大孔隙率多孔介质内湍流流动和质量弥散的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类迈入21世纪,资源和环境的问题愈加突出。基于气体或液体燃料在大孔隙率多孔介质中燃烧的过滤燃烧技术在高效、节能和净化诸方面都显示出诱人的前景,加之多孔介质材料和技术的进展,而日益引起人们的研究兴趣,并已在工程实际中获得越来越多的应用。本文以多孔介质燃烧器和多孔介质发动机为研究背景,通过数值模拟研究了大孔隙率多孔介质内湍流流动与组分输运过程,主要目的是更系统深入地理解多孔介质内湍流流动和混合气的形成过程的特点及规律,并进一步推动该领域的理论研究及其实际应用。
     本文主要在下列几方面进行了研究与探索:
     1、在众多的多孔介质湍流模型中,对具有代表性的三种模型进行了较全面的介绍与分析,并针对内部置入多孔介质的长方形管道内的湍流流场,利用主要的两种宏观湍流模型进行了数值研究。与实验结果进行比较和分析后发现,A-L湍流模型对湍流的抑制作用略大一些。
     2、为了深入研究大孔隙率多孔介质内的湍流特性对多孔介质内输运和燃烧过程的重要影响,建立了多孔介质的一种二维孔隙网络模型。此模型由一系列的圆形孔隙体和长方形喉道互相连接而成。使用标准k-ε模型模拟孔隙网络内的微观流场,利用体积平均方法将微观流场计算结果转换为宏观流场的信息,从而确定了宏观湍流模型中修正项系数的值。与相关文献比较和分析显示吻合良好。
     3、为考察气缸内加入多孔介质蓄热体后对燃烧室内湍流流场及混合气形成的影响,对模拟内燃机气缸的一个圆柱状多孔介质燃烧室进行了数值研究。建立了四种多孔介质简化结构模型,详细研究了多孔介质内湍流流动和喷雾油束与多孔介质的相互作用,对能量方程和油滴碰壁模型进行了修正。着重分析了多孔介质结构、多孔介质孔隙率、喷射压力和喷雾锥角对燃烧室内湍流流场、混合气形成和均匀化过程的影响。
     研究表明多孔介质结构和孔隙率对多孔介质内湍流流动的影响很大,从而影响整个区域的湍流流场。喷雾锥角的大小直接影响到自由流体区域湍动能水平和喷雾油束与多孔介质相互作用过程,以及多孔介质内湍动能水平和流场。而喷射压力对喷雾油束与多孔介质相互作用和湍流流场的影响,主要是通过改变油滴运动速度而得以实现。喷射压力增大,油滴运动速度得以增加,湍能水平也相应增加。油蒸汽的分布更加均匀、更加广阔。
     4、大孔隙率多孔介质内流动和燃烧问题的一大难点是同时存在时间上的湍流脉动和空间上的扰动即弥散。弥散是由于介质中数量巨大而形状又极不规则的微孔对流体流动产生强烈扰动而引起的一种输运现象。利用由圆柱形单元的周期性阵列作为多孔介质结构简化模型,对甲烷和空气在多孔介质中扩散过程进行了数值研究,利用微观流场的计算结果和体积平均方法求出了甲烷在多孔介质内的纵向质量和横向质量弥散系数,并与相关实验数据和理论公式进行了比较和分析。对总的质量扩散率的各分量,即分子扩散、湍流扩散、时均流弥散和湍流弥散的相对重要性做了评价,为深入研究多孔介质中的弥散效应和湍流扩散效应,提供了一种可借鉴的模拟方法。
As the 21st century,the resources and the environment have become an increasingly primary and prominent problem.Because of its high combustion efficiency and low pollution, the filtation combustion technique of the gas or liquid fuel in high porosity porous media has become an international research hotspot and has gained more and more practical applications. To understand the working mechanism of the porous media burner and of the porous media internal combustion engine,in this thesis,turbulent flow behavior and species transport processes in high porosity porous media are studied by numerical simulation.The main objective is to gain insights into the characteristics of turbulent flow and fuel-air mixture formation in porous media more systematically,and furthermore to promote theoretical research and practical applications in this field.
     In this thesis,the following aspects have been studied and explored.
     1.Three representative macroscopic turbulent model for the flow in porous media are introduced and comprehensively analyzed.The characteristics of turbulent flow in open channels with a porous bed are numerically studied by using two leading turbulent models. Numerical results were compared with the experimental data from thr literature and found that the calculated results from the P-dL macroscopic turbulent model were closer to the experimental data than those from the A-L model.
