聚合物驱后油藏高效驱油菌种的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用聚合物驱油的油田,当采收率无法进一步提高时,其油藏中不仅有近一半的剩余油,而且还有部分聚合物被吸附和滞留在岩石孔隙中。这不但降低了油藏渗透率,而且限制了后续驱油剂的作用效果,使剩余油很难开采。学术界和油田生产部门普遍认为,解决聚驱后油藏的开采问题具有很高的学术价值和现实意义。本文正是针对这个问题,开发出一种微生物驱油方法,为延长聚驱后油田的生产周期提供一个新的选择方案。
     本文筛选到4株聚合物降解菌种:JHW-1、JHW-3、JJF、JJH,它们分别属于芽孢杆菌属、梭状芽孢杆菌属、假单胞杆菌属、芽孢杆菌属。在45℃,pH6.0~8.0条件下,在以聚合物为唯一营养源时,4株降解菌可将聚合物粘度减小37%~52%(JHW-3降粘能力最强),由4株降解菌组成的复合菌降粘率为61%左右。聚合物培养基中加入蔗糖后(最终浓度为2g/L),4株聚合物降解菌的降粘率增至56%~92%,复合菌种的降粘率达到97%左右。
     4株降解菌都能产生水解酶水解聚合物,JHW-1、JHW-3和JJF能产生一种或几种降解辅助蛋白组分,它们同水解酶共同作用于聚合物时可将聚合物降解。如果以聚合物和葡萄糖或蔗糖物质为营养源,JHW-1和JHW-3还能产生新的辅助蛋白组分进一步提高降解性能。JHW-1、JHW-3和JJH产生的非蛋白产物具有还原性,它们能促发自由基氧化还原反应,进而导致聚合物碳链断裂,但它们不能水解聚合物。聚合物被微生物降解后,酰胺基团被大量水解,产生羧酸以及羧酸根基团,该过程可能是导致聚合物主链断裂的一个因素。葡萄糖或蔗糖存在时,菌种水解性能会显著地提高。
     本文对能以原油为营养源,并代谢表面活性剂的驱油菌种—T11进行了功能测定。在最适条件下,如果在原油培养剂中添加蔗糖和硝酸铵,则T11可使原油粘度可由64mPa·s降至34mPa·s左右。岩心中注入T11菌液45℃培养7d后,采收率可比单纯水驱提高10%~11%。T11代谢产生的生物表面活性剂为鼠李糖脂类物质,最大产量为1080 mg/L,表面活性剂样品的临界胶束浓度为39.3mg/L。
     T11可与JHW-3通过原生质体融合技术进行融合,获得的融合子本文命名为CZ-7,其生长条件同其亲本没有明显差别。45℃,pH7.0条件下,在聚合物原油培养基中添加1.0mg/mL蔗糖时,接种CZ-7培养7d,可使聚合物分子量从18×106降至0.6×106。溶液表面张力由57.7mN/m降至28.6mN/m;原油粘度由55.2mPa·s降至30.3mPa·s。重组菌的活性整体上要超过两亲本菌株组成的复合体系。
     重组菌CZ-7同JHW-1、JJF、JJH、T11复配,组成复合菌后,其降解聚合物、产表活剂、降低原油粘度的能力都较不含CZ-7时有明显提高,本文将该复合菌命名为ZH-3。CZ-7在外来营养成分不足时能进一步降低聚合物的分子量,并产生表活剂,促进复合菌中其他菌株的生长,进而提高了ZH-3的性能。
     本文研究表明:岩芯长时间注入聚合物后,注入ZH-3菌液培养,可使渗透率得到部分恢复。注入0.4PV、蔗糖浓度为1.0g/L的ZH-3培养液段塞,45℃培养7d,可使采收率较聚驱后继续提高6.5%,使原油粘度由64.7 mPa·s降至42.6 mPa·s。研究结果还表明,CZ-7的存在可使ZH-3岩心实验结果更加稳定。在非均质岩层中,ZH-3菌能更多地采出低渗透地层中的残余油;当渗透率级差增大时,采收率提高幅度相对较小。
     文中还针对大庆萨北过渡带重质原油,研究了微生物驱油的可行性,结果表明该区块重质原油油藏适宜应用微生物采油。地层水中所含的营养物质少,须选用无机盐含量和种类较多的污水配制注入菌液,现场接种的活菌量应大于106个/mL。
When recovery could not be improved in oil field where polymer was used, much oil remained in reservoir, and some polymer was adsorbed and left in rock pore. The left polymer would depress permeability of reservoir, moreover it could confine the impact of post displacement agent. The polymer used at chinese oilfield almost is polyacrylamide (PAM), which was not degraded hard and its viscosity was great in reservoir. It was figured in academe that microbe is able to degrade remaining polymer in reservoir. Therefore, it should be significative for stable production of oilfield, that new strain able to degrade remaining polymer and flood is screened, cultivated and constructed, and was applied at oilfield after polymer flooding afterward.
