微/纳米结构聚苯胺的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的性能与应用不仅与化学组成、结构有关,还与组成材料的微观单元的尺寸和微观单元的堆积方式有密切关系。聚苯胺具有结构多样、掺杂机理独特、环境稳定性好、原料价廉及合成方法简便等优点,是导电聚合物的一个重要研究对象。制备和表征聚苯胺的微/纳米结构对控制它们的组装和调节聚苯胺的性能具有重要的理论意义和应用价值。本论文探讨了制备聚苯胺微/纳米结构的新方法,成功实现了不同聚苯胺微/纳米结构的可控生长,并将低维纳米结构组装成多尺度的微米结构。对聚苯胺微/纳米结构的分子结构、制备过程的影响因素、形成机理进行了研究和探讨。
     在硫酸溶液中,制备了聚苯胺纳米线形成的多尺度多孔微球,微球具有纯度高、形貌一致、粒度均匀、导电性良好、比表面积大、优异的亲水性等优点。苯胺浓度、苯胺与过硫酸铵的摩尔浓度比、聚合温度、酸度和聚合时间对聚苯胺微球的形成有重要影响。通过调节苯胺浓度、聚合温度可控制微球的平均直径,通过改变质子酸的种类和使用十二烷基苯磺酸钠可调节聚苯胺纳米线自组装形成的多尺度结构。向反应体系添加环氧丙烷,可改善在较高过硫酸铵浓度下制备的微球的形貌和粒径。氧化剂的种类对微球的形成无明显影响,但会影响微球的粒径分布。提出了聚苯胺纳米线自组装形成聚苯胺多尺度多孔微球的机理。结合自组装和原位法,制备了负载有金属银纳米颗粒的聚苯胺微球复合物。
     利用电化学氧化聚合苯胺后的电解液滤液制备了形貌均一、纯度高、结晶度高的聚苯胺纳米片。所制备的纳米片处于高氧化本征态、分子链排列有序、具有良好的疏水性等特点。电化学氧化聚合苯胺时电解液酸度、聚合时间、电化学参数对聚苯胺纳米片的形成有重要影响。改变电解液酸度、滤液的聚合温度和聚合时间可以调节纳米片的形状和侧向尺寸大小。提出了电解液滤液制备聚苯胺纳米片的形成机理,使用H2O2为氧化剂制备了模拟电解液滤液,并以此制备了高结晶度的聚苯胺纳米片。研究结果为电化学氧化聚合苯胺的电解液废液的再利用提供了依据。
     采用非模板自组装法制备聚苯胺微球和纳米片的方法,对于聚苯胺的应用和其他聚合物微、纳米材料的制备有重要的指导意义。聚苯胺微球和纳米片将分别在传感器、催化剂载体、固相分离和防腐蚀、自清洁表面等方面有着潜在的应用。
Properties and applications of materials are not only determined by their composition and structure, but also the size of building blocks and their aggregation state. Due to its variable molecular structures, unique doping mechanism, good redox reversibility, excellent environmental stability, easy preparation and cost-effective raw materials, polyaniline (PANI) has been extensively investigated as an inherent conductive polymer in the last three decades. It is of great theoretical significance to prepare and characterize the PANI micro/nanostructures. This dissertation is focused on the issues of novel methods to prepare PANI with various micro/nanostructures, control their morphologies and size, and self-assembly of the nano-building blocks into hierarchical microstructures. The structures, formation mechanism and the influences of preparation parameters on the PANI micro/nanostructures are also investigated.
     PANI hierarchical porous microspheres self-assembled from PANI nanowires are prepared from the H2SO4 aqueous solution, which show relatively high conductivity, BET specific surface area and excellent hydrophilic behavior. The results demonstrate that the concentration of aniline, mole ratio of aniline to ammonium peroxydisulfate (APS), polymerization temperature, polymerization time, types of acid and the acidity have significant effect on the morphology of PANI product. The average diameter of the microspheres can be controlled by adjusting the concentration of aniline and polymerization temperature, and the hierarchical microstructures self-assembled from PANI nanowires can be controlled by types of acid and adding sodium dodecylbenzenesulphonate. The uniformity and size distribution of microspheres in the higher concentration of APS can be improved by adding propylene oxide. The oxidant kinds have no obvious effect on the microspheres; however, it will affect the diameter of the microspheres. The formation mechanism of hierarchical microstructures from PANI nanowires is proposed. The Ag-nanoparticle/PANI microcomposite is prepared by combining the self-assembly and in-suit method.
     High purity, uniformity and crystallinity of PANI nanosheets are prepared from the filtration, which comes from the electropolymerization of aniline. The as-prepared PANI nanosheets are in emeraldine state with the ordered polymer chains and good hydrophobic behavior. The acidity of the electrolyte, electropolymerization time, electrochemical parameters play important role in the formation of PANI nanosheets during the electropolymerization of aniline. The shapes and the lateral sizes of the nanosheets can be adjusted by the acidity of the electrolyte, polymerization temperature and time. A mechanism based on the self-assembly and oriented growth of aniline oligomers is proprosed for the formation of PANI nanosheets, and the higher crystallinity PANI nanosheets are synthesized from the analogue electrolyte prepared by using the H2O2 as oxidant. Meanwhile, it provides the guideline for the re-use of electrolyte of electropolymerization of aniline.
     The template-free self-assembly of PANI micro/nanostructures provides novel insight into preparation of other polymer micro/nanostructured materials. The PANI hierarchical porous microspheres and PANI nanosheets might have promising applications in the filed of sensor, catalysis support, solid separation and anti-corrosion, self-clean surface, respectively.