     2.To understand essential influences of turbulence on transport and combustion processes in porous media with high porosity,a two-dimensional pore network model for random porous media structure is presented,which consists of a number of cylindrical pores and parallelepiped connecting throats.A standard k-εmodel is employed to simulate the turbulence effect in the microscopic pore-level flow field.Computational results obtained from the pore-network model are transformed into information of the macro flow field through a volume average approach over the entire computation domain.The results are then used to deduce the value for the unknown coefficient in the macroscopic model.Comparisons with available data in the open literature seem to indicate good agreement.
     3.To understand the working mechanism of the porous medium(PM) internal combustion engine,effects of a porous medium heat regenerator inserted into a combustion chamber on the turbulent flow characteristics and fuel-air mixture formation are studied by numerical simulations.A simplified model for the random structure of the porous media is presented,to simulate turbulent flows in the porous media and spray/wall interactions,energy equation and spray model are modified.Effects of PM structure and porosity and spray injection and spray cone angle on the turbulent flow and fuel air mixture formation and homogenization process are studied with emphasis.
     Calculation results show great influences of PM structure and porosity on the turbulent flow in the porous media,as well as influence of the flow field inside the PM on the flows in the entire combustion chamber.The spray cone angle affets directly the level of turbulent kinetic energy in the clear fluid region and the spray/PM interaction process as well as the level of turbulent kinetic energy in PM.The variation in spray injection pressure can modify the velocity of fuel droplets.With increasing spray injection pressure,the velocity of fuel droplets to increases and the level of turbulent kinetic energy also increases accordingly, consequently,the fuel vapor becomes more homogeneous and distributed over a wider area.
     4.One of the main difficulties in the flow and combustion PM with high porosity is the co-existence of the turbulent fluctuation in time and the disturbance in space.The disturbance in space is namely dispersion.The dispersion is a transport phenomenon that is caused by the numerous and irregular pores in the medium.A simplified model for the cylindrical periodical structure of the PM is presented,the diffusion process of methane and air in the PM is studies numerically.The computational results obtained from the microscopic computation domain are employed to derive the longitudinal mass dispersion coefficient and transverse mass dispersion coefficient through a volume average approach.The results are analyzed and compared with the correlative experimental data and empirical formulas in the literature.The results are then used to deduce the value for the unknown coefficient in the macroscopic model.Comparisons with available data in the open literature show good agreement.This provides a useful approach for studying dispersion and turbulent diffusion effects in porous media.
引文
[1]解茂昭.一种新概念内燃机---基于多孔介质燃烧技术的超绝热发动机.热科学与技术.2003,2(3):189-194.
    [2]解茂昭.内燃机计算燃烧学(第二版).大连:大连理工大学出版社,2005.
    [3]Durst F,Weclas M.A new type of interal combustion engine based on the porous-medium combustion technique.Proc.IMeE Part D,2001,215:63-81.
    [4]Ingham D B,Pop I.Transport Phenomena in Porous Media.UK:Kidlington,2002,198-230.
    [5]杜礼明,解茂昭,邓洋波.惰性多孔介质中预混燃烧的研究进展.热能动力工程,2002,17(99):221-226.
    [6]解茂昭,杜礼明,孙文策.多孔介质中往复流动下超绝热燃烧技术的进展与前景.燃烧科学与技术,2002,8(6):520-524.
    [7]Kaplan M,Hall M J.The combustion of liquid fuels within a porous media radiant burner.Experimental Thermal and Fluid Science,1995,11(1):13-20.
    [8]李艳红,徐吉浣.多孔介质中预混式燃烧的研究概况.公用科技,1996,12(3):5-7.
    [9]Zhdanok S,Kennedy L A,Koester G.Superadiabatic combustion of methane air mixtures under filtration in a packed bed.Combustion and Flame,1995,100(1-2):221-231.
    [10]Hsu P F,Howell J R.Experimantal and numerical study of premixed combustion within nonhomogeneous porous media.Combustion Science and Technology,1993,90:149-172.
    [11]Martynenko V V,Echigo R,Yoshida H.Mathematical model of self-sustaining combustion in inert porous medium with phase change under complex heat transfer.Int.J.Heat Mass Transfer,1998,41:117-126.
    [12]Ruiz F.The Regenerative Internal Combustion Engine,part 1:Theory.Journal of Propulsion and Power,6(2):203-208.
    [13]Ruiz F.The Regenerative Internal Combustion Engine,part 2:Practical configurations.Journal of Propulsion and Power,1990,6(2):209-213.
    [14]Ruiz F.A First Look into the Regenerative Engine.SAE paper 890473.
    [15]Ruiz F,Sepka S.New Experiments and Computations on the Regenerative Engine.SAE Paper 930063.
    [16]Ferrenberg A J.The Single Cylinder Regenerated Internal Combustion Engine.SAE paper 900911.
    [17]Ferrenberg A J.Low heat regenerated engine:a superior alternative to turbocompounding,SAE paper 940946.