     Four strain of bacteria degrading polymer were screened: JHW-1,JHW-3,JJF and JJH, which belongs to bacillus spp, clostridium spp, Pseudomonas spp and bacillus spp respectively. Under the condition of 45℃,pH6.0~8.0, 4 degrading bacteria could decrease viscosity of polymer 37%~52%, and compound bacterium composed of 4 degrading bacteria could reduce viscosity of polymer about 61%, when polymer became exclusive nutrient source. After sucrose was added to polymer culture medium, 4 degrading bacteria could lessen polymer viscosity 56%~92%, and the compound bacterium debase polymer viscosity 97% around.
     All 4 degrading strains can produce hydrolase to hydrolyze polymer, and JHW-1、JHW-3 and JJF are able to secret one or a few kind of aiding degrading protein components, which are capable to degrade polymer with hydrolase. JHW-1and JHW-3 would release new aiding degrading protein components to improve degradation performance more, while polymer and glucose or sucrose act as nutrient source. The nonprotein product from JHW-1、JHW-3 and JJH is reducing and capable to promote free radical redox reaction that would make polymer carbon chain rupture, but the product could not hydrolyze polymer. Amide group of polymer degraded could be hydrolyzed much to carboxylic acid and carboxylic ion, which could be a factor leading polymer carbon chain rupture. Hydrolyzing capability of strains would rise evidently,when glucose or sucrose exist in culture medium.
     A strain of MEOR bacterium, T11, which was capable to release surfactant and looked upon crude oil as nutrition, was determined in this paper. T11 could lower viscosity of crude oil from 64 mPa·s to 34 mPa·s, when sucrose and NH4NO3 contain in crude oil culture medium, under the optimum conditions. When T11 was infused to core and cultured for 7d, recovery would arise 10%~11% than that water flooding. Biosurfactants produced by T11 is detected as rhamnolipid, whose the most yield reaches 1080 mg/L and critical micelle concentration is 39.3mg/L.
     Fusant, CZ-7, was gained through protoplast fusion between JHW-3 and T11, and its growth condition had no evident distinction compare with the parents. CZ-7 had been cultivated in polymer crude oil culture medium containing 1.0mg/mL sucrose for 7 d, so polymer molecular weight would drop from 18×106 to 0.6×106, and surface tension of culture medium would fall 57.7mN/m to 28.6mN/m, moreover crude oil viscosity would decrease to 30.3mPa·s from 55.2mPa·s, under the condition 45℃,pH7.0. The capability of CZ-7 excesses that of the compoud system containing two parents on the whole.
     The compound bacteria that CZ-7 had been remixed with JHW-1、JJF、JJH、T11 was named with ZH-3, which had higher capability of degrading polymer, producing surfactant, reducing crude oil viscosity than that had no CZ-7. CZ-7 could degrade polymer and produce surfactant even no adeguate nutrition component, and promote other strains growing, which enhanced the capability of ZH-3.
     ZH-3 was injected into core and cultured, which would resume core permeability partly, after polymer flooding a long time. Recovery would improve 6.5% compare with polymer flooding, and crude oil viscosity would turn 42.6 mPa·s from 64.7 mPa·s, after ZH-3 culture medium slug that 0.4PV with 1.0g/L sucrose was infused into core and had cultivated for 7d. In heterogeneous strata, ZH-3 would displace more remaining oil in Low Permeability Formation; recovery increased range would turn lower, when permeability ratio augmented.
