急性脑片中内源性多巴胺对皮层—纹状体突触短时程可塑性的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究急性脑片中内源性多巴胺(DA)在纹状体多棘神经元(MSN)电生理活动中的作用,探讨黑质-纹状体环路联系对MSN功能状态的影响。
     方法:
     建立急性皮层-纹状体-黑质脑片,采用可视脑片膜片钳全细胞记录技术,观察脑片中黑质细胞、纹状体细胞基本电生理活动。
     采用纹状体与皮层或黑质各种不同组合方式的矢状位脑片,观察纹状体MSN膜电位双相波动出现的条件。在皮层-纹状体-黑质脑片中,分别阻断DA受体和谷氨酸(Glu)受体,研究来自皮层的Glu和来自黑质的DA对MSN膜电位双相波动影响。对皮层进行配对刺激和短阵刺激,在背侧纹状体MSN记录兴奋性突触后电流(EPSC),观察皮层-纹状体突触短时程可塑性的变化。通过阻断皮层-纹状体-黑质脑片中的DA受体,观察内源性DA对短时程可塑性的作用。
     结果:
     1.皮层-纹状体-黑质脑片中,黑质细胞呈现出特征性自发动作电位,符合在体DA能细胞或γ-氨基丁酸能细胞的特征。部分纹状体细胞vf记录到与在体类似的膜电位双相波动,其细胞膜特性符合在体纹状体MSN的电生理特征。
     2.皮层-纹状体-黑质脑片中,65.2%的MSN(30/46)记录到自发的膜电位双相波动,在接近皮层的背侧纹状体有92.3%的MSN(24/26)表现为膜电位双相波动;而腹侧纹状体只有30%的MSN(6/20)出现膜电位的波动。阻断DA受体使去极化平台电位(up state)的幅度明显降低(P <0.05),其中阻断DA D1受体降低up state的水平(P <0.05),阻断动作电位的发放;而阻断D2受体使膜电位的双相状态均抬高(P <0.05)。在皮层-纹状体脑片、纹状体脑片、纹状体-黑质脑片中,MSN膜电位呈现为稳定的静息状态(down state),各组MSN静息电位值:皮层-纹状体-黑质脑片(-67.3±2.7mV,n=10);皮层-纹状体脑片(-69.7±2.6 mV,n=10);纹状体脑片(-73.2±3.3mV,n=10);纹状体黑质脑片(-71.4±2.5mV,n=10),差异无统计学意义(P>0.05)。
     3.皮层-纹状体-黑质脑片与皮层-纹状体脑片相比,配对刺激比率(PPR) :50ms刺激间隔时间(ISI)为139.6±18.2% / 113.3±13.7%(P<0.01);500ms ISI为67.4±10.6% /83.1±5.9% (P <0.01)。在皮层-纹状体-黑质脑片中阻断D2受体前后PPR:50ms ISI:136.5±12.6% / 113.6±10.5%,P<0.01;500ms ISI:66.2±6.4% / 79.3±7.1%,P<0.01。阻断D2受体皮层-纹状体-黑质脑片中PPR与皮层--纹状体脑片中PPR相比,差异无统计学意义。10Hz、20个刺激的短阵刺激引起EPSC幅度的依次减少,表现为短时程抑制(STD)。在皮层-纹状体-黑质脑片中,STD比率(0.20±0.03),D1受体阻断导致STD比率增大(0.58±0.03,P <0.001),抑制程度降低;而D2受体阻断后STD比率无明显差异(0.22±0.02,P >0.05)。皮层-纹状体脑片中,10Hz短阵刺激同样也引起EPSC幅度的依次减少,STD比率(0.59±0.05)与皮层-纹状体-黑质脑片(0.20±0.03)比较显著增加(P <0.001),与D1受体阻断的皮层-纹状体-黑质脑片比较STD比率相近(P >0.05)。
     结论:
     1.矢状位脑片中黑质和纹状体细胞保持与在体一致的基本电生理活动。
     2. MSN膜电位的双相波动是在DA的调节下对皮层Glu能兴奋性输入的反应,是纹状体与皮层、黑质间神经环路功能完整的表现。
     3.来自黑质的内源性DA通过对皮层-纹状体突触配对刺激和短阵刺激可塑性紧张性调控作用,可能参与调节纹状体MSN对皮层输入信息的瞬时整合和编码。
Objective
     To investigate the effects of endogenous dopamine (DA) on striatum medium spiny neurons(MSNs) in acute brain slices by the means of electrophysiology, and in an attempt to clarify the impact of the nigrostriatal circuit loop on the functional status of the MSNs.