    [18]Ferrenberg A J.Progress in the development of the regenerated diesel engines,SAE paper 961677.
    [19]Hanamura K,Miyairi Y,Echigo R.Reciprocating heat engine with superadiabatic combustion in porous madia.8th Int.Symp.on Transport Phenomena in Combustion,San Francisco(1995).
    [20]Hanamura K,Bohda K,Miyairi Y.A Study of super-adiabatic combustion engine,Energy Covers,1997,38:1259-1266.
    [21]Bohda K,Miyairi Y,Echigo R.Heat engine with reciprocating super-adiabatic combustion in porous media.SAE paper 970201.
    [22]Durst F,Weclas M.Direct injection IC engine with combustion in a porous medium:a new concept for a near-zero emission engine.Int Congress on Engine Combustion Processes,HDT.Essen(1999).
    [23]Durst F,Weclas M.A New Concept of I.C.Engine with Homogeneous Combustion in a Porous Medium.COMODIA 2001,July 1~4,Nagoya.
    [24]Sepka S A,Ruiz F.Combustion Initiated by a Porous Ceramic Regenerator in a Reciprocating Engine Environment.AIAA Journal of Propulsion and Power,1997,13(2):213-217.
    [25]Sepka S A.A Quantitative Study of the Modified Regenerative Engine.Ph.D.dissertation,Illinois Institute of Technology,Chicago,Illinois,1997.
    [26]Park C W,Kaviany M.Evaporation-Combustion affected by in-cylinder,reciprocating porous regenerator.J.Heat Transfer,2002,124:184-194.
    [27]Macek J.Compression or heat regenaration in the cycle of reciprocating engine-new results of old methods.29th Conf.of ICE,University of Prag,2000.
    [28]Hoerler H.Internal combustion engine with a porous combustion chamber.MTZ worldwide,2003 64:12-14.
    [29]Bear J,Corapcioglu V.In Fundamentals of Transport Phenomena in Porous Media.Martinus Nijhoff:The Netherlands,1984,199-254.
    [30]Antohe B V,Lage J L.A general two-equation macroscopic turbulence model for incompressible flow in porous media.International Journal of Heat and Mass Transfer,1997,40:3013-3024.
    [31]Lage J L.The Fundamental Theory of Flow Through Permeable Media:From Darcy to Turbulence.Transport Phenomena in Porous Media,D.B.Ingham and I.Pop,eds.,Elsevier Science,Oxford,1998,1-30.
    [32]Lage J L,Antohe B V.Darcy's experiments and the Deviation to nonlinear flow regime.ASME Journal of Fluids Engineering,2000,122:619-625.
    [33]Lage J L,Nield D A.New Theory for Forced Convection Through Porous Media by Fluids With Temperature-Dependent Viscosity.ASME.Journal of Heat Transfer,2001,123:1045-1051.
    [34]Lage J L,Krueger P S.Narasimhan A.Protocol for measuring permeability and form coefficient of porous media.PHYSICS OF FLUIDS,2005,17:088101.
    [35]Masuoka T,Takatsu Y.Turbulence Model for Flow Through Porous Media.International Journal of Heat and Mass Transfer,1996,39:2803-2809.
    [36]Ahmed N,Sunada D K.Nonlinear flow in porous media.ASCE Journal of the Hydraulics Division 95,HY6,1969,1847-1857.
    [37]Gratton L,Travkin V S,Catton I.Numerical Solution of Turbulent Heat and mMass Transfer in a Stratified Geostatistical Porous Layer for High Permeability Media,ASME Proceedings HTD 41,1994,1-14.
    [38]Travkin V S,Catton I.A Two-Temperature Model for Turbulent Flow and Heat Transfer in a Porous Layer.ASME Journal of Fluids Engineering,1995,117,181-188.
    [39]Lee K,Howell J R.Forced convective and radiative transfer within a highly porous layer exposed to a turbulent external flow field,Proceedings of 2nd ASME/JSME Thermal Engineering Joint Conference,1987,2:377-386.
    [40]Edward C C,Candidate MAS.Lien Fue-Sang et al.Numerical study of forced flow in a back-step channel through porous layer.34th ASME National Heat Transfer Conference Pittsburgh,Pennsylvania,20th-22nd August,2000.
    [41]Edward C C,Lien Fue-Sang.Permeability Effects of Turbulent Flow Through a Porous Insert in a Backward-Facing-Step Channel.Transport in Porous Media,2005,59:47-71.
    [42]Getachew D,Minkowycz W J,Lage J L.A modified form of the k-e model for turbulent flows of an incompressible fluid in porous media.International Journal of Heat and Mass Transfer,2000,43:2909-2915.
    [43]Nakayama A,Kuwahara F.A Macroscopic Turbulence Model for Flow in a Porous Medium.ASME Journal of Fluids Engineering,1999,121:427-433.
