakrabarti, et al. A sliding docking interaction is essential forsequential and processive phosphorylation of an SR protein by SRPK1[J].MolecularCell,2008,29:563-576.
    [132] W. J. Ansorge. Next-generation DNA sequencing techniques[J]. N Biotechnol,2009,25:195-203.
    [133] X. Wang, G. Wang, C. Shen, et al. Using RNase sequence specificity to refine theidentification of RNA-protein binding regions[J].BMC Genomics,2008,9:S17.
    [134] S.J.Muh,R.H.Hovhannisyan,R.P.Carstens.A Non-sequence-specific double-strandedRNA structural element regulates splicing of two mutually exclusive exons offibroblast growth factor receptor2(FGFR2)[J].J Biol Chem,2011,277:143-154.
    [135] B. R. Graveley. Mutually exclusive splicing of the insect Dscam pre-mRNA directedby competing intronic RNA secondary structures[J].Cell,2005,123:65-73.
    [136] I. L. Hofacker, M. Fekete, P. F. Stadler. Secondary structure prediction for alignedRNA sequences[J].J Mol Biol,2011,319:1059-1066.
    [137] A. Xayaphoummine, T. Bucher, F. Thalmann, et al. Prediction and statistics ofpseudoknots in RNA structures using exactly clustered stochastic simulations[J].ProcNatl Acad Sci U S A,2010,100:15310-15315.
    [138] M. Hiller, R. Pudimat, A. Busch, et al. Using RNA secondary structures to guidesequence motif finding towards single-stranded regions[J].Nucleic Acids Res,2008,34:e117.
    [139] D. H. Mathews. Revolutions in RNA secondary structure prediction[J].J Mol Biol,2009,359:526-532.
    [140] Y. Ding, C. Y. Chan,C. E. Lawrence. RNA secondary structure prediction bycentroids in a Boltzmann weighted ensemble[J].RNA,2005,11:1157-1166.
    [141] C. B. Do, D. A. Woods,S. Batzoglou. CONTRAfold: RNA secondary structureprediction without physics-based models[J].Bioinformatics,2010,22:e90-98.
    [142] E. Bindewald and B. A. Shapiro. RNA secondary structure prediction from sequencealignments using a network of k-nearest neighbor classifiers[J].RNA,2009,12:342-352.
    [143] E. Freyhult, V. Moulton, P. Gardner. Predicting RNA StructureUsing MutualInformation[J].Applied Bioinformatics,2008,4:53.
    [144]孙啸陆祖宏.生物信息学基础[M].清华大学出版社2005
    [145]孙岩.贝叶斯网络结构学习算法研究与应用[D].大连理工大学博士论文,2010.
    [146] G. E. Crooks, G. Hon, J. M. Chandonia, et al. WebLogo: a sequence logo generator[J].Genome Res,2004,14:1188-1190.
    [147] F. Pagani, E. Buratti, C. Stuani, et al. Missense, nonsense, and neutral mutationsdefine juxtaposed regulatory elements of splicing in cystic fibrosis transmembraneregulator exon9[J].J Biol Chem,2003,278:26580-26558.
    [148] R. A. Irizarry, B. M. Bolstad, F. Collin, et al. Summaries of Affymetrix GeneChipprobe level data[J].Nucleic Acids Res,2003,31:e15.
    [149] C. Tuerk and L. Gold. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4DNA polymerase[J].Science,1990,249:505-510.
    [150] V. Brown, P. Jin, S. Ceman, et al. Microarray identification of FMRP-associatedbrain mRNAs and altered mRNA translational profiles in fragile Xsyndrome[J].Cell,2001,107:477-487.
    [151] W. M. Liu, R. Mei, X. Di, et al. Analysis of high density expression microarrays withsigned-rank call algorithms[J].Bioinformatics,2002,18:1593-1599.
    [152] K. Srinivasan, L. Shiue, J. Hayes, et al. Detection and measurement of alternativesplicing using splicing-sensitive microarrays[J].Methods,2005,37:345-359.
    [153] A.-. GeneChip. Guide to Probe Logarithmic Intensity Error(PLIER)Estimation[J].bioinformatics.2005,229:405-410.
    [154] Q. Pan, O. Shai, C. Misquitta, et al. Revealing global regulatory features ofmammalian alternative splicing using a quantitative microarray platform[J].MolCell,2004,16:929-941.
    [155] Z Wang, H.S. Lo, H.Yang,et al. Computational analysis and experimental validationof tumor-associated alternative RNA splicing in human cancer[J].CancerRes,2003,63:655-657.
    [156] N Kirschbaum-Slager, R.B.Parmigiani, A.A.Camargo,et al. Iden-tification of humanexons overexpressed in tumors through the use of genome and expressed sequencedata[J].PhysiolGenomics,2005,21:423-432.
    [157] L Hui, X Zhang, X Wu, et al. Identificationof alternatively spliced mRNA variantsrelated to cancers by genome-wide ESTs alignment[J].Oncogene,2004,23:3013-3023.