     Crude oil belong to heavy crude in Daqing Sabei transitional zone, where MEOR could be implemented. Nutrition substance was little in stratum water, so injeced bacterial liquid should be confected with sewage having much inorganic salt, and living cell concentration should be higher than 106 /mL in field test.
引文
[1]王志武,等.三次采油技术及矿场应用[M].上海:上海交通大学出版社,1995:1-3
    [2]郭万奎,等.大庆油田首次聚合物驱油工业矿场试验设计与实施[M].北京:石油工业出版社,2001:15-25
    [3]郭万奎.大庆油田三次采油技术研究现状及发展方向[J].大庆石油地质与开发, 2002, 21(3): 1-6
    [4]Ibrahim M. Banat, Ravinder S. Makkar. Potential commercial application of microbial biosurfactant [J]. Appl Microbial Biotchnol, 2000, 53(5): 495-508
    [5]赵永胜,魏国章,陆会民,等.聚合物驱能否提高驱油效率的几点认识[J].石油学报, 2001, 22(3): 43-47
    [6]王新海,韩大匡.聚合物驱油机理的应用[J].石油学报,1994,15 (1):83-91
    [7]邬侠,孙尚如,胡勇,等.聚合物驱后剩余油分布物理模拟实验研究[J].大庆石油地质与开发, 2003, 22(5): 55-58
    [8]张磊,胡云亭,王文升,等.聚合物后续水驱阶段剩余油挖潜技术[J].矿物岩石, 2003, 23(4): 101-104
    [9]丁美爱,张贤松.聚合物驱中的油层保护研究.油气采收率技术, 1996, 3(2): 67-71
    [10]Hjonathan F, Jean C. Development of a Novel Waterflood Conformance Control System. SPE89391, 2004: 342-347
    [11]吴文祥,刘洋.聚合物驱后岩心孔隙结构变化特性研究.油田化学[J], 2003, 19(3): 253-256
    [12]刘瑜莉;吴保先;王国兴.聚合物驱油井堵塞原因及改造技术探讨[J].河南石油, 2003,27(1):57-58
    [13]Pavone Dldler. Observation and Correlation for immiscible viscous– fingering experiments. SPE19670, 1992: 187-197
    [14]李爱芬;郭海滨;陈辉.聚驱后阳离子聚合物HCP提高采收率机理研究,油田化学,2006, 15(3):256-260
    [15]肖建洪;姜娜;马辉.聚合物驱后凝胶复合体系调驱技术及应用.油气地质与采收率, 2006,27(5):78-82
    [16]戴彩丽;赵福麟;肖建洪.聚合物驱后地层残留聚合物再利用技术研究.西安石油大学学报(自然科学版), 2006,15(6):56-61
    [17]赵福麟;王业飞;戴彩丽.聚合物驱后提高采收率技术研究.石油大学学报(自然科学版), 2006,18(1):86-90
    [18]赵冬梅;李爱芬;衣艳静.聚合物驱后阳离子聚合物堵水技术.油气地质与采收率, 2006,29(4):88-91
    [19]王业飞;熊伟;焦翠.聚合物驱后地层残留聚合物絮凝再利用技术研究.大庆石油地质与开发, 2006,30(3):79-82
    [20]王其伟;宋新旺;周国华.聚合物驱后泡沫驱提高采收率技术试验研究.江汉石油学院学报, 2004,42(1):105-108
    [21]卢祥国;张云宝.聚合物驱后进一步提高采收率方法及其作用机理研究.大庆石油地质与开发, 2007,31(6):113-118
    [22]王刚;王德民;夏惠芬.聚合物驱后用甜菜碱型表面活性剂提高驱油效率机理研究.石油学报2007,16(4):86-90
    [23]王茂盛;张喜文;韩彬.聚合物驱后泡沫与AS体系交替注入驱油物理模拟研究.内蒙古石油化工, 2005,45(7):79-80
    [24]卢祥国;王风兰;包亚臣.聚合物驱后三元复合驱油效果评价.油田化学, 2000,19(2):159-163
    [25]孙灵辉;代素娟;吴文祥.低碱三元复合体系用于聚驱后进一步提高采收率.油田化学, 2006,22(1):88-91
    [26]王友启.胜利油田聚合物驱后二元复合驱油体系优化.石油钻探技术, 2007,31(1):101-103
    [27]曹正权;冷强;张岩.清除聚合物堵塞的解堵剂DOC-8的研制.油田化学, 2006,19(1):77-80
    [28]张岩;隋伟娜;刘国春.聚合物驱解堵增注技术在孤岛油田的应用.钻采工艺, 2006,30(1):87-91
    [29]刘军;王清发;刘卫.注聚井用SC-3型双季铵盐基复合防堵剂.油田化学, 2006,18(1):73-76
    [30]李峰;莫苇.应用复合物理化学技术解除聚合物驱注采井的污染堵塞.江汉石油学院学报, 2004,40(1):85-86
    [31]刘瑜莉;吴保先;王国兴.聚合物驱油井堵塞原因及改造技术探讨.河南石油, 2003,27(1):57-58
    [32] Stison S C. Chiral drugs growth and development of these pharmaceuticals continue unabated. C&E News, 2001,79(40):79-97