    [44]Kuwahara F,Yamane T,Nakayama A,Large eddy simulation of turbulent flow in porous media.International Communications in Heat and Mass Transfer,2006,33:411-418.
    [45]Pedras M H J,de Lemos M J S.On the definition of turbulent kinetic energy for flow in porous media,International Communications in Heat and Mass Transfer,2000,27 (2):211-220.
    [46]Pedras M H J,de Lemos M J S.Simulation of turbulent flow in porous media using a spatially periodic array and a low-Re two-equation closure.Numerical Heat Transfer-Part A:Applications.2001,39(1):35-59.
    [47]Pedras M H J,de Lemos M J S.On the mathematical description and simulation of turbulent flow in a porous medium formed by an array of elliptic rods.ASME Journal of Fluids Engineering,2001,123(4):941-947.
    [48]Pedras M H J,de Lemos M J S.Macroscopic turbulence modeling for incompressible flow through undeformable porous media.International Journal of Heat and Mass Transfer,2001,44:1081-1093.
    [49]Pedras M H J,de Lemos M J S.Computation of turbulent flow in porous media using a low Reynolds k-e model and a infinite array o transversally-displaced elliptic rods.Numerical Heat Transfer-Part A:Applications.2003,43(6):585-602.
    [50]de Lemos M J S,Tofaneli L A.Modeling of double-diffusive turbulent natural convection in porous media.International Journal of Heat and Mass Transfer,2004,47:4233-4241.
    [51]de Lemos M J S,Mesquita M S.Turbulent mass transport in saturated rigid porous media.International Communications in Heat and Mass Transfer,2003,30(1):105-113.
    [52]de Lemos M J S.Turbulent kinetic energy distribution across the interface between a porous medium and a clear region.International Communications in Heat and Mass Transfer,2005,32:107-115.
    [53]Braga E J,de Lemos M J S.Turbulent heat transfer in an enclosure with a horizontal porous plate in the middle.Journal of Heat Transfer,2006,128(11):1122-1129.
    [54]Braga E J,de Lemos M J S.Simulation of turbulent natural convection in a porous cylindrical annulus using a macroscopic two-equation model.International Journal of Heat and Mass Transfer,2006,49(23-24):4340-4351.
    [55]Fand R M,Kim B Y K,Lam A C C et al.Resistance to the Flow of Fluids through Simple and Complex Porous Media whose Matrices are Composed of Randomly Packed Spheres.ASME Journal of Fluids Engineering,1987,109:268-274.
    [56]Kececioglu I,Jiang Y.Flow through Porous Media of Packed Spheres Saturated with Water.ASME Journal of Fluids Engineering,1994,116:164-170.
    [57]Lage J L,Antohe B V,Nield D A.Two Types of Nonlinear Pressure-Drop versus Flow-Rate Relation Observed for Saturated Porous Media.ASME Journal of Fluids Engineering,1997,119:700-706.
    [58]Seguin D,Montillet A,Comiti J.Experimental characterization of flow regimes in various porous media:Ⅰ—Limit of laminar flow regime.Chemical Engineering Science,1998,53:3751-3761.
    [59]Seguin D,Montillet A,Comiti J,Huet F.Experimental characterization of flow regimes in various porous media:Ⅱ—Transition to turbulent regime.Chemical Engineering Science,1998,53,3897-3909.
    [60]Prakash M,Mahoney J,Yuguo L.Impinging round jet studies in a cylindrical enclosure with and without a porous layer:Part Ⅰ-Flow visualizations and simulations CSIRO DBCE,Research Report,2000,Australia
    [61]Prakash M,Mahoney J,Yuguo L.Impinging round jet studies in a cylindrical enclosure with and without a porous layer:Part Ⅱ—LDV measurements and CFD simulations.CSIRO DBCE,Research Report,2000,Australia.
    [62]Graminho D R,de Lemos M J S.Simulation of turbulent impinging jet into a cylindrical chamber with and without a porous layer at the bottom.International Journal of Heat and Mass Transfer,2009,52:680-693.
    [63]Prinos P,Sofialidis D,Keramaris E.Turbulent flow over and within a porous bed.Journal of Hydraulic Engineering,2003,129(9):720-733.
    [64]Nakajo S,Shigematsu T,Takehara K.Spatial Characteristics of Turbulent Flow through Porous Media.2nd International Symposium on Advanced Fluid/Solid Science and Technology in Experimental Mechanics,23-25 Sept.2007,Osaka,Japan.
    [65]Kakac S,Killkis B,Kulacki F A et al.Convective Heat and Mass Transfer in Porous Media,Dordchet:Kluwer Academic,1991,625~653.
    [66]Koch D L,Brady F J.Dispersion in fixed beds.The Journal of Fluid Mechanics,1985,154:339~427.