引文
[1] Wang ZL, Characterization of Nanophase Materials, Wiley-VCH, 2000, 1~11
    [2]徐云龙,赵璁军,钱秀珍,纳米材料科学概论,上海:华东理工大学出版社,2008,1~14
    [3]张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001
    [4] Shirakawa H, Louis EJ, MacDiarmid AG, et al., Synthesis of Electronically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x, J. Chem. Soc, Chem. Commun., 1977, 16: 578~579
    [5] Chiang CK, Fincher CR, Park Y.W, et al., Electrical Conductivity in Doped Polyacetylene, Phys. Rev. Lett., 1977, 39(17): 1098~1101
    [6]马建标,李晨曦,功能高分子材料,北京:化学工业出版社,2000,202~213
    [7]赵文元,王亦军,功能高分子材料化学,北京:化学工业出版社,1996,72~100
    [8] MacDiarmid AG, Synthetic metals: a novel role for organic polymers, Synth. Met., 2002, 125(1): 11~22
    [9] MacDiarmid AG, Epstein AJ, Secondary doping in polyaniline, Synth. Met., 1995, 69(1): 85~92
    [10] Boyer MI, Quillard S, Rebourt E, et al., Vibrational Analysis of Polyaniline: A Model Compound Approach, J. Phys. Chem. B, 1998, 102(38): 7382~7392
    [11] Sen S, Bardackci B, Yavuz AG, et al., Polyfuran/zeolite LTA composites and adsorption properties, Eur. Polym. J., 2008, 44(8): 2708~2717
    [12] Gonzalez-tejera MJ, de la Blanca ES, Carrillo I, Polyfuran conducting polymers: Synthesis, properties, and applications, Synth. Met., 2008, 158(5): 165~189
    [13] Kuwahara T, Homma T, Kondo M. et al., Fabrication of enzyme electrodes with a polythiophene derivative and application of them to a glucose fuel cell, Synth. Met., 2009, 159(17~18): 1859~1864
    [14] Sun YM, Lu XF, Lin SW, et al., Polythiophene-based field-effect transistors with enhanced air stability, Org. Electron., 2010, 11(2): 351~355
    [15] Kwon OS, Park SJ, Jang J, A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor, Biomaterials, 2010, 31(17): 4740~4747
    [16] Hangarter CM, Bangar M, Mulchandani A, et al., Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors, J. Mater. Chem., 2010, 82(8): 3139~3145
    [17] Little S, Ralph SF, Too CO, et al., Solvent dependence of electrochromic behaviour of polypyrrole: Rediscovering the effect of molecular oxygen, Synth. Met., 2009, 159(19~20): 1950~1955
    [18] Diaz AF, Logan JA, Electroactive film, J. Electroana1. Chem., 1980, 111(1): 111~114
    [19] Zhang K, Zhang LL, Zhao XS, et al., Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes, Chem. Mater., 2010, 22(4): 1392~1401
    [20] Ameen S, Akhtar SA, Kim YS, et al., Sulfamic Acid-Doped Polyaniline Nanofibers Thin Film-Based Counter Electrode: Application in Dye-Sensitized Solar Cells, J. Phys. Chem. C, 2010, 114(10): 4760~4764
    [21] MacDiarmid AG, Epstein AJ, Polyanilines: a novel class of conducting polymers, Faraday Discuss. Chem. Soc., 1989, 88: 317~332
    [22] Michira I, Akineye R, Somerset V, et al., Synthesis, Characterisation of Novel Polyaniline Nanomaterials and Application in Amperometric Biosensors, Macromol. Symp., 2007, 255(1): 57~69
    [23] Tan KL, Tan BTG, Kang ET, et al., X-ray photoelectron spectroscopy studies of the chemical structure of polyaniline, Phys. Rev. B, 1989, 39(11): 8070~8073
    [24] Beadle PM, Nicolau YF, Banka E, et al., Controlled polymerization of aniline at sub~zero temperatures, Synth. Met., 1998, 95(1): 29~45
    [25] Zhang WJ, MacDiarmid AG, Epstein AJ, Synthesis of Oligomeric Anilines, Synth. Met., 1997, 84(1~3): 119~120
    [26] Sariciftci NS, Kuzmany H, Neugebauer H, et al., Structural and electronic transitions in polyaniline: A Fourier transform infrared spectroscopic study, J. Chern. Phys., 1990, 92(7): 4530~4539
    [27] Mohilner DM, Aadams RN, Argersinger WJ, Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode, J. Am. Chem. Soc., 1962, 84(19):3618~3622
    [28] Macdiramid AG, Chiang JC. Chemical, electrochemical and infrared studies of polyaniline. Synth. Met., 1987, 18(1~3): 285~290
    [29] Gospodinova N, Terlemezyan L, Conducting polymers prepared by oxidative polymerization: Polyaniline, Prog. Polym. Sci.,1998, 23(8): 1443~1484
    [30] Liu H, Hu XB, Wang JY, et al., Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method, Macromolecules, 2002, 35(25): 9414~9419
    [31] Long YZ, Chen ZJ, Ma YJ, et al., Electrical conductivity of hollow polyaniline microspheres synthesized by a self-assembly method, Appl. Phys. Lett., 2004, 84 (12): 2205~2207
    [32] Li J, Fang K, Qiu H, et al., Micromorphology and conductive property of the pellets prepared by HCl-doped polyaniline nanofibers, Synth. Met., 2004, 145(2~3): 191~194
    [33] Xia HS, Wang Q, Ultrasonic Irradiation: A Novel Approach To Prepare Conductive Polyaniline/Nanocrystalline Titanium Oxide Composites, 2002, 14(5): 2158~2165
    [34] Chaudhari HK, Kelkar DS, Investigation of Structure and Electrical Conductivity in Doped Polyaniline, Polym. Int., 1997, 42(4): 380~384
    [35] Long YZ, Chen ZJ, Wang NL, et al., Resistivity study of polyaniline doped with protonic acids, Physica B, 2003, 325 (1~4): 208~213
    [36] Parthasarathy RV, Martin CR, Template-Synthesized Polyaniline Microtubules, Chem. Mater., 1994, 6(10): 1627~1632.
    [37] Liu W, Anagnostopoulos A, Bruno FF, et al., Biologically derived water soluble conducting polyaniline, Synth. Met., 1999, 101(1~3): 738~741
    [38] Samuelson L, Liu W, Nagarajan R, et al., Nanoreactors for the enzymatic synthesis of conducting polyaniline, Synth. Met., 2001, 119(1~3): 271~272
    [39] Cruz GJ, Morales J, Casillo-Ortega MM, et al., Synthesis of polyaniline films by plasma polymerization, Synth. Met., 1997, 88(3): 213~218
    [40] Gong XY, Dai LM, Mau AWH,et al., Plasma-polymerized polyaniline films: Synthesis and characterization, J. Polym. Sci. Part A: Polym. Chem., 1998, 36(4): 633~643
    [41] Miao ZJ, Wang Y, Liu ZM, et al., Synthesis of polyaniline nanofibrous networks with the aid of an amphiphilic ionic liquid, J. Nanosci. Nanotechno., 2006, 6(1): 227~230
    [42] Bicak N, Senkal BF, Sezer E, Preparation of organo-soluble polyanilines in ionic liquid, Synth. Met., 2005, 155(1): 105~109
    [43] Huang JX, Virji S, Weiller BH, et al., Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors, J. Am. Chem. Soc., 2003,125(2): 314~315