    [33]谭天伟,王芳.能源生物技术.生物加工过程. 2003, 5:32-36
    [34] Cambiaghi S, Tomaselli S, Verga R. Enzymatic process for preparing 7 -aminocephalosporanic acid and derivatives. EP0496993
    [35] Bryant R S et al. Significant of the survival and performance of Bacillus Species in porous medium for enhanced Oil recovery.Topical Report,NIPER,1987
    [36] Zhang J, Roberge C, Reddy J, et al. Bioconversion of indene to trans-2S, 1S-bromoindanol and 1S,2S-indene oxide by bromoperoxidase / dehydrogenase preparation from Curvularia protuberate MF5400. Enzyme and Microbial Technology, 1999, 24(1):86-95
    [37]孙宏利,金佩强.提高Caltax油田波及效率的MEOR研究[J].国外油田工程,2002, 18 (9):1-4.
    [38]刘晔,李敬龙,崔福丽.聚驱后微生物提高原油采收率机理探讨[J].山东轻工业学院学报, 2004, 18(3): 60-62
    [39]Lori Jeanine, Simon Kay. Polyacrylamide as a substrate for microbial amidase in culture and soil [J]. Soil Biology and Biochemistry, 1998, 30(13): 1647-1654
    [40]Junzo Suzuki, Keiko Hattori. Effect of ozone treatment upon biodegradability of water-soluble polymer [J]. Environmental Science & Technology, 1978, 12(10): 1180-1183
    [41]Eshwan M Rachid, Catherine F Jean, Hamid Jalal, et al. Combining photolysis and bioprocesses mineralization of high molecular weight polyacrylamides [J]. Biodegradation, 2002, 13(4): 221-227
    [42] Carri C. Fang, Halliburton Baroid. New OSPAR - Compliant Technologies for Managing Drilling - Fluid Lost - Circulation Events. SPE 94434, 2005: 254-259
    [43]李蔚,石梅,乐建君,等.微生物对胶态分散凝胶体系成胶性能的影响[J].大庆石油地质与开发,2002,21(1): 67-69
    [44]Graham B, Farquhar,朱薇玲译.聚丙烯酰胺和甲醛对几种油田细菌的影响[J].国外油田工程. 2003. 3: 61- 62
    [45]黄峰,卢献忠.硫酸盐还原菌在含水解聚丙烯酰胺介质中的生长繁殖[J].武汉科技大学学报(自然科学版). 2002. 25(1): 45-48
    [46]程林波,张鸿涛.废水中聚丙烯酰胺的生物降解试验研究初探[J].工程与技术, 2004, 1: 54-58
    [47]黄峰,卢献忠.腐生菌对水解聚丙烯酰胺降解过程的研究[J].石油炼制与化工, 2002, 33(3): 5-8
    [48]孙晓君,王志平,刘莉莉,等.油田驱采出水中聚丙烯酰胺在SBR中的生物降解特性研究.化学与生物工程[J],2005: 2, 16-17
    [49]Mary M, Grula. Interaction of polyacrylamides with certain soil pseudomonads [J]. Dev. Ind. Microbial, 1981, 22(3): 451-457
    [50]Takeshi Ohura, Ken I Kasuya, and Yoshiharu Doi,. Cloning and Characterization of the Polyhydro- xybutyrate Depolymerase Gene of Pseudomonas stutzeri and Analysis of the Function of Substrate-Binding Domains [J]. Applied and Environmental Microbiology, 1999, 65(1): 189-197
    [51] Nuria Obradors, Juan Aguilar. Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri [J]. Appl Environ Microbiol. 1991; 57(8): 2383-2388
    [52]韩昌福,郑爱芳,李大平.聚丙烯酰胺生物降解研究.环境科学[J]. 2006, 26(1): 151-153
    [53]韩昌福,李大平.聚丙烯酰胺生物降解研究进展.应用与环境生物学报[J]. 2005, 11(5): 648-650
    [54]隋军,石梅,孙凤荣,等.以石油烃类为唯一碳源提高采收率菌种的研究[J].石油学报,2001, 22(5):53-57.