    [67]Cheng P,Hsu C T.Application of Van Driest' s mixing length theory to transverse thermal dispersion in a packed bed with bounding walls.International Communications in Heat and Mass Transfer,1986,13:613~625.
    [68]Hunt M L,Tien C L.Effects of thermal dispersion on forced convection in fibrous media.International Journal of Heat and Mass Transfer,1988,31:301~309.
    [69]Coulaud O,Morel P,Caltagirone J P.Numerical Modeling of Nonlinear Effects in Laminar Flow Through a Porous Medium.The Journal of Fluid Mechanics,1988,190:393-407.
    [70]Arquis E,Caltagirone J P,le Breton P.D(?)termination des propri(?)t(?)s de dispersion d' un milieu p(?)riodique(?) partir de l' analyse locale des transferts.C.R.Acad.Sci.Pads,1991,3(13):1087 - 1092.
    [71]Chou F C,Su J H,Lien S S.A Reevaluation ofnon-Darcian Forced Convection in Cylindrical Packed Tubes.In Fundamentals of Heat Transfer in Porous Media,HTD,1992,193:57-66.
    [72]Jiang P X,Wang B X,Ren Z P et al.Fluid flow and convective heat transfer in a vertical porous annulus.Numerical Heat Transfer A,1996,18:305-312.
    [73]姜培学,王补宣,罗棣庵等.单向流体流过饱和多孔介质的流动与换热.工程热物理学报,1996,17:90-94.
    [74]司广树,姜培学,李勐。单相流体在多孔介质中的流动和换热研究.承德石油高等专科学校学报,2000,2(4):4-9.
    [75]姜培学,司广树,任泽需.粘性耗散及变物性对多孔介质中对流换热的影响研究.工程热物理学报,2000,21(5):590-594.
    [76]Kuwahara F,Nakayama A,Koyama H.Numerical Modeling of Heat and Fluid Flow in a Porous Medium.International Conference on Computational Heat and Mass Transfer Conference,1994,5:309-314.
    [77]Nakayama A,Kuwahara F,Kawamura Y et al.Three-Dimensional Numerical Simulation of Flow Through a Microscopic Porous Structure.Proc ASME/JSME Thermal Engineering Conf,1995,3:313-318.
    [78]Kuwahara F,Nakayama A,Koyama H.A numerical study of thermal dispersion in porous media.ASME Journal of Heat Transfer,1996,118:765-761.
    [79]Yagi S,Kunii D,Wakao N.Studies on Axial Effective Thermal Conductivities in Packed Beds.AICHE J,1960,6:543-546.
    [80]Fried J J,Combarnous M A.Dispersion in Porous Media.Advances in Hydrol,Science,1971,7:169-282.
    [81]Han N W,Bhakta J,Carbonell R G.Longitudinal and Lateral Dispersion in Packed Beds:Effect of Column Lengh and Particle Size Distribution.AICHE J,1985,31:277-288.
    [82]Kuwahara F,Nakayama A,Numerical Determination of Thermal Dispersion Coefficients Using a Periodic Structure.ASME Journal of Heat Transfer,1999,121:160-163.
    [83]Saito M B,de Lemos M J S.Interfacial heat transfer coefficient for nonequilibrium convective transport in porous media.International Communications in Heat and Mass Transfer,2005,32(5):667- 677.
    [84]Saito M B,de Lemos M J S.A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods.ASME Journal of Heat Transfer,2006,128(5):444-452.
    [85]Pedras M H J,de Lemos M J S.Thermal dispersion in porous media as a function of the solid - fluid conductivity ratio.International Journal of Heat and Mass Transfer,2008,51:5359-5367.
    [86]Bear J.多孔介质中流体动力学.李竟生,陈崇希译.北京:中国建筑工业出版社,1983.
    [87]Harleman D R E,Mehlhom P F,Rumer R R,Dispersion-permeability correlation in porous media,J.Hydraul.Div.Amer.Soc.Civil Eng.No.HY2,1963,89:67-85.
    [88]Whitaker S.The equations of motion in porous media.Chemical Engineering Science,1996,21:291-300.
    [89]Coelho M A N,de Carvalho J R F G.Transverse Dispersion in Granular Beds:I.Mass Transfer from a Wall and the Dispersion Coefficient in Packed Beds.Chemical Engineering Research and Design,1988,66:165-177.
    [90]Coelho M A N,de Carvalho J R F G.Transverse Dispersion in Granular Beds:Ⅱ.Mass Transfer from Large Spheres Immersed in Fixed or Fluidised Beds of Small Inert Parti-cles.Chemical Engineering Research and Design,1988,66:178-189.
    [91]Johnson G W,Kapner R S.The Dependence of Axial Dispersion on Nonuniform Flows in Beds of Uniform Packing.Chemical Engineering Science,1990,45:3329-3339.