    [44] Ding SH, Mao H, Zhang WJ, Fabrication of DBSA-Doped Polyaniline Nanorods by Interfacial Polymerization, J. Appl. Polym. Sci., 2008, 109(5): 2842~2847
    [45] Palaniappan S, John A, Polyaniline materials by emulsion polymerization pathway, Prog. Polym. SCi., 2008, 33(7): 732~758
    [46] Jang J, Ha J, Kim S, Fabrication of polyaniline nanoparticles using microemulsion polymerization, Macromol. Res., 2007, 15(2): 154~159
    [47] Lv RG, Zhang SL, Shi QF, et al., Electrochemical synthesis of polyaniline nanoparticles in the presence of magnetic field and erbium chloride, Synth. Met., 2005, 150(2): 115~122
    [48] Xia HS, Wang Q, Ultrasonic Irradiation: A Novel Approach To Prepare Conductive Polyaniline/Nanocrystalline Titanium Oxide Composites, Chem. Mater., 2002, 14(5): 2158~2165
    [49] Sivakumar M, Gedanken A, A sonochemical method for the synthesis of polyaniline and Au-polyaniline composites using H2O2 for enhancing rate and yield, Synth. Met., 2005, 148(3): 301~306
    [50] Jing, XL; Wang, YY; Wu, D, et al., Polyaniline nanofibers prepared with ultrasonic irradiation, J. Polym. Sci. Pol. Chem., 2006, 44(2): 1014~1019
    [51] Lu XF, Mao H, Chao DM, et al., Ultrasonic synthesis of polyaniline nanotubes containing Fe3O4 nanoparticles, J. Solid State Chem., 2006, 179(8): 2609~2615
    [52] Pillatamarri SK, Blum FD, Tokuhiro AT, et al., Radiolytic synthesis of polyaniline nanofibers: A new templateless pathway, Chem. Mat., 2005,17(2): 227~229
    [53] Tursun A, Zhang XG, Ruxangul J, Comparative studies of solid-state synthesized polyaniline doped with inorganic acids, Mater. Chem. Phys., 2005, 90(2~3): 367~372
    [54] Du XS, Zhou CF, Wang GT, et al., Novel Solid-State and Template-Free Synthesis of Branched Polyaniline Nanofibers, Chem. Mater., 2008, 20(12): 3806~3808
    [55] Wei Y, Hariharan R, Patel SA, Chemical and Electrochemical Copolymerization of Aniline with Alkyl Ring-Substituted Anilines, Macromolecules, 1990, 23(3): 758~764
    [56] Wei Y, Jang GW, Chan CC, et al., Polymerization of Antilne and Alkyl Ring-Substituted Anilines in the Presence of Aromatlc Additives, J. Phys. Chem., 1990, 94(19): 7716~7721
    [57] Ayad MM, Gemaey AH, Salahuddin N, et al., The kinetics and spectral studies of the in situ polyaniline film formation, J. Colllid Interf. Sci., 2003, 263(1): 196~201
    [58] Sun ZC, Geng YH, Li J, et al., Catalytic Oxidization Polymerization of Aniline in an H2O2-Fe2+ System, J. Appl. Polym. Sci., 1999, 72(8): 1077~1084
    [59] Blinova NV, Stejskal J, Trchova M, et al., Polyaniline and polypyrrole: A comparative study of the preparation, Eur. Polym. J., 2007, 43(6): 2331~2341
    [60] Long YZ, Chen ZJ, Zheng P, et al., Low-temperature resistivities of nanotubular polyaniline doped with H3PO4 and beta-naphthalene sulfonic acid, J. Appl. Phys., 2003, 93(5): 2962~2965
    [61] Jing L, Fang K, Hong Q, et al., Micromorphology and electrical property of the HCl-doped and DBSA-doped polyanilines, Synth. Met., 2004, 142(1): 107~111
    [62] Pekmez N, Yildrz A, Electropreparation of polyaniline in the presence of anhydrous cuprous ions in acetonitrile, J. Electroanal. Chem., 1995, 386(1~2): 121~126
    [63] Zeng XR, Ko TM, Structures and properties of chemically reduced polyanilines, Polymer, 1998, 39(3): 1187~1195
    [64] Rao PS, Sathyanarayana DN, Palaniappan S, Polymerization of aniline in an organic peroxide system by the inverted emulsion process, Macromolecules, 2002, 35(13): 4988~4996
    [65] Rao PS, Subrahmanya S, Sathyanarayana DN, Inverse emulsion polymerization: a new route for the synthesis of conducting polyaniline, Synth. Met., 2002, 128(3): 311~316
    [66] Ram MS, Palaniappan S, Benzoyl peroxide oxidation route to polyaniline salt and its use as catalyst in the esterification reaction, J. Mol. Catal. A-Chem., 2003, 201(1~2): 289~296
    [67] Shreepathi S, Holze R, Spectroelectrochemical investigations of soluble polyaniline synthesized via new inverse emulsion pathway, Chem. Mat., 2005, 17 (16): 4078~4085
    [68] Stejskal J, Kratochvil P, The formation of polyaniline and the nature of its structures, Polymer, 1996, 37(2): 367~369
    [69] Shen YP, Sun JZ, Synthesis and characterization of water-soluble conducting polyaniline by enzyme catalysis, J. Appl. Polym. Sci., 2005, 96(3): 814~817
    [70] Peng ZQ, Guo LM, Zhang ZH, et al., Micelle-assisted one-pot synthesis of water-soluble polyaniline-gold composite particles, Langmuir, 2006, 22(26): 10915~10918
    [71] Yong W, Liu ZM, Han BX, et al., Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant, Langmuir, 2005, 21(3): 833~836
    [72] Kinyanjui JM, Hatchett DW, Smith JA, et al., Chemical synthesis of a polyaniline/gold composite using tetrachloroaurate,Chem. Mat., 2004, 16(17): 3390~3398
    [73] Kinyanjui JM, Harris-Burr R, Wagner JG, et al., Hexachloroplatinate-initiated synthesis of polyaniline/platinum composite, Macromolecules, 2004, 37(23): 8745~8753
    [74] Ding HJ, Wan MX, Wei Y, Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential, Adv. Mater., 2007, 19(3): 465~469
    [75] David RL, Handbook of Chemistry and Physics, 78th. edition, CRC Press, 1997~1998, 8~25~8~30
    [76] Park MC, Sun QH, Deng YL, Polyaniline Microspheres Consisting of Highly Crystallized Nanorods, Macromol. Rapid Commun., 2007, 28(11): 1237~1242
    [77] Stejskal J, Riede A, Hlavata D, et al., The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline, Synth. Met., 1998, 96(1): 55~61
    [78] Laska J, Wildarz J, Spectroscopic and structural characterization of low molecular weight fractions of polyaniline, 2006, 46(5): 1485~1495
    [79] Adams PN, Laughlin PJ,Monkman AP, Low temperature synthesis of high molecular weight polyaniline, Polymer, 1996, 37(15): 3411~3417
    [80] Adams PN, Laughlin PJ,Monkman AP, Synthesis of high molecular weight polyaniline at low temperatures, Synth. Met., 1996, 76(1):157~160
    [81] Adams PN, Laughlin PJ,Monkman AP, Low temperature synthesis of high molecular weight polyaniline using dichromate oxidant, Synth. Met., 1997, 84(1): 61~62
    [82] Huang JX, Kaner RB, Nanofiber formation in the chemical polymerization of aniline: A mechanistic study, Angew. Chem. Int. Edit., 2004, 43(43): 5817~5821