     Methods
     We established the acute corticostriatonigral slices to observe the basic electrophysiological activity with the visual patch clamp whole-cell recording technique on acute brain slices.
     With the various kinds of the structures combination which consist of striatum and cortex or/and substantia nigra, we explored the conditions with appearance of the spontaneous two-state voltage oscillations. Then, with the methods of blocking the dopaminergic or glutamic acid receptor respectively, we inverstigated how the aminoglutaminic acid, which was come from the cortex, and the dopamine, which was from substantia nigra, made affects on the two-state voltage oscillations.
     Recording the excitatory postsynaptic current(EPSC) of MSNs in dorsal striatum while performing paired pulses or short train pulses to the cortex, to oberserve the change in short term plasticity. Observing the effect of dopamine on the short term plasticity by blocking the dopamine receptors in the corticostritonigral slice.
     Results
     1. Substantia nigral neurons displayed characteristical spontaneous action potentials and hyperpolarization-activated inward current in corticostriatonigral slices. They were consistent with the characteristics of dopaminergic neurons orγ-aminobutyric acid neurons in vivo. Spontaneous two-state voltage oscillations were recorded in some striatal medium spiny neurons as they were in vivo.
     2. 65.2 %( 30/46) MSNs recorded in corticostriatonigral slices displayed spontaneous two-state voltage oscillations. 92.3% (24/26) of MSNs in the dorsal striatum near to the cortex, only 30% of MSNs in the ventral striatum. The amplitude of depolarized plateau potential(up state) were decreased by blocking dopamine receptors (P <0.05). The potential level of up state was reduced by blocking D1 receptors (P <0.05), action potentials were stopped. The results of blocking D2 receptors were the potentials level of two states raised (P<0.05). MSNs membrane potential showed a stable resting level in any slice of corticostriatal slice(-67.3±2.7mV, n=10), striatal slice (-73.2±3.3mV, n=10) and nigrostriatal slice (-71.4±2.5mV,n=10). There was no significant difference(P >0.05).
     3. Compared the PPR in corticostriatonigral slices with it in corticostriatal slices, there was significant difference in PPR(50ms ISI:139.6±18.2% / 113.3±13.7%, P<0.01; 500ms ISI 67.4±10.6% /83.1±5.9% P<0.01). PPR before and after blocking the D2 receptors in corticostriatonigral slices was(50ms ISI:136.5±12.6% / 113.6±10.5%,P<0.01;500ms ISI:66.2±6.4% / 79.3±7.1%,P<0.01). there was no significant difference compared PPR in corticostriatonigral slices after blocking the D2 receptors with PPR in corticostriatal slices(P>0.05). 20 stimuli delivered at 10 Hz could induce the decrease of the EPSC amplitude, which showed STD. The STD ratio in corticostriatonigral slices was(0.20±0.03), The STD ratio increased after blocking the D1 receptors (0.58±0.03,P<0.001), the extent of STD decreased. The D2 receptors have no effect on the STD ratio. 20 stimuli delivered at 10 Hz could change the EPSC in corticostriatal slices as in corticostriatonigral slices. The STD ratio(0.59±0.05) increased than it in corticostriatonigral slices(P<0.001). But comparing with the STD ratio in the in corticostriatonigral slices after blocking the D1 receptors, there was no significant difference(P>0.05).
     Conclusions
     1. Substantia nigral neurons and striatal neurons in saggital brain slice keep the basic electrophysiological activity as in vivo.
     2. Spontaneous two-state voltage oscillations in striatal medium spiny neurons are the results of MSN receiving the afferent of cortical glutamatergic excitatory afferent and the regulation of dopamine. Reflecting the whole circuits between the striatum and cortex, substantia nigra neurons.