    [92]Guedes de Carvalho J R F,Delgado J M P Q.Mass transfer from a large sphere buried in a packed bed along which liquid flows.Chemical Engineering Science,1999,50,1121-1130.
    [93]Guedes de Carvalho J R F,Delgado J M P Q.Lateral dispersion in liquid flow through Packed Beds at Pem <1400.AIChE Journal,2000,46(5):1089-1095.
    [94]Guedes de Carvalho J R F,Delgado J M P Q.Measurement of the Coefficient of Transverse Dispersion in Packed Beds over a Range of Values of Schmidt Number(50-1000).Transport in Porous Media,2001,44:165-180.
    [95]Guedes de Carvalho J R F,Delgado J M P Q.The effect of fluid properties on dispersion in flow through packed beds.A1ChE Journal,2003,49:1980-1985.
    [96]Guedes de Carvalho J R F,Delgado J M P Q.Overall Map and Correlation of Dispersion Data for Flow Through Granular Packed Beds.Chemical Engineering Science,2005,60:365 - 375.
    [97]Delgado J M P Q.Longitudinal and Transverse Dispersion in Porous Media.AIChE Journal,2007,85:1245-1252.
    [98]YUKIE TANINO AND HEIDI M.NEPF.Lateral Dispersion in Random Cylinder Arrays at High Reynolds Number.The Journal of Fluid Mechanics,2008,600:339-371.
    [99]Andrade J J S,Street D A,Shinohara T.Percolation disorder in viscous and nonviscous flow through porous media.Physical Reveiw E,1995,51(6):5725-5731.
    [100]Andrade J J S,Almeida M P,Filho J M.Fluid Flow through Porous Media The Role of Stagnant Zones.1997,79(20):3901-3904.
    [101]Andrade J J S,Costa U M S,Almeida M P.Inertial Effects on Fluid Flow through Disordered Porous Media.Physical Review Letters,1999,82(26):5249-5252.
    [102]Costa U M S,Andrade J J S,Makse H Aet al.The Role of Inertia on Fluid Flow through Disordered Porous Media.Physica A - Statistical and Theoretical Physics,1999,266(1-4):420-424.
    [103]Macedo H H,Costa U M S,Almeida M P.Turbulent Effects on Fluid Flow through Disordered Porous Media.Physica A - Statistical and Theoretical Physics,2001,299(3-4):371-377.
    [104]陈琪,刘石.泡沫陶瓷内火焰分布的ECT可视化研究.工程热物理学报,2008,29(11):1973-1976.
    [105]赵治国.燃油喷雾与多孔介质的相互作用及其在内燃机中应用的数值模拟研究:[博士论文].大连:大连理工大学,2007.
    [106]Blunt M J,Jackson M D,Piri M,Valvatne P H.Detailed Physics Predictive Capabilities and Macroscopic Consequences For Pore-network Models of Multiphase Flow.Advance in Water Resources,2002,25(1):1069-1089.
    [107]Joshi M.A class of stochastic models for porous media.PhD thesis,Lawrence Kansas:University of Kansas,1974.
    [108]Quiblier J A.A new three-dimensional modeling technique for studying porous media.Journal of Colloid and Interface Science,1984,98(1):84-102.
    [109]Adler P M,Jacquin C G,Quiblier J A.Flow in simulated porous media.International Journal of Multiphase Flow,1990,16(3):691-712.
    [110]Ioannidis M A,Kwiecien M J,Chatzis I.Computer generation and application of 3-d model porous media:from pore-level geostatistics to the estimation of formation factor.SPE,1995,30201.
    [111]Hazlett R D.Statistical characterization and stochastic modeling of pore networks in relation to fluid flow.Methematical Geolgy,1997,29(4):801-822.
    [112]Hidajat I,Rastogi A,Singh M,et al.Transport properties of porous media thin sections.SPE,2002,69623.
    [113]黄丰.多孔介质模型的三维重构研究:[博士论文].合肥:中国科学技术大学,2007.
    [114]Fatt I.The Network Model of Porous Media I:Capillary Pressure Characteristics.Trans AIME,1956,207:144-159.
    [115]Broadbent S R,Hammersly J M.Percolation Process,Crystals and Mazes,Proc.Camb.Phil.Soc.,53,629-641,1957.
    [116]Dullien F A L.现代渗流物理学.范玉平,赵东伟等译.北京:石油工业出版社,2001,109-131.
    [117]王金勋.应用孔隙水平网络模型研究两相渗流规律:[博士论文].北京:中国石油勘探开发研究院,2001,1-49.
    [118]Torelli L,Scheidegger A E.Three-dimensional branching type models of flow through porous media.Journal of Hydrology,15(1):23-25.