    [83] Tang, Z. Y. Liu, S. Q. Wang, Z. X. Dong, S. J. Wang, E. K., Electrochemical synthesis of polyaniline nanoparticles, Electrochem. Commun., 2000, 2(1): 32~35
    [84] Gupta V, Miura N, Large-area network of polyaniline nanowires prepared by potentiostatic deposition process, Electrochem. Commun., 2005, 7(10): 995~999
    [85] Liang L, Liu J, Windisch CF, et al., Direct assembly of large arrays of oriented conducting polymer nanowires, Angew. Chem. Int. Edit., 2002, 114(19): 3817~3820
    [86] Liu J, Lin YH, Liang L, et al., Templateless assembly of molecularly aligned conductive polymer nanowires: A new approach for oriented nanostructures, Chem. Eur. J., 2003, 9(3): 604~611
    [87] Kan JQ, Lv R, Zhang SL, Effect of ethanol on properties of electrochemically synthesized polyaniline, Synth. Met., 2004, 145(1): 37~42
    [88] Zhou HH, Jiao SQ, Chen JH, et al., Relationship between preparation conditions, morphology and electrochemical properties of polyaniline prepared by pulse galvanostatic method (PGM), Thin Solid Films, 2004, 450(2): 233~239
    [89] Tsakova V, Milchev A, Schultze JW, Growth of polyaniline films under pulse potentiostatic condition, J. Electroanal. Chem.,1993, 346(1~2): 85~87
    [90] Pier GD, Lepri L, Heimler D, Electrochemical behavior of aniline in alkaline solutions, J. Electroanal. Chem., 1971, 32(2): 225~234
    [91] Wawzonek S, Mclntyre TW, Electrolytic Oxidation of Aromatic Amines,J Electrochem. Soc., 1967, 114(10): 1025~1029
    [92] Zhao P, Gerhard EN, Helmut N, et al., Protonation and electrochemical redox doping processes of polyaniline in aqueous solutions : Investigations using in situ FTIR-ATR spectroscopy and a new doping system, J. Chem. Soc., Faraday Trans., 1997, 93(1): 121~129
    [93] Hussain AMP, Kumar A, Electrochemical synthesis and characterization of chloride doped polyaniline, B. Mater. Sci., 2003, 26(3): 329~334
    [94]穆绍林,阐锦晴,张爱光,苯胺在碱性溶液中的电化学聚合,电化学,1996,2(1): 54~60
    [95]张海滨,聚苯胺纳米材料的制备与表征:[博士学位论文],天津;天津大学,2009
    [96] Zhang JL, Zhang XG, Xiao F, et al., Effect of polar solvent acetonitrile on the electrochemical behavior of polyaniline in ionic liquid electrolytes, J. Colloid Interf. Sci., 2005, 287(1): 67~71
    [97] Pandey PC, Singh G, Electrochemical polymerization of aniline in proton-free nonaqueous media-Dependence of microstructure and electrochemical properties of polyaniline on solvent and dopant, 2002, 149(4): 51~56
    [98] Geng YH, Li J, Sun ZC, et al., Polymerization of aniline in an aqueous system containing organic solvents, 1998, 96(1): 1~6
    [99] Stejskal J, Gilbert RG, Polyaniline. Preparation of a Conducting Polymer, Pure Appl. Chem., 2002, 74(5): 857~867
    [100] Sedenkova I, Trchova M, Blinova N, et al., In-situ polymerized polyaniline films-Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid, Thin Solid Films, 2006, 515(4): 1640~1646
    [101] Blinova NV, Stejskal J, Trchova M, et al., Polyaniline and polypyrrole: A comparative study of the preparation, Eur. Polym. J., 2007, 43(6): 2331~2341
    [102]钟文斌,2,3维纳微米/结构聚苯胺的设计与合成:[博士学位论文],北京:北京化工大学,2005
    [103] Chandrakanthi N, Careem MA, Preparation and characterization of fully oxidized form of polyaniline, Polym. Bull., 2000, 45(2): 113~120
    [104] Kaplan S, Conwell EM, Richter AF, et al., Solid~state 13C NMR Characterization of Polyanilines, J. Am. Chem. Soc., 1988, 110(23): 7647~7651
    [105] Quillard S, Louarn G, Lefrant S, et al., Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases, Phys. Rev. B, 1994, 50(17): 12496~12508
    [106] Furukawa Y, Ueda F, Hyodo Y, et al., Vibrational Spectra and Structure of Polyaniline, Macromolecules, 1988, 21(5): 1297~1300
    [107]何曼君,张轰动,陈维孝等,高分子物理化学(第3版),上海:复旦大学出版社,2006,25~50
    [108] Mantovani GL, MacDiarmid AG, Mattoso LHC, Secondary Doping in Elastomeric Polyaniline Blends, Synth. Met., 1997, 84(1): 73~74
    [109] Baughman RH,Wolf JF,Eckhardt H, et al, Structure of a novel polymeric metal:acceptor-doped polyaniline,Synth. Met., 1988, 25(2): 121~137
    [110] Wan M X,Yang J,Zhu C,et al,Scanning tunnelling microscopy images of polyaniline, Thin Solid Films, 1992, 208(2): 153~155
    [111] Luzny W, Sniechowskia M, Laska J, Structural properties of emeraldine base and the role of water contents: X-ray diffraction and computer modelling study, Synth. Met., 2002, 126(1): 27~35
    [112] Winokur MJ, Mattes BR, Structural Studies of Halogen Acid Doped Polyaniline and the Role of Water Hydration, Macromolecules, 1998, 31(23): 8183~8191
    [113] Zhou Q, Wang JW, Ma YL, et al., The relationship of conductivity to the morphology and crystallinity of polyaniline controlled by water content via reverse microemulsion, Colloid Polym. Sci., 2007, 285(4): 405~411
    [114] Laridjani M, Epstein AJ, Edge of disorder-Analysis of disordered polymers: polyaniline, Eur. Phys. J. B, 1999, 7(4): 585~597
    [115]龙云泽,万梅香,陈兆明,导电聚合物微米/纳米结构的制备和性质,物理,2004,33(11):816~822
    [116] Lin SH, Rong TW, Bao JR, et al., Electrical characterization induced in pernigraniline by potassium ion implantation, Synth. Met., 1994, 63(1): 17~21
    [117] Jozefowicz ME, Laversanne R, Javadi HHS, et al., Multiple lattice phases and polaron-Iattice-spinless-defect competition in polyaniline, Phys. Rev. B, 1989, 39(17): 12958~12961
    [118] Zhang ZM, Wei ZX, Wan MX, Nanostructures of Polyaniline Doped with Inorganic Acids, Macromolecules, 2002, 35(15): 5937~5942
    [119] Zhao GC, Zhu JJ, Chen LY, et al., Electrochemical behavior and its electrocatalytic activity of chemically modified electrode with Au-Mo heteropoly anion film, Electroanal., 1998, 10(14): 985~987
    [120] Mahmoud A, Keita B, Nadjo L, EQCM study of the process of silicomolybdic anion doping in polyaniline films electrosynthesized in the presence of various anions, J. Electroanal. Chem., 1998, 446(1~2): 211~225
    [121] Pokhodenko VD, Kurys YI, Posudievsky OY, Heteropolyacid/m-cresol system as a primary/secondary dopant combination for polyaniline, Synth. Met., 2000, 113(1~2): 199~201
    [122] Gong J, Yu JZ, Chen YG, et al., Gas-solid phase method to synthesize polyaniline doped with heteropoly acid, Mater. Lett., 2002, 57(3): 765~770.
    [123] Geng YH, Jing XB, Wang FS, Polyaniline doped with macromolecular acids, Synth. Met., 1997, 84(1~3): 81~82
    [124] Chen SA, Lee HT, Structure and Properties of Poly(acry1ic acid)~Doped Polyaniline, Macromolecules, 1995, 28(28): 2858~2866
    [125] Zheng W, Min Y, MacDiarmid AG, et al., Effect of organic vapors on the molecular conformation of non-doped polyaniline, 1997, 84(1~3): 63~64
    [126] Abell L, Pomfet SJ, Adams PN, et al., Studies of Stretched Predoped Polyaniline Films, Synth. Met., 1997, 84(1~3): 803~804
    [127] Abell L, Adams PN, Monkman AP, Electrical conductivity enhancement of predoped polyaniline by stretch orientation, Polymer, 1996, 37(26): 5927~5931
    [128] Joo J, Oh EJ, Min G, et al., Evolution of the conducting state of polyaniline from localized to mesoscopic metallic to intrinsic metallic regimes, Synth. Met., 1995, 69(1~3): 251~254
    [129] Stejskal J, Sapurina I, Polyaniline: Thin Films And Colloidal Dispersions, Pure Appl. Chem., 2005, 77(5): 815~826
    [130] Athawale AA, Kulkarni MV, Chabukswar VV, Studies on chemically synthesized soluble acrylic acid doped polyaniline, Mater. Chem. Phys., 2002, 73(1): 106~110
    [131]王佛松,王利祥,景遐斌,聚苯胺的掺杂反应,武汉大学学报, 1993, 6: 65~73
    [132] Wallace GG, Spinks GM, Kane-Maguire LAP, et al., Conductive Electroactive Polymers: Intelligent Materials Systems, Second Edition, CRC Press LLC, 2003, Chapter 5
    [133]吴丹,朱超,强骥鹏等,聚苯胺的掺杂及其应用,工程塑料应用,2006, 34(9): 70~73
    [134] Farchioni R, Vignolo P, Grosso G, Transport properties of emeraldine salts: The nature of the metallic state, Phys. Rev. B, 1999, 60(23): 15705~15713
    [135] Huang HG, Zheng ZX, Luo J, et al., Internal photoemission in polyaniline revealed by photoelectrochemistry, Synth. Met., 2001, 123(2): 321~325
    [136] Lu XH, Tan CY, Xu JW, et al., Thermal degradation of electrical conductivity of polyacrylic acid doped polyaniline: effect of molecular weight of the dopants, Synth. Met., 2003, 138(3): 429~440
    [137] Ghosh M, Barman A, De SK, et al., Crossover from Mott to Efros-Shklovskii variable-range-hopping conductivity in conducting polyaniline, Synth. Met., 1998, 97(1): 23~29
    [138] Long YZ, Chen ZJ, Wang NL, et al., Electrical conductivity of a single conducting polyaniline nanotube, Appl. Phys. Lett., 2003, 83(9): 1863~1865
    [139] Holland ER, Pomfret SJ, Adams PN, et al., Conductivity studies of polyaniline doped with CSA, J. Phys. Condens. Matter,1996, 8(17): 2991~3002
    [140] Bohli N, Gmati F, Mohamed AB, et al., Conductivity mechanism of polyaniline organic films: the effects of solvent type and casting temperature, J. Phys. D Appl. Phys., 2009, 42(20): 205404
    [141] Luthra V, Singh R, Gupta SK, et al., Mechanism of dc conduction in polyaniline doped with sulfuric acid, Curr. Appl. Phys., 2003, 3(2~3): 219~222
    [142] Nazeer KP, Thamilselvan M, Mangalaraj D, et al., Direct and high frequency alternating current conduction mechanisms in solution cast polyaniline films, J. Polym. Res., 2006, 13 (1): 17~23
    [143] Pouget JP, Hsu CH, MacDiarmid AG, et al., Structural Investigation of Metallic PAN-CSA and Some of its Derivatives, Synth. Met., 1995, 69(1~3): 119~120
    [144] Zheng W, Angelopoulos M, Epstein AJ, et al., Concentration Dependence of Aggregation of Polyaniline in NMP Solution and Properties of Resulting Cast Films, Macromolecules, 1997, 30(24): 7634~7637
    [145] Holand ER, Monkman AP, Thermoelectric power measurements in highly oriented polyaniline films, Synth. Met., 1995, 74(1):75~79
    [146] Pomfret SJ, Adams PN, Comfort NP, et al., Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process, Polymer, 2000, 41(6): 2265~2269
    [147] Singh R, Arora V, Tandon RP, et al., Charge transport and structural morphology of HCl~doped polyaniline, J. Mater. Sci., 1998, 33(8): 2067~2072
    [148] Pipinys P, Kiveris A, Analysis of temperature-dependent conductivity of nanotubular polyaniline on the basis of phonon-assisted tunnelingtheory, Physica B, 2005, 355(1~4): 352~356
    [149] Luzny W, Banka E, Relations between the Structure and Electric Conductivity of Polyaniline Protonated with Camphorsulfonic Acid, Macromolecules, 2000, 33(2): 425~429
    [150] Wang HL, Romero RJ, Mattes BR, et al, Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber, J. Polym. Sci. Pol. Phys., 2000, 38(1): 194~204
    [151] Adams PN, Pomfret SJ, Monkman AP, Temperature dependent conductivity behaviour of polyaniline fibres, Synth. Met., 1999, 101(1~3): 685~685
    [152] Long YZ, Zhang LJ, Chen ZJ, et al. Electronic transport in single polyaniline and polypyrrole microtubes, Phys. Rev. B, 2005, 71(16): 165412
    [153]郭雪梅,石南林,微/纳米结构聚苯胺的制备及应用的新进展,功能高分子学报,2004,17(3): 521~526
    [154] Oh SG, Im SS, Electroconductive polymer nanoparticles preparation and characterization of PANI and PEDOT nanoparticles, Curr. Appl. Phys., 2002, 2(4): 273~277
    [155] Kim BJ, Oh SG, Han MG, et al., Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions, Synth. Met., 2001, 122(2): 297~304
    [156] Hassan PA, Sawant SN, Bagkar NC, et al., Polyaniline nanoparticles prepared in rodlike micelles, Langmuir, 2004, 20(12): 4874~4880
    [157] Kim BJ, Oh SG, Han MG, et al., Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium, Langmuir, 2000, 16(14): 5841~5845
    [158] Moulton SE, Innis PC, Kane-Maguire LAP, et al., Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions, Curr. Appl. Phys., 2004, 4(2~4): 402~406
    [159] Han MG, Cho SK, Oh SG, et al., Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution, Synth. Met., 2002, 126(1): 53~60
    [160] Kim D, Kim JY, Kim ER, et al., Preparation of polyaniline nanoparticles by polymer surfactants, Mol. Cryst. Liquid Cryst., 2002, 377: 345~348
    [161] Kim D, Choi J, Kim JY, et al., Size control of polyaniline nanoparticle by polymer surfactant, Macromolecules, 2002, 35(13): 5314~5316
    [162] Cheng D, Ng SC, Chan HSO, Morphology of polyaniline nanoparticles synthesized in triblock copolymers micelles, Thin Solid Films, 2005, 477(1~2): 19~23
    [163] Kim BJ,Im SS,Oh SG, Investigation on the Solubilization Locus of Aniline-HCl Salt in SDS Micelles with 1H NMR Spectroscopy, Langmuir, 2001, 17(2): 565~566
    [164] Xing SX, Chu Y, Sui XM, et al., Synthesis and characterization of polyaniline in CTAB/hexanol/water reversed micelle, J. Mater. Sci., 2005, 40(1): 215~218
    [165] Han DX, Chu Y, Yang LK, et al., Reversed micelle polymerization: a new route for the synthesis of DBSA-polyaniline nanoparticles, Colloid Surf. A-Physicochem. Eng. Asp., 2005, 259(1~3): 179~187
    [166] Xia HS, Wang Q, Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization, J. Nanopart. Res. 2001, 3(5~6): 401~411
    [167] Hwang JY, Cho MS, Choi HJ, et al., Synthesis of polyaniline using stabilizer and its electrorheological properties, Synth. Met., 2002, 135(1~3): 21~22
    [168] Riede A, Helmstedt M, Riede V, et al., Polyaniline dispersions. 9. Dynamic light scattering study of particle formation using different stabilizers, Langmuir, 1998, 14(23): 6767~6771
    [169] Hwang JY, Chin I, Choi HJ, et al., Effect of poly (sodium 4-styrenesulfonate) stabilizer on synthesis and characterization of polyaniline nanoparticles, Mol. Cryst. Liquid Cryst., 2003, 407: 403~409
    [170] Park SY, Cho MS, Choi HJ, Synthesis and electrical characteristics of polyaniline nanoparticles and their polymeric composite, Curr. Appl. Phys., 2004, 4 (6): 581~583
    [171] Cho MS, Park SY, Hwang JY, et al., Synthesis and electrical properties of polymer composites with polyaniline nanoparticles, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 2004, 24(1~2): 15~18
    [172] Chattopadhyay D, Banerjee S, Chakravorty D, et al., Ethyl(hydroxyethyl) cellulose stabilized polyaniline dispersions and destabilized nanoparticles therefrom, Langmuir, 1998, 14(7): 1544~1547
    [173] Chattopadhyay D,Mandal BM, Methyl Cellulose Stabilized Polyaniline Dispersions , Langmuir, 1996, 12(6): 1585~1588
    [174] Stejskal J, Kratochvil P, Armes SP, et a1, Polyaniline Dispersion 6.Stabilization by Colloidal Silica Particles, Macromolecules, 1996, 29(21): 6814~6819
    [175] Li XG, Lu QF, Huang MR, Facile Synthesis and Optimization of Conductive Copolymer Nanoparticles and Nanocomposite Films from Aniline with Sulfodiphenylamine, Chem. Eur. J., 2006, 12(5): 1349~1359
    [176] Gao HX, Jiang T, Han BX, et al., Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles, Polymer, 2004, 45(9): 3017~3019
    [177] Qiu GH, Wang Q, Nie M, Polyaniline/Fe3O4 magnetic nanocomposite prepared by ultrasonic irradiation, J. Appl. polym. Sci., 2006, 102(3): 2107~2111
    [178] Xia HS, Wang Q, Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation, J. Appl. Polym. Sci., 2003, 87(11): 1811~1817
    [179] Ma XF, Li G, Wang M, et al., Preparation of a Nanowire-Structured Polyaniline Composite and Gas Sensitivity Studies, Chem. Eur. J., 2006, 12: 3254~3260
    [180] Zhang XY, Chan-Yu-King R, Jose A, et al., Nanofibers of polyaniline synthesized by interfacial polymerization, Synth. Met., 2004, 145(1): 23~29
    [181] Martin CR, Membrane-Based Synthesis of Nanomaterials, Chem. Mater., 1996, 8 (8): 1739~1746
    [182] Martin CR, Template Synthesis of Electronically Conductive Polymer Nanostructures, Acc. Chem. Res., 1995, 28(2): 61~68
    [183] Xiong SX, Wang Q, Xia HS, Preparation of polyaniline nanotubes array based on anodic aluminum oxide template, Mater. Res. Bull., 2004, 39: 1569~1580
    [184] Zhao YC, Chen M, Xu T, et al., Electrochemical synthesis and electrochemical behavior of highly ordered polyaniline nanofibrils through AAO templates, Colloid Surf. A-Physicochem. Eng. Asp., 2005, 257(58): 363~368
    [185] Cepak VM, Hulteen JC, Che LG, Chemical Strategies for Template Syntheses of Composite Micro and Nanostructures, Chem. Mater., 1997, 9(5): 1065~1067
    [186] Choi SJ, Park, SM, Electrochemical Growth of Nanosized Conducting Polymer Wires on Gold Using Molecular Templates, Adv. Mater., 2000, 12(20): 1547~1549
    [187] Yoshida K, Shimomura T, Ito K, et al., Inclusion Complex Formation of Cyclodextrin and Polyaniline, Langmuir, 1999,15(4): 910~913
    [188] Spange S, Insulated nanowire bundles through consecutive template synthesis, Angew. Chem. Int. Edit., 2003, 42(37): 4430~4432
    [189]丁古巧,多孔阳极氧化铝模板的制备、表征以及在半导体纳米结构材料制备中的应用:[博士学位论文],上海:上海交通大学
    [190] Martin CR, Dyke SV, Cai ZH, et al., Template Synthesis of Organic Microtubules, J. Am. Chem. Soc., 1990, 112(24): 8976~8977
    [191] Nickels P, Dittmer WU, Beyer S, et al., Polyaniline nanowire synthesis templated by DNA, Nanotechnology, 2004, 15(11): 1524–1529
    [192] Ma YF, Zhang JM, Zhang GJ, et al., Polyaniline Nanowires on Si Surfaces Fabricated with DNA Templates, J. Am. Chem. Soc., 2004, 126(22): 7097~7101
    [193] Yu YJ, Si ZH, Chen SJ, et al., Facile synthesis of polyaniline-sodium alginate nanofibers, Langmuir, 2006, 22(8): 3899~3905
    [194] Pan LJ, Pu L, Shi Y, et al., Synthesis of polyaniline nanotubes with a reactive template of manganese oxide, Adv. Mater., 2007, 19(3): 461~464
    [195] Zhang ZM, Sui J, Zhang LJ, et al., Synthesis of polyaniline with a hollow, octahedral morphology by using a cuprous oxide template, Adv. Mater., 2005, 17(23): 2854~2857
    [196] Ma HY, Gao Y, Li YH, et al., Ice-Templating Synthesis of Polyaniline Microflakes Stacked by One~Dimensional Nanofibers, J. Phys. Chem. C, 2009, 113(21): 9047~9052
    [197] Sui N, Duan YZ, Jiao XL, et al., Large-Scale Preparation and Catalytic Properties of One-Dimensionalα/β-MnO2 Nanostructures, J. Phys. Chem. C, 2009, 113(20): 8560~8565
    [198] Zhang LJ, Wan MX, Wei Y, Nanoscaled polyaniline fibers prepared by ferric chloride as an oxidant, Macromol. Rapid Commun., 2006, 27 (5): 366~371
    [199] Huang K, Wan MX, Self-assembled polyaniline nanostructures with photoisomerization function, Chem. Mater., 2002, 14(8): 3486~3492
    [200] Yang YS, Wan MX, Chiral nanotubes of polyaniline synthesized by a template-free method, J. Mater. Chem., 2002, 12(4): 897~901
    [201] Wei ZX, Zhang ZM, Wan MX, Formation mechanism of self-assembled polyaniline micro/nanotubes, Langmuir, 2002, 18(3): 917~921.