     3. Endogenous Dopamine from the substantia nigra maybe regulate the instantaneous integration and coding of MSNs to the information from the cortex by tonic effect on the short term plasticity of paired pulses and short train pulses in the corticostriatal synapses.
引文
1. Zhang ZX, Roman GC, Hong Z, et al. Parkinson’s disease in China: prevalence in Beijing, Xi’an, and Shanghai. Lancet, 2005, 365(9459): 595-597.
    2. Yung WH, H?usser MA, Jack JJ. Electrophysiology of dopaminergic and non- dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro. J Physiol, 1991, 436: 643-667.
    3.张宇,孔维佳,刘邦华等.。可视法脑片膜片钳技术观察大鼠前庭内侧核神经元毒蕈碱样胆碱能受体的电生理特性.中华耳鼻咽喉头颈外科杂志, 2007, 42(1): 48-52.
    4. S.M. Kearns, B Scheffler, A.K.Goetz, et al. A method for a more complete in vitro Parkinson’s model: Slice culture bioassay for modeling maintenance and repair of the nigrostriatal circuit. J Neurosci Methods, 2006, 157(1): 1-9.
    5. Volodymyr I. Pidoplichko, John A. Dani. Acid-sensitive ionic channels in midbrain dopamine neurons are sensitive to ammonium, which may contribute to hyperammonemia damage. Proc Natl Acad Sci, 2006, 103(30): 11376-11380.
    6. R. Vergara, C. Rick , S. Hernández-López ,et al. Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice. J Physiol , 2003 , 553(1):169-182.
    7. Neher E, Sakmann B. Noise analysis of drug induced voltage clamp currents in denervated frog muscle fibres. J Physiol, 1976, 258(3):705–729.
    8.胡琦,刘振伟,刘传绩。三环哌酯对海马脑片神经元烟碱受体及谷氨酸能兴奋性突触传递的阻断作用.中国药理学与毒理学杂志2007, 21(5): 393-398.
    9.赵明亮,刘国龙,隋建峰等。一种可用于500μm脑片的高分辨率细胞内标记技术.中国应用生理学杂志, 2007, 23(2): 254-257.
    10. Grace AA, Onn SP. Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci, (10): 3463-3481.
    11. Ilka Freiman, Alexandra Anton, Hannah Monyer,et al. Analysis of the effects of cannabinoids on identified synaptic connections in the caudate-putamen by paired recordings in transgenic mice. J Physiol, 2006 575(3): 789-806.
    12. Dietmar Plenz, Stephen T. Kitai . Up and Down States in Striatal Medium Spiny Neurons Simultaneously Recorded with Spontaneous Activity in Fast-Spiking Interneurons Studied in Cortex–Striatum–Substantia Nigra Organotypic Cultures . J Neurosci, 1998, 18(1):266-283。
    13. Stern EA, Kincaid AE, Wilson CJ. Spontaneous Subthreshold Membrane Potential Fluctuations and Action Potential Variability of Rat Corticostriatal and Striatal Neurons In Vivo. J Neurophysiol , 1997,77:1697-1715.
    14. Laurent Venance, Jacques Glowinski, Christian Giaume. Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices .J physiol ,2004, 559(1): 215-230.
    1. S.M. Kearns, B Scheffler, A.K.Goetz, et al. A method for a more complete in vitro Parkinson’s model: Slice culture bioassay for modeling maintenance and repair of the nigrostriatal circuit . J Neurosci Methods, 2006, 157(1): 1-9.
    2. Stern EA, Kincaid AE, Wilson CJ. Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J Neurophysiol. , 1997, 77(4):1697-715.
    3. Vergara R, Rick C, Hernández-López S, et al. Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice. J Physiol., 2003 ,15(553): 169-82.
    4. Wickens J.R., Reynolds J.N., Hyland B.I.. Neural mechanisms of reward-related motor learning. Curr. Opin. Neurobiol.,2003, 13:685–690.
    5. Bolam, J. P., Hanley, J. J., Booth, P. A., et al. Synaptic organisation of the basal ganglia. J. Anat.,2000, 196:527–542.