    [119]Lenormand R,Zarcone C,Sarr A.Mechanisms of the Displacement of one Fluid by Another in a Network of Capillary Ducts.Journal of Fluid MechaniCs,1983,337-353.
    [120]Oak M J.Three-phase Relative Permeability of Water-wet Berea.In:Proceedings of the SPE/DOE Seventh Symposium on Enhanced Oil Recovery,SPE20183,Tulsa,1990,109-120.
    [121]Blunt M J,King P.Macroscopic Parameters from Simulations of Pore Scale Flow.Physical Review A,1990,42(8):4780-4787.
    [123]Blunt M J,King P.Relative Permeability from two- and three-dimensional Pore-scale Modeling.Transport in Porous Media,1991,6(8):407-433.
    [124]Blunt M J.Flow in Porous Media Pore-network Models and Multiphase Flow.Current Opinion in Colloid and Interface Science,2001,6:197-207.
    [125]Oren P E,Bakke S,Arntzen 0 J.Extending Predictive Capabilities to Network Models.SPE,38880,1996.
    [126]Oren P E,Antonsen F,Rueslatten H G,Bakke S.Numerical Simulations of nmr Responses for Improved Interpretations of nmr Measurements in Reservoir Rocks.SPE,77398,2002.
    [127]Oren P E,Bakke S,Process Based Reconstruction of Sandstones and Predictions of Transport Properties.Transport in Porous Media,2002,46(2):311-343.
    [128]Oren P E,Bakke S,Reconstruction of Berea Sandstone and Pore-scale Modeling of Wettability Effects.Journal of Petroleum Science and Engineering,2003,39(2):177-199.
    [129]Mazaheri A R,Zerai B,Ahmadi Get al.Computer Simulation of Flow Through a Lattice Flow-cell Model.Advances in Water Resources,2005 28:1267 - 1279.
    [130]Zerai B,Saylor B Z,Kadambi J R et al.Flow Characterization Through a Network Cell Using Particle Image Velocimetry.Transport in Porous Media,2005,60(2):159 - 181.
    [131]王金勋,刘庆杰,杨普华.应用Bethe网络研究孔隙结构对两相相对渗透率的影响.重庆大学学报(自然科学版),2000,23:130-132.
    [132]王金勋,吴晓东,杨普华等.孔隙网络模型法计算气液体系吸吮过程相对渗透率.天然气工业,2003,23(2):8-11.
    [133]王金勋,吴晓东,潘新伟.孔隙网络模型法计算水相滞留对气体渗流的影响.石油勘探与开发,2003,5:113-115.
    [134]胡雪涛,李允.随即网络模拟研究微观剩余油分布.石油学报,2000,2l(4):46-51.
    [135]张宁生.颗粒与油珠造成底层损害的实验与网络模拟研究.石油勘探与开发,1996,23(1):48-51.
    [136]Whitaker S.The Method of Volume Averaging.Kluwer,Dordrecht,1999.
    [137]Kuwahara F,Kameyama Y,Nakayama A.Numerical Modeling of Turbulent Flow in Porous Media Using a Spatially Periodic Array.Journal of Porous Media.1998,1:47-55.
    [138]Vafal K,Tien C L.Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media.International Journal of Heat and Mass Transfer,1981,24:195-203.
    [139]de Lemos M J S,Pedras M H J.Recent Mathematical Models for Turbulent Flow in Saturated Rigid Porous Media.ASME Journal of Fluids Engineering,2001,123:935-940.
    [140]Ochoa-Tapia J A,Whitaker S.Momentum transfer at the boundary between a porous medium and a homogeneous fluid I:theoretical development.International Journal of Heat and Mass Transfer,1995a,38:2635 - 2646.
    [141]Ochoa-Tapia J A,Whitaker S.Momentum transfer at the boundary between a porous medium and a homogeneous fluid Ⅱ:comparison with experiment.International Journal of Heat and Mass Transfer,1995b,38:2647-2655.
    [142]Chan H C,Huang W C,Leu J M et al.Macroscopic modeling of turbulent flow over a porous medium.International Journal of Heat and Fluid Flow,2007,28:1157 - 1166.
    [143]Fenwick D H,Blunt M J.Network modeling of three phase flow in porous media.SPE Journal,1998,86-97.
    [144]Pan C,Hilpert M,Miller C T.Pore-scale modeling of saturated permeabilities in random sphere packings.Physical Reveiw E,2001,64:066702.
    [145]Xiaoming Chen,Papathanasiou T D.On the variability of the Kozeny constant for saturated flow across unidirectional disordered fiber arrays.Composites:Part A,2006,37:836-846.
    [146]Reyes L I,Ricardo P V,Gustavo G.Power law for the permeability in a two-dimensional disordered porous medium.Physica A,1999,274:391-399.