    [55]冯庆贤,邰庐山,滕克孟,等.应用微观透明模型研究微生物驱油机理[J].石油学报,2001, 18 (3):260-262.
    [56] Voordouw G, Amstrong SM. Characterization of 16SrRNA genes from oil field microbialcommuities indicates the presence of a variety of sulfae-reducing, fermelltative, and sulfide-oxidizing bacteria. Appl enviro microbial. 1996, 62: 1623-1629
    [57] Morrow N R. Thermodynamics of capillary action in porous media. Ind. Eng. Chem, 1970:6(1), 32-56
    [58]尹志青,赵明窿,高进峰,等.耐高温微生物驱油提高低渗透油藏采收率先导性试验[J].河南石油,2002, 16 (5):21-23.
    [59]Marzocca MP,Harding NE,Petroni EA,etal. Location and cloning of the ketal pyruvate transferase gene of xanthomonas campestris[J]. J bacteriol, 1991, 174(23): 7519 - 7524.
    [60]Pollock TJ, Mikolajczak M, Yamazaki M, etal. Production of xanthangum by sphingomonas bacteria carrying genes from xanthomonas campestris[J]. J Industr Microbiol Biotechnol, 1997, 19: 92~97.
    [61]卜宗式.激光诱导金盏菊原生质体融合方法初探.激光生物学. 1993, 2: 282-283
    [62] Hopwood D A, Wright H M. Bacterial protoplast fusion: recombination in fused protoplasts of Streptomyces. Mol Gen Genet. 1978, 162: 307-317
    [63]甘志波.微生物原生质体融合:问题与对策.微生物学杂志. 1996. 16(1): 46-51
    [64] Ball C. Microbial protoplast in industry. Unesci Workshop HongKong, 1985: 1-25
    [65]黄英,郭鹏飞,张翠竹,等.由原生质体融合技术改良高温采油微生物.南开大学学报(自然科学版). 2003, 36(1): 109-113
    [66]宋绍富,张忠智,俞理,等.原生质体融合技术构建高效驱油细胞工程菌的研究.油田化学. 2004, 21(2): 187-190
    [67]谷建伟,姜汉桥,王增林,等.微生物采油数学模型发展现状[J].油气地质与采收率,2002, 9 (4):5-7.
    [68]雷光伦,陈月明,高联益.微生物驱油数学模型[J].石油大学学报(自然科学版),2001, 25 (2): 46-49.
    [69]黄英,郭鹏飞,张翠竹.由原生质体融合技术改良高温采油微生物[J].南开大学学报(自然科学版). 2003, 36(1): 109-113
    [70]白宝君,李宇乡,刘翔鹊.国内外化学堵水调剖技术综述[J].断块油气田,1998, 5 (1):1-4.
    [71] L R. BROWN, A. A. VADIE and J. O. SEPHENS. Slowing production deline and extending the economic life of an oilfield: New NEOR Technology [C]. SPE75355.