    6. Aosaki, T., Kimura, M. and Graybiel, A.M.. Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science ,1994,265: 412–415.
    7. Wilson CJ, Groves PM. Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Res, 1981, 220:67–80.
    8. Wilson CJ, Kawaguchi Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci,1996, 16:2397–2410.
    9. Reynolds JN, Wickens JR. Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum in vivo. Neuroscience , 2000,99:199–203.
    10. Stern, E. A., Jaeger, D., Wilson, C. J.. Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature,1998, 394:475–478.
    11. Wilson CJ. Dendritic morphology, inward rectification and the functional properties of neostriatal neurons. In: Single neuron computation (McKenna T, Davis J, Zornetzer SF, eds, San Diego: Academic.), 1992: 141-171.
    12. Wilson CJ . The generation of natural firing patterns in neostriatal neurons. In: Chemical signaling in the basal ganglia. Prog Brain Res,1993, 99:277-297.
    13. Nicola S. M., Surmeier J., Malenka R. C.. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci , 2002,23:185–215.
    14. Plenz D, Kitai ST. Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex–striatum–substantia nigra organotypic cultures. J Neurosci 1998,18:266–283.
    15. Kuei Y. Tseng, Abigail Snyder-Keller, Patricio O’Donnell. Dopaminergic modulation of striatal plateau depolarizations in corticostriatal organotypic cocultures. Psychopharmacology, 2007,191(3): 627–640.
    16. Gerfen CR. Molecular effects of dopamine on striatal-projection pathways. Trends Neurosci , 2000,23:s64–s70.
    17. Nicola S, Surmeier J, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 2000,23:185–215.
    18. Schultz W. Getting formal with dopamine and reward. Neuron, 2002,36:241–263.
    19. Reynolds JNJ, Wickens JR. Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum in vivo. Neuroscience , 2000,99:199–203.
    1. L. F. Abbott, Wade G. Regehr. Synaptic computation. Nature, 2004,431:796-803.
    2. Richardson MJ, Melamed O, Silberberg G, et al. Short-term synaptic plasticity orchestrates the response of pyramidal cells and interneurons to population bursts. J Comput Neurosci,2005, 18:323-331.
    3. Nicola SM, Woodward Hopf F, Hjelmstad GO. Contrast enhancement: a physiological effect of striatal dopamine? Cell Tissue Res,2004, 318:93-106.
    4. Pickel VM, Beckley SC, Joh TH,et al. Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum. Brain Res, 1981,225:373-385.
    5. Smith Y, Bennett BD, Bolam JP, et al. Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey.J Comp Neurol,1994, 344:1-19.
    6. Arbuthnott GW, Ingham CA, Wickens JR. Modulation by dopamine of rat corticostriatal input.Adv Pharmacol,1998,42:733-736.
    7. Bamford NS, Zhang H, Schmitz Y, et al. Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron, 2004,42:653-663.
    8. Nicola, S.M., Surmeier, D.J., Malenka, R.C. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci, 2000,23:185-215.
    9. Choi S ,Lovinger Dm. Decreased frequency but not amplitude of quantal synapticresponses associated with expression of corticostriatal long-term depression.J Neurosci,1997,17: 8613-8620.
    10. Stevens Cf , Wang Y. Changes in reliability of synaptic function as a mechanism for plasticity.Nature,1994,371: 704-707.
    11. Swandulla D, Hans M, Zipzer K, et al. Role of residual calcium in synaptic depression and posttetanic potentiation: fast and slow calcium signaling in nerve terminals.Neuron,1991,7: 915-926.
    12. Zucker Rs. Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol,1999,9: 305-313.
    13. West AR, Grace AA . Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci,2002,22:294-304.
    14. J. A. Rosenkranz, D. Johnston. Dopaminergic regulation of neuronal excitability through modulation of Ih in layer V entorhinal cortex. J Neurosci,2006, 26(12),3229–3244.
    15. Partridge JG, Apparsundaram S, Gerhardt GA, et al. Nicotinic acetylcholine receptors interact with dopamine in induction of striatal long-term depression.J Neurosci,2002,22:2541-2549.