    [147]Jang C,Bae C.Characterization of Prototype High-Pressure Swirl Injector Nozzles,Part Ⅰ:Prototype Development and Initial Characterization of Sprays.Atomization and Sprays:Journal of the International Institutions for Liquid Atomization and Spray Systems,2000,10(2):159-178.
    [148]Jang C,Bae C,Choi S.Characterization of Prototype High-Pressure Swirl Injector Nozzles,Part Ⅰi:Cfd Evaluation of Internal Flow.Characterization of Prototype High-Pressure Swirl Injector Nozzles,Part Ⅰ:Prototype Development and Initial Characterization of Sprays.Atomization and Sprays:Journal of the International Institutions for Liquid Atomization and Spray Systems,2000,(2):179-197.
    [149]Shi Q-H,Ye S-C,Zhang D-P et al.Spray Characteristics of Swirl Pressure Nozzle.Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities,2005,19(6):851-854.
    [150]Wang X F,Lefebvre A H.Atomization Performance of Pressure-Swirl Nozzles.AIAA,New York,NY,USA 1986.
    [151]Senecal P K,Schmidt D P,Nouar I et al.Modeling High-Speed Viscous Liquid Sheet Atomization.International Journal of Multiphase Flow,1999,25(6-7):1073-1097.
    [152]Schmidt D P,Nouar I,Senecal P K et al.Pressure Swirl Atomization in the near Fiel.SAE Trans J.Engines,1999,108(3):471-484.
    [153]Han Z Y,Parish S,Farrell P V et al.Modeling Atomization Processes of Pressure-Swirl Hollow-Cone Fuel Sprays.1997,7(6):663-684.
    [154]Dombrowski N,Hooper P C.The Effect of Ambient Density on Drop Formation in Sprays.Chemistry Engineering Science,1962,17:291-305.
    [155]Naber J D,REITZ R D.Modeling Engine Spray/Wall Impingment.SAE paper 880107.
    [156]Senda J,Kobayashi M,Iwashita S.Modeling of Diesel Spray Impingement on a Flat Wall.SAE paper 941894.
    [157]Deb S,Yao S C.Heat Transfer Analysis of Impacting Dilute Spray on Surface Beyond the Leidenfost Temperature.87,1987.
    [158]Koponen K,Kataja M,Timonen J.Tortuous Flow in Porous Media.Physical Review E,1996,54(1):406-410.
    [159]Koponen K,Kataja M,Timonen J.Permeability and effective porosity of porous media PHYSICAL REVIEW E,1997,56(3):3319-3325.
    [160]Hlushkou D,Tallarek U.Transition From Creeping via Viscous-inertial to Turbulent Flow in Fixed Beds.Journal of Chromatography A,2006,1126:70-85.
    [161]Amaral S H P,Christian M.Dispersion in two-dimensional periodic porous media.Part Ⅰ.Hydrodynamics.Phys Fluids,1997,9 (8):2243-2252.
    [162]Amaral S H P,Christian M.Dispersion in two-dimensional periodic porous media.Part Ⅱ.Dispersion tensor.Phys Fluids,1997,9 (8):2253-2263.
    [163]Didierjean S,Amaral S H P,Delannay R.Dispersion in periodic porous media.Experience versus theory for two-dimensional systems.Chemical Engineering Science,1997,52(12):1861-1874.
    [164]Al-Dousari M M,Garrouch A A,Guedouar L H.Analysis of the convective dispersive transport in porous media.Journal of Petroleum Science and Engineering,2009.
    [165]Asa Olsson,Grathwohl P.Transverse dispersion of non-reactive tracers in porous media:A new nonlinear relationship to predict dispersion coefficients.Journal of Contaminant Hydrology,2007,92:149-161.
    [166]Suzuki M.Smith J M.Axial dispersion in beds of small particles.Chemical Engineering Science,1972,3:256-264.
    [167]Edwards M F,Richardson J F.Gas dispersion in packed beds.Chemical Engineering Science,1968,23:109-123.
    [168]Sinclair R J,Potter O E.The dispersion of gas in flow through a bed of packed solids.Transactions of the American Institute of Chemical Engineers,1965,43:T3-T9.
    [169]de Lemos M J S.Fundamentals of the double-decomposition concept for turbulent transport in permeable media.Materialwissenschaft und Werkstofftechnik,2005,36 (10):586-593.
    [170]Wilhelm R H.Progress towards the a priori design of chemical reactors.Pure and Applied Chemistry 1962,5:403-421.
    [171]Gunn D J.Theory of axial and radial dispersion in packed beds,Transactions of the American Institute of Chemical Engineers,1969,47:T351-T359.
    [172]Gunn D J,Pryce C.Dispersion in packed beds.Transactions of the American Institute of Chemical Engineers,1969,47:T341-T350.