    [72]王惠,卢渊,伊向艺.国内外微生物采油技术综述[J].大庆石油地质与开发. 2003, 22(5): 49-53
    [73] Holton R A. Method for preparation of taxol usingβ-lactam.US5175315
    [74]张忠智,李庆忠,王洪君,等.微生物采油中监控技术进展[J].石油化工高等学校学报,2002, 15 (2):14-17.
    [75] Lazer I.Development of MEOR technologies and the history of MEOR field tests.PakiStan Journal of Hydrocarbon Research,1998,10:11
    [76] Islam M R. Mathematical modeling of microbial enhanced oil recovery. SPE 20480. 1994
    [77] Zhang X, A mathematical model for microbial enhanced oil recovery. SPE/DOE 24202.1996
    [78] Chang M M, Modeling and laboratory investigation of microbial transport phenomena in porous media. SPE 22845. 1991
    [79]李习武,刘志培.石油烃类的微生物降解[J].微生物学报,2002, 42 (6):764-767.
    [80] Taylor P P, Pantaleone D P, Senkpeil R F, et al. Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends in Biotechnology, 1998, 16 (10):412-419
    [81]李蔚,刘如林,梁凤来,等.一株聚丙烯酰胺降解菌降解聚丙烯酰胺及原油性能研究[J].环境科学学报, 2004, 24(6): 1116-1121
    [82]廖广志,石梅,李蔚,等.以部分水解聚丙烯酰胺和原油为营养源的微生物筛选及性能评价[J].石油学报. 2003, 24(6): 59-63
    [83]马世煜,陈智宇,刘金峰,等.大港油田港西四区微生物驱先导试验[J].油气采收率技术. 1997, 4(3): 7-12
    [84]郝春雷;刘永建;王大威.微生物采油技术用于聚驱后油藏的研究进展.生物技术,2007,17(1):87-90
    [85]Hunt J A, Ryles R G. Determination of water soluble polymers containing primaryamide groups using the Starch-Triiodide method[J]. Society of Petroleum Engineering Journal, 1997(6):151~155.
    [86]王业飞,由庆,冯刚.聚合物驱产出液中聚丙烯酰胺相对分子质量和水解度的测定方法.中国石油大学学报(自然科学版), 2006,30(1):90~92
    [87]窦立霞.驱油用聚合物分析新方法研究[D].济南,山东大学,2005,3.
    [88]Santoni D,Romano S V. A gzip-based algorithm to identify bacterial families by 16S rRNA [J]. Lett Appl Microbiol, 2006, 42(4): 312-314
    [89]朱麟勇,常志英,马昌期,等.部分水解聚丙烯酰胺在水溶液中的氧化降解——高温稳定作用[J].高分子材料科学与工程,2002,18(2):93-96
    [90]郝春雷;刘永建;王大威.复合菌降解聚丙烯酰胺的性能和机理研究.油田化学,2008,25(2):175-180
    [91]刘永建,郝春雷,胡绍彬.聚合物驱后驱油菌种的性能和作用机理.石油学报,2008,29(5):717-722
    [92]刘永建,郝春雷,胡绍彬.一株聚丙烯酰胺降解菌性能和机理.环境科学学报,2008, 28 (11): 2221-2227
    [93]石梅,孙凤荣,侯兆伟.生物表面活性剂在油田中的应用.日用化学品科学, 2000, 23(1):176~179
    [94] Hopwood D A, Wright H M. Genetic recombination through protoplast fusion in Streptomyces[J]. Gen microbial. 1979, 111(1): 137-143
    [95] Kim B K, Kang J H, Jin M, et al. Mycelial protoplast isolation and regeneration of Lentinus lepideus[J]. Life Sci. 2000, 66(14): 1359-1367
    [96] Kao K N. A method for high frequency intergeneric fusion of plant protoplast[J]. Planta. 1974, 115: 355-367
    [97] Zimmermann U, Pilwat G. Sixth int Biophys Congr Kyoto Abstr[J],Ⅳ-19(H). 1978: 140
    [98]张闻迪,赵白,王秋,等.激光诱导泥鳅卵细胞融合—一种新的细胞融合方法.生物工程学报. 1988, 4(4): 298-303
    [99]罗雯,陈志勤.微生物原生质体融合技术及其在育种中的应用.西安联合大学学报, 2003, 6(4): 5-9