    16. David HN, Ansseau M, Abraini JH.Dopamine-glutamate reciprocal modulation of release and motor responses in the rat caudate-putamen and nucleus accumbens of“intact”animals. Brain Res Rev,2005,50:336-360.
    17. Schultz W . Getting formal with dopamine and reward.Neuron,2002, 36:241- 263.
    18. Kreitzer AC, MalenkaRC. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature,2007, 445:643-652
    19. Jun Ding, Jayms D., Peterson, et al. Surmeier corticostriatal and thalamostriatal synapses have distinctive properties. J Neurosci, 2008,28(25):6483-6492. .
    20. Gerfen CR .Indirect-pathway neurons lose their spines in Parkinson disease.Nat Neurosci,2006,9:157-158.
    21. Reynolds JN, Hyland BI, Wickens JR. A cellular mechanism of reward-related learning.Nature,2001,413:67-70.
    1. Bolam, J. P., Hanley, J. J., Booth, P. A., et al.(2000)Synaptic organisation of the basal ganglia. J. Anat. 196:527–542.
    2. Graybiel, A. M., Aosaki, T., Flaherty,A.W., et al.(1994)The basal ganglia and adaptive motor control. Science 265:1826–1831.
    3. Lei W, Jiao Y, Del Mar N.(2004)Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 24:8289–8299.
    4. M. G. Murer, K. Y. Tseng, F. Kasanetz,et al.(2002)Brain Oscillations, Striatal Neurons, and Dopamine. Cellular and Molecular Neurobiology, 22:611-632.
    5. Mallet N, Le Moine C, Charpier S, et al (2005). Feedforward inhibition of projection neurons by fast spiking GABA interneurons in the rat striatum in vivo. J Neurosci 25:3857–3869.
    6. Bolam JP, Bergman H, Graybiel A,et al.(2005) Microcircuits, molecules and motivated behaviour: microcircuits in the striatum. In Microcircuits: The Interface Between Neurons and Global Brain Function, Dahlem Workshop Report 93. Edited by Grillner S, Graybiel A. Cambridge, MA: The MIT Press.
    7. Fa M, Mereu G, Ghiglieri V, et al. (2003) Electrophysiological and pharmacological characteristics of nigral dopaminergic neurons in the conscious, head-restrained rat.Synapse 48:1–9.
    8. Drouot X, Oshino S, Jarraya B,et al.(2004) Functional recovery in a primate model of Parkinson’s disease following motor cortex stimulation. Neuron 44:769–778.
    9. Joel D, Weiner I. (2000) The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. J Neurosci :96:451–474.
    10. Haber SN, Fudge JL, McFarland NR.(2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382.
    11. Barrot M, Calza L, Pozza M,et al.(2000) Differential calbindin-immunoreactivity in dopamine neurons projecting to the rat striatal complex. Eur J Neurosci 12:4578–4582.
    12. Antonello B., Robert C.(1999)Properties and Plasticity of Excitatory Synapses on Dopaminergic and GABAergic Cells in the Ventral Tegmental Area. J Neurosci 19: 3723–3730.
    13. Marie V.,Jacques G.,Laurent V.(2005)Electrical Synapses between Dopaminergic Neurons of the Substantia Nigra Pars Compacta The Journal of Neuroscience, 25:291–298.
    14. Neuhoff H, Neu A, Liss B. (2002) Ih channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci 22:1290–1302.
    15. Noma A, Irisawa H.(1976)A time- and voltage-dependent potassium current in the rabbit sinoatrial node cell. Pflugers Archiv 366: 251–258.
    16. Lucas LR, Harlan RE.(1995)Cholinergic regulation of tachykinin- and enkephalin-gene expression in the rat striatum. Mol Brain Res 30, 181–195.
    17. Bracci E, Centonze D, Bernardi G,et al.(2003)Voltagedependent membrane potential oscillations of rat striatal fast-spiking interneurons. J Physiol, 549:121-130.
    18. Rymar VV, Sasseville R, Luk KC,et al.(2004) Neurogenesis and stereological morphometry of calretinin-immunoreactive interneurons of the neostriatum. J Comp Neurol,469:325-339.
    19. Luk KC, Sadikot AF.(2001)GABA promotes survival but not proliferation of parvalbumin-immunoreactive interneurons in rodent neostriatum: an in vivo study with stereology. Neuroscience 104:93-103.
    20. Tepper JM, Koo′s T, Wilson CJ.(2004) GABAergic microcircuitry of the neostriatum. Trends Neurosci, 111:662-669.
    21. Galarreta M, Hestrin S.(2002)Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc Natl Acad Sci USA , 99:12438-12443.
    22. Ramanathan S, Hanley JJ, Deniau J-M, et al.(2002)Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum. J Neurosci ,22:8158-8169.
    23. Reynolds JN, Wickens JR. (2004)The corticostriatal input to giant aspiny interneurons in the rat: a candidate pathway for synchronising the response to reward-related cues. Brain Res 1011:115-128.
    24. Kawaguchi,Y..(1993) Physiological, morphological, and histochem-ical characterization of three classes of interneurons in rat neostri-atum. J. Neurosci. 13, 4908-4923.
    25. Zhou FM, Wilson CJ, Dani JA, et al.(2002)Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 53:590-605.
    26. Centonze D, Grande C, Usiello A, et al.(2003)Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J Neurosci 23:6245-6254.
    27. Yan, Z., Surmeier, D.J. (1996)Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane-delimited G-protein pathway.J. Neurosci. 16:2592-2604.
    28. Bracci E, Centonze D, Bernardi G, et al.(2002)Dopamine excites fast-spiking interneurons in the striatum. J Neurophysiol, 87:2190-2194.
    29. Guzman JN, Hernandez A, Galarraga E, et al.( 2003)Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum. J Neurosci, 23:8931-8940.
    30. Stern, E.A., Jaeger, D., Wilson, C.J ,et al.(1998) Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo.Nature 394:475-478.
    31. Ni, Z., Bouali-Benazzouz, R., Gao, D, et al. (2000). Changes in the firing pattern of globus pallidus neurons after the degeneration of nigrostriatal pathway are mediated by the subthalamic nucleus in the rat. Eur. J. Neurosci. 12:4338–4344.
    32. Sharpe, N. A., Tepper, J. M. (1998). Postnatal development of excitatory synaptic input to the rat neostriatum: An electron microscopic study. Neuroscience 84:1163–1175.
    33. Cowan, R.L., Wilson, C.J. (1994) Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J. Neurophysiol. 71:17-32.
    34. Plenz, D., and Kitai, S. T. (1998)Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J. Neurosci. 18:266–283.
    35. Saka, E., Iadarola, M., Fitzgerald, D. J, et al. (2002)Local circuit neurons in the striatum regulate neural and behavioral responses to dopaminergic stimulation. Proc. Natl. Acad. Sci. U.S.A.99:9004–9009.
    36. Koos, T.,Tepper, J.M. (2002). Dual cholinergic control of fast-spiking interneurons in the neostriatum.J. Neurosci. 22:529–535.
    37. Kaneko, S., Hikida, T.,Watanabe, D ,et al. (2000) Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. Science 289:633–637.
    38. Centonze, D., Picconi, B., Gubellini, P, et al. (2001). Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur. J. Neurosci. 13:1071–1077.
    39. Arbuthnott, G. W., Ingham, C. A., Wickens, J. R. (2000). Dopamine and synaptic plasticity in the neostriatum. J. Anat. 196:587–596.
    40. Surmeier, D.J., Eberwine J, Wilson CJ,et al. (1992) Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc. Natl. Acad. Sci. U. S. A. 89:10178–10182.
    41. Surmeier, D.J.,Bargas J,Hemmings HC,et al. (1995) Modulation of calcium currents by a D1dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14:385–397.
    42. Hernandez-Lopez, S. Bargas J, Surmeier DJ, et al. (2000) D2 dopamine receptors in striatal mediumspiny neurons reduce L-type Ca2+ currents and excitability via a novel PLCb1–IP3–calcineurin–signaling cascade. J. Neurosci. 20:8987–8995.
    43. Lin YJ, Greif GJ, Freedman JE et al. (1996) