纳米球形二氧化硅的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别研究均相化学沉淀法、醇盐水解法以及微乳液法制备窄分布纳米球形SiO_2,对其制备条件进行研究,并用SEM、TEM、XRD、FTIR、TG等表征手段对粉体的性能进行分析。
     本文首先采用均相化学沉淀法制备纳米SiO_2,以聚乙二醇(PEG)为表面活性剂,丙三醇为分散剂,水玻璃为主要原料,乙酸乙酯为潜在酸试剂,进行沉淀反应,研究了硅源浓度、乙酸乙酯用量、分散剂用量、反应温度、焙烧温度等因素对SiO_2颗粒大小及形貌的影响。并采用现代检测手段对样品表征,制备出了无定形纳米SiO_2。结果表明该法所得SiO_2颗粒呈球形,平均粒径为80nm,比表面积为820m~2.g~(-1),但分散性不好。
     醇盐水解法是在醇水混合溶剂中以浓氨水为催化剂,正硅酸乙酯为硅源,通过醇盐水解工艺制备出粒径为60~130nm SiO_2球形颗粒。研究氨水浓度、共溶剂的用量等对二氧化硅颗粒大小及形貌的影响。结果表明:氨水浓度是影响颗粒形态的主要因素,随着氨水浓度增大,SiO_2颗粒粒径有所增加;表面活性剂与产物的生成速度密切相关,需控制在合适的范围内;加入无水乙醇作为共溶剂,可促进水解反应的进行。但是此法所得样品的团聚问题依然存在,为解决这一问题,本论文又采用微乳液法。
     微乳液法是以环己烷/Span-80和Tween-80/水(质量比为12%氨水溶液)形成W/O反相微乳液法,采用正交试验制备出粒径为65~140nm,且分散性较好的SiO_2球形颗粒。正交试验分析表明:表面活性剂加入量是影响SiO_2粒径及形貌的主要因素。
     通过对以上三种方法的比较分析可知:前两种方法所得的样品存在粒径分布不均匀,团聚现象严重,且成球性不好的问题,而微乳液法能很好地解决这些问题。
This article prepares nano-SiO_2 spherical particle with the homo-precipitation method, the alkoxide hydrolysis method and the micro-emulsion method.The basic performance of powder has been characterized by means of SEM, TEM, XRD, TG and FTIR.
     First, this paper prepares SiO_2 with homo-precipitation method, used the water glass as one major raw material, polyethylene glycol (PEG) as the surface active agent, Glycerol for dispersant, the ethyl acetate as hide reagent. It was studied that the influence of silicon source density, ethyl acetate amount ,dispersing agent amount , reaction temperature, roasting temperature on the size and appearance. Later we carry out symptom with modern detection means for it. The results indicated that these powder SiO_2 is spherical approximately, the average particle size is 80 run and the specific area is 820m~2.g~(-1), but the dispersion is bad.
     The alkoxide hydrolysis method is that using the strong ammonia water as the catalyst in the mellow water component solvent and the tetraethoxy-silicane (TEOS) as the silicon source, prepares the particle size is between 60nm and 130nm . Effects of the solvent, the amount of surface active agent, the concentration of ammonia and etc. on the particle size and morphology SiO_2 were investigated by SEM. The result showed the ammonia water density was the primary factor to affect the particle shape, with the increasing of ammonia water density the SiO_2 particle size increases slightly. The production had the close relation with the water volume so it must be controlled in the appropriate scope. The absolute alcohol as the co-solvent could promote hydrolytic reaction. However, the reunion problem remains, this paper also used micro emulsion in order to solve this problem.
     The micro emulsion method is that forming the W/O opposition micro emulsion taking cyclohexane /Span-80 and the Tween-80/ water (mass ratio as 12% ammonia spirit), uses the orthogonal test to prepare the monodispersed SiO_2 spherical particle with the size between 60 and 140 nm .The orthogonal test analysis indicated that the quantity of the surface active agent is primary factor which affects the SiO_2 pellet particle size and the appearance.
     Through the above three methods of analysis can be drawn: the first two methods exist samples from the uneven distribution of particle size, the reunion more serious, and product of a bad ball, but micro-emulsion can be a very good method to solve these problems.
引文
[1].张立德.纳米材料和纳米结构[M].北京:科学出版社,2000
    [2].张立德.超微粉体制备与应用[M].中国石化出版社,材料导报,2001
    [3].杨剑,腾凤恩.纳米材料综述[J]1997.11(2):6-10
    [4].张志馄,崔作霖.纳米技术与纳米材料[M].北京:国防工业出版社,2000
    [5].吴庆生,郑能武.分子自组装与纳米材料的制备[J].化学世界,1995,5:233-235
    [6].Zilg C,Reichert P,Dietsche.Plastics and Rubber Nano Composites Based upon aired Silicates[J].Kun stsoffe Plast Europe,1998,88(10):1812
    [7].张立德.纳米材料的研究现状和发展趋势[J].代科学仪器,1998,1:27-29
    [8].陈艾.电子科技导报,1998,12:19-25
    [9].Giannelis E.P.二聚合物/层状硅酸盐纳米复合材料的合成及性能[J].塑料(日文),1995,46(9):25
    [10].钱军民,李旭祥,黄海燕.纳米材料的性质及其制备方法[J].化工新型材料,2001,29(7):1-5
    [11].石士考.纳米材料的特性及其应用[J].大学化学,2001,16(2):39-42
    [12].张喜梅,陈玲,李琳,等纳米材料制备研究现状及其发展方向[J].现代化工,2000,20(7):13-16
    [13].张立德纳米材料[M].北京:化学工业出版社,2000
    [14].李新勇,李树本.纳米半导体研究进展[J].化学进展,1996,9(3):231-239
    [15].王永康,王立.纳米材料科学与技术[M].杭州:浙江大学出版社,2003
    [16].刘俊渤,减玉春,昊景贵,等.纳米二氧化硅的开发与应用[J].长春工业大学学报,2003,24(4):9-12
    [17].刘景春,韩建成.跨世纪高科技材料一员-纳米SiO_2[J].涂料工业,1998,(1):34-35
    [18].苏学军,郑典模.纳米SiO_2的应用研究进展[J]。江西化工,2002,(1):6-10
    [19].丁钦英,陈光民.微孔型二氧化硅硅胶在彩色喷墨打印纸中的应用技术[J].影像技术,2002,(2):44-46
    [20].陈国新,赵石林.纳米UV屏蔽透明涂料的研制[J].现代涂料与涂装,2003,(3):1-3
    [21].边蕴静.纳米材料在涂料中的应用[J].化工新型材料.2001,29(7):31-32
    [22].Andrea B R Mayer.Palladium and platinum nano catalysts protected by amphiphilicCopolymers[J].1992,255:1093-1097
    [23].Poly J,John B.Wiley.Science,1998,30(3):197-205
    [24].徐华蕊,李凤生等.沉淀法制备纳米级粒子的研究.化工进展,1996(5):19-23
    [25].Mingos D M P and Baghurst D.R.Chemical Society Reviews,1991:1-47
    [26].Schmidt M,Schwertfeger F.Journal of Non-crystalline Solids.,1998:346-368
    [27].秦晓东,蒋晓明,陈月珠.高比表面积超细二氧化硅粉体的制备.石油大学学报(自然科学版),2001(3):36-38
    [28].赵秦生,李中军,刘长让.溶胶—凝胶法制备多孔SiO_2超细粉体,中南工业大学学报,1998(2):131-134
    [29].沈军,王钮,甘礼华等.溶胶—凝胶法SiO_2气凝胶及其特性研究.无机材料导报,1995(1):69-75
    [30].王子忱,王莉玮等.沉淀法合成高比表面积超细SiO_2.无机材料学报,1997(3):391-395
    [31].刘景春.韩建成.纳米SiO_2材料的应用.硅酸盐通报,1998(6):52-54
    [32].严东生.纳米材料的合成与制备.无机材料学报,1995,10(1):1-5
    [33].都有为.超微颗粒的物理特性.材料导报,1992(5):1-6
    [34].陈夕,黄丽,徐定宁.纳米材料的进展及其在塑料中的应用.国外塑料,1995(3):5-12
    [35].王相田,黎明,顾达票宕.超微粒子分散.化学通报.1995(3):13-17
    [36].唐绍裘.陶瓷粉末制备技术的发展趋势.中国陶瓷工业.2002(9):37-39
    [37].许坷敏,杨新春,段贤峰.多孔纳米SiO_2微粉的制备与表征.硅酸盐通报.2001(1):58-61
    [38].李中军,贾汉东,申小清.水玻璃—乙酸乙酯体系的成胶特性及SiO_2凝胶粉末的制备.硅酸盐学报.2000(1):77-79
    [39].申小清,李中军,要红昌.纳米SiO_2粉末的共沸蒸馏法制备及机理.郑州大学学报,2002(6):88-91
    [40].李中军,贾汉东,申小清.SiO_2凝胶粉末的制备.硅酸盐学报.2000(1):87-89
    [41].Roger A.Assink,BraceD,Kay.J.Non—Crystal.Solids,1988(9):359-371
    [42].张清岑,刘小鹤.超分散剂的合成及其对SiO_2微粉分散稳定性的影响.中南工业大学学报2002,33(3):235-236
    [43].黄苏萍,张清岑超微SiO_2的分散机理.中国有色金属学报.2001(3):34-37
    [44].丁立国,张密林.化学沉淀法合成纳米SiO_2化学工程师 2004(2):63-64
    [45].郭宇,吴红梅等.化学沉淀法制备纳米二氧化硅.辽宁化工.2005(2):56-57
    [46].Peigen,N.Peng,D.Sing,Y.C.Adv.Mater.2001(6):437-438
    [47].林健.催化剂对止硅酸乙酷水解-聚合机理的影响[J].无机材料学报.1997, 3:363-369
    [48].Stober,W.,Fink,A.,Bohn,E.J.Controlled Growth of Mono disperse Silica Spheres in the micron size Range[J].colloid Interface Sci.1968:26-62
    [49].沈新璋,金名惠.纳米二氧化硅的制备与表征.涂料工业,2002(9):15-16.
    [50].秦晓东,蒋晓明.高比表面积超细二氧化硅粉体的制备.石油大学学报(自然科学版)2001,25(3):36-37.
    [51].DURAN A,SERNA C,et al.Structural considerations about SiO_2 glasses prepared by sol-gel[J].Journal of Non2Crystalline Solids,1986,82(1):69-77
    [52].李德慧,范德增.单分散球形纳米二氧化硅的制备新方法,2005(9):152-153
    [53].赵瑞玉,董鹏,梁文杰.单分散二氧化硅体系制备中正硅酸乙醋水解与成核及颗粒生长的关系[J].石油大学学报,1995(5):89-92
    [54].霍玉秋,翟玉春.醇盐水解沉淀法制备二氧化硅纳米粉.微纳电子技术,2003(9):27
    [55].司玲,王利侠,张杰等.亚微米级AgS_2空心球的乳液聚合[J].无机化学学报,2003,9(11):1253-1256
    [56].王大鸳,崔励,曹传宝等.微乳液法制备不同形貌低维硒化锌纳来晶[J].人工晶体学报,2006,35(3):470-473
    [57].Fujiwaza M,Shiokawa,K.Tanaka Y.etal,Preparation and formation mechanism of silica microcapsules(hollow sphere)by water/oil/water interracial reaction,[J]Chemistry of Material,2004,16(25):5420
    [58].Jang J,Ha H.Fabrication of hollow polystyrene nanosperes polymerization using tri blocks copolymers[J].Longmuir,2002,8(14):5613
    [59].梁依经,黄伟九等.微乳液法制备纳米材料研究进展,2007,21(9):89-90
    [60].胡利利,微乳液研究进展及应用.日用化学品工业,2007,31(1):18-19
    [61].Bourrem,Schechter R S.Micro emulsion and related systems:formulation,solvency,and physical properties[M].New York:Marcel Decker,1988:504
    [62].施利毅,华彬,张剑平.微乳液的结构及其在制备超细颗粒中的应用[J].功能材料,1998,29(2):136
    [63].Arriagada F J,Osseo-Asare K.Synthesis of nano-size-silica in a nonionic water-in-oil micro emulsion[J].Colloid and Interface Science,1999,211:210
    [64].LOPEZ,QUINTELA M A.Synthesis of nanomaterials in micro emulsions:formation mechanisms and growth control[J].Current Opinion in Colloid and Interface Science,2003,8(2):137-144
    [65].THOMAS F,TOWEY A K,BRIAN H.Robinson kinetics and mechanism of formation of quantum-sized cadmium sulphide particles in water-aerosol-OT-oil micro emulsions[J].Journal of the Chemical Society,1990,86(22):3757-3762
    [66].王玉孟,周兰英等.微乳液法制备纳米球形SiO_2正交试验研究.润滑与密封,2007,32(4):41-42