    [202] Zhang ZM, Wan MX, Wei Y, Highly Crystalline Polyaniline Nanostructures Doped with Dicarboxylic Acids, Adv. Funct. Mater., 2006, 16(8) : 1100~1104
    [203] Yu XF, Li YX, Zhu NF, et al., A polyaniline nanofibre electrode and its application in a self-powered photoelectrochromic cell, Nanotechnology, 2007, 18(1): 015201
    [204] Huang JX, Kaner RB, The intrinsic nanofibrillar morphology of polyaniline, Chem. Commun., 2006, 4: 367~376
    [205] Huang JX, Kaner RB, A general chemical route to polyaniline nanofibers, J. Am. Chem. Soc., 2004, 126(3): 851~855
    [206] Cao Y, Simth P, Heeger AJ, Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers, Synth. Met.,1992, 48(1): 91~97
    [207] Hsu CH, Cohen JD, Tietz RF, Polyaniline spinning solutions and fibers, Synth. Met., 1993, 59(1): 37~41
    [208] Pomfret SJ, Adams PN, comfort NP, et al., Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process, Polymer 2000, 41(6): 2265~2269
    [209] MacDiarmid AG, Jones WE, Norris ID, et al., Electrostatically-generated nanofibers of electronic polymers, Synth. Met., 2001, 119(1~3): 27~30
    [210] Norris ID, Shaker MM, Ko FK, et al., Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends, Synth. Met., 2001, 114(2): 109~114
    [211] Yu JH, Fridrikh SV, Rutledge GC, Production of submicrometer diameter fibers by two-fluid electrospinning, Adv. Mat., 2004, 16(17): 1562~1566
    [212] Li MY, Guo Y, Wei Y, et al., Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications, Biomaterials, 2006, 27(13): 2705~2715
    [213] He HX, Li CZ, Tao NJ, Conductance of polymer nanowires fabricated by a combined electrodeposition and mechanical break junction method, Appl. Phys. Lett., 2001, 78(6): 811~813
    [214] He C, Tan YW, Li YF, Conducting Polyaniline Nanofiber Networks Prepared by the Doping Induction of Camphor Sulfonic Acid, J. Appl. Polym. Sci., 2003, 87(9): 1537~1540
    [215] Li WG, Wang HL, Oligomer-assisted synthesis of chiral polyaniline nanofibers, J. Am. Chem. Soc., 2004, 126(8): 2278~2279
    [216] Zhang XY, Goux WJ, Manohar SK, Synthesis of polyaniline nanofibers by "nanofiber seeding", J. Am. Chem. Soc., 2004, 126(14): 4502~4503
    [217] Chiou, NR; Epstein, AJ, Polyaniline nanofibers prepared by dilute polymerization, Adv. Mater., 2005, 17(13): 1679~1683
    [218] Chiou, NR; Epstein, AJ, A simple approach to control the growth of polyaniline nanofibers, Synth. Met., 2005, 153(1~3): 69~72
    [219] Zhang XY, Kolla HS, Wang XH, et al., Fibrillar growth in polyaniline, Adv. Funct. Mater., 2006, 16(9): 1145~1152
    [220] Qiu HJ, Zhai J, Li SH, et al., Oriented Growth of Self-Assembled Polyaniline Nanowire Arrays Using a Novel Method, Adv. Funct. Mater., 2003, 13(12): 925~928
    [221] Lu XF, Mao H, Chao DM, et al., Fabrication of polyaniline nanostructures under ultrasonic irradiation: From nanotubes to nanofibers, Macromol. Chem. Phys., 2006, 207(22): 2142~2152
    [222] Du XS, Zhou CF, Tao G, Novel Solid-State and Template-Free Synthesis of Branched Polyaniline Nanofibers, 2008, 20(12): 3806~3808
    [223] Yoo EJ, Kim J, Hosono E, et al., Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano Lett., 2008, 8(8): 2277~2282
    [224] Liu GQ, Cai WP, Liang CH, Trapeziform Ag Nanosheet Arrays Induced by Electrochemical, Deposition on Au-Coated Substrate, Cryst. Growth Des., 2008, 8(8): 2748~2752
    [225] Liu JY, Guo Z, Meng FL, et al., Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS(en)0.5 (en = ethylenediamine) precursor. Application in a gas sensor for indoor air contaminant detection, Nanotechnology, 2009, 20(12): 125501~125508
    [226] Compton OC, Osterloh FE, Niobate Nanosheets as Catalysts for Photochemical Water Splitting into Hydrogen and Hydrogen Peroxide, J. Phys. Chem. C, 2009, 113(1): 479~485
    [227] Ke QP, Li GL, Liu Y, et al., Formation of Superhydrophobic Polymerized n-Octadecylsiloxane Nanosheets,Langmuir, 2009, 26(5): 3579~3584
    [228] do Nascimento GM, Constantino VRL, Landers R, et al., Aniline polymerization into montmorillonite clay: A spectroscopic investigation of the intercalated conduct-ling polymer, Macromolecules, 2004, 37(25): 9373~9385
    [229] do Nascimento GM, Constantino VRL, Landers R, et al., Spectroscopic characterization of polyaniline formed in the presence of montmorillonite clay, Polymer, 2006, 47(14): 6131~6139
    [230] Pang SP, Li GC, Zhang ZK, Synthesis of polyaniline-vanadium oxide nanocomposite nanosheets, Macromol. Rapid Commun., 2005, 26(15): 1261~1265
    [231] Han J, Song GP, Guo R, Nanostructure-Based Leaf-like Polyaniline in the Presence of an Amphiphilic Triblock Copolymer, Adv. Mater., 2007, 19(19): 2993~2999
    [232] Amarnath CA, Kim J, Kim K, et al., Nanoflakes to nanorods and nanospheres transition of selenious acid doped polyaniline., Polymer, 2008, 49(2): 432~437
    [233] Zhou CQ, Han J, Song GP, et al., Fabrication of polyaniline with hierarchical structures in alkaline solution, Eur. Polym. J., 2008, 44(9): 2850~2858
    [234] Li GC, Zhang CQ, Peng HR, Facile Synthesis of Self-Assembled Polyaniline Nanodisks, Macromol. Rapid Commun., 2008, 29(1): 63~67
    [235] Zhou CQ, Han J, Guo R, Controllable Synthesis of Polyaniline Multidimensional Architectures: From Plate-like Structures to Flower-like Superstructures, Macromolecules, 2008, 41(17): 6473~6479
    [236] Wang JX, Wang JS, Zhang XY, et al., Assembly of polyaniline nanostructures, Macromol. Rapid Commun., 2007, 28(1): 84~87
    [237] Wang JS, Wang JX, Yang Z, et al., A novel strategy for the synthesis of polyaniline nanostructures with controlled morphology, Reac. Func. Polym., 2008, 61(10): 1435~1440
    [238]王俊生,聚苯胺微/纳米结构的构建与表征:[博士学位论文],天津;天津大学,2009
    [239] Katz E, Willner I, Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications, Angew. Chem. Int. Ed., 2004, 43(45): 6042~6108
    [240] Zhou XF, Hu ZL, Fan YQ, et al., Microspheric Organization of Multilayered ZnO Nanosheets with Hierarchically Porous Structures,J. Phys. Chem. C, 2008, 112(31): 11722–11728
    [241] Kuang DB, Lei BX, Pan YP, et al., Fabrication of Novel Hierarchical-Ni(OH)2 and NiO Microspheres via an Easy Hydrothermal Process, J. Phys. Chem. C, 2009, 113(14): 5508~5513
    [242] Shen JM, Feng YT, Formation of Flower-Like Carbon Nanosheet Aggregations and Their Electrochemical Application, J. Phys. Chem. C, 2008, 112(34): 13114~13120
    [243] Zhou XF, Chen SY, Zhang DY, et al., Microsphere Organization of Nanorods Directed by PEG Linear Polymer, Langmuir, 2006, 22(4): 1383~1387
    [244] Bain SW, Ma Z, Cui ZM, et al., Synthesis of Micrometer-Sized Nanostructured Magnesium Oxide and Its High Catalytic Activity in the Claisen-Schmidt Condensation Reaction, J. Phys. Chem. C, 2008, 112(30): 11340~11344
    [245] Zeng HC, Synthetic architecture of interior space for inorganic nanostructures, J. Mater. Chem., 2006, 16: 649~662
    [246] Yang M, Yao X X, Wang G, et al., A simple method to synthesize sea urchin-like polyaniline hollow spheres, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 324(1): 113~116
    [247] Zhu Y, Hu D, Wan M X, et al., Conducting and superhydrophobic rambutan-like hollow spheres of polyaniline, Adv. Mater., 2007, 19(16): 2092~2096
    [248] Zhu Y, Li J M, Wan M X, et al., Superhydrophobic 3D microstructures assembled from 1D nanofibers of polyaniline, Macromol. Rapid Commun., 2008, 29(3): 239~243
    [249] Zhu Y, Li J M, Wan M X, et al., 3D-boxlike polyaniline microstructures with superhydrophobic and high-crystalline properties, Polymer, 2008, 49(16): 3419~3423
    [250] Wang JS, Wang JX, Wang Z, et al., A Template-Free Method toward Urchin-Like Polyaniline Microspheres, Macromol. Rapid Commun., 2009, 30(8): 604~608
    [251] Chen ZW, Xu LB, Li WZ, et al., Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells, Nanotechnology, 2006, 17 (20): 5254~5259
    [252] O'Mullane AP, Dale SE, Macpherson JV, et al., Fabrication and electrocatalytic properties of polyaniline/Pt nanoparticle composites, Chem. Commun., 2004, 14: 1606~1607
    [253] Mu SL, Shan D, Yang YF, et al., The electrocatalytic characteristics of polyaniline synthesized in the presence of ferrocenesulfonic acid, Synth. Met., 2003, 135(1~3): 199~200
    [254] Casella IG, Guascito MR, Electrocatalysis of ascorbic acid ion the glassy carbon electrode chemically modified with polyaniline films, Electroanal., 1997, 9(18): 1381~1386
    [255] Jia PT, Argun AA, Xu JW, et al., Enhanced Electrochromic Switching in Multilayer Thin Films of Polyaniline-Tethered Silsesquioxane Nanocage. Chem. Mater., 2009, 21(19): 4434~4441
    [256] Prakash R, Santhanam KSV, Electrochromic window based on polyaniline,J. Solid State Electrochem., 1998,2 (2): 123~125
    [257] Gupta V, Miura N, High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline, Mater. Lett., 2006, 60(12): 1466~1469
    [258] Mondal SK, Barai K, Munichandraiah N, High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate, Electrochim. Acta, 2007, 52(9): 3258~3264
    [259] Huang JX, Virji S, Weiller BH, et al., Nanostructured Polyaniline Sensors, Chem. Eur. J., 2004, 10(6): 1314~1319
    [260] Zhao M, Wu XM, Cai CX, Polyaniline Nanofibers: Synthesis, Characterization, and Application to Direct Electron Transfer of Glucose Oxidase, J. Phys. Chem. C, 2009, 113(12): 4987-4996
    [261] Tan KL,Tan BTG, Kang ET, et al., The chemical nature of the nitrogens in polypyrrole and polyaniline:A comparative study by x-ray photoelectron spectroscopy, J. Chem. Phys., 1991, 94(8): 5382~5388
    [262] Li ZF, Kang ET, Neoh KG, et al., Effect of thermal processing conditions on the intrinsic oxidation states and mechanical properties of polyaniline films, Synth. Met., 1997, 87(1): 45~52
    [263] Lim SL, Tan KL, Kang ET, Interactions of evaporated aluminum atoms with polyaniline films-effects of dopant anion and adsorbed oxygen, Synth. Met., 1998, 92(3): 213~222
    [264] Stejskal J, Sapurina I, Solid-State Protonation and Electrical Conductivity of Polyaniline, Macromolecules, 1998, 31(7): 2218~2222
    [265] Huang J, Wan MX, In Situ Doping Polymerization of Polyaniline Microtubules in the Presence ofβ-Naphthalenesulfonic Acid, J. Polym. Sci A: Polym. Chem., 1999, 37(2): 151~157
    [266] Ryu KS, Moon BW, Joo J, et al., Characterization of highly conducting lithium salt doped polyaniline films prepared from polymer solution, Polymer, 2001, 42(23): 9355~9360
    [267] Fukuda T, Takezoe H, Ishikawa K, et al., Ir And Raman Studies In Three Polyanilines Oxidation Levels, Synth. Met., 1995, 69(1~3): 175~176
    [268]谢晶曦,常俊标,王绪明,红外光谱在有机化学和药物化学中的应用(修订版),科学出版社,2001,163~168
    [269] Pouget JP, Jozefowicz ME, Epstein AJ, et al., X-ray Structure of Polyaniline, Macromolecules, 1991, 24(3): 779~789
    [270] Wan MX, Li JC, Formation Mechanism of Polyaniline Microtubules Synthesized by a Template-Free Method, J. Polym. Sci. A: Polym. Chem., 2000, 38(13): 2359~2364
    [271] Zhu Y, Ren GQ, Wan MX, et al., 3D Hollow Microspheres Assembled from 1D Polyaniline Nanowires through a Cooperation Reaction, Macromol. Chem. Phys., 2009, 210(23): 2046~2051
    [272] Ayad M, Prastomo N, Matsuda A, Synthesis and characterization of polyaniline-camphorsulphonic acid nanotube film, Mater. Lett., 2010, 64(3): 379~382
    [273] Wu CG, Yeh YR, Chen JY, et al., Electroless surface polymerization of ordered conducting polyaniline films on aniline-primed substrates, Polymer, 2001, 42(7): 2877~2885
    [274] Goel S, Gupta A. Singh KP, et al., Optical studies of polyaniline nanostructures, Mater. Sci. Eng. A, 2007, 443(1~2): 71~76
    [275] Yue J, Epstein AJ, Synthesis of Self-Doped Conducting Polyaniline, J. Am. Chem. Soc., 1990, 112(7): 2800~2801
    [276] Chen SA, Hwang GW, Synthesis of Water-Soluble Self-Acid-Doped Polyaniline, J. Am. Chem. Soc., 1994, 116(17): 7939~7940
    [277] Pyshkina O, Kim B, Korovin AN, et al., Interpolymer complexation of water-soluble self-doped polyaniline, Synth. Met., 2008, 158(21-24): 999~1003
    [278] Takahashi K, Nakamura K, Yamaguchi T, et al., Characterization of water-soluble externally HCl-doped conducting polyaniline, Synth. Met., 2002, 128(1): 27~33
    [279] Trchova M, Sedenkova I, Stejskal J, In-situ polymerized polyaniline films 6. FTIR spectroscopic study of aniline polymerization, Synth. Met., 2005, 154(1~3): 1~4
    [280] Stejskal J, Sapurina I, Prokes J, et al., In-situ polymerized polyaniline films, Synth. Met., 1999, 105(3): 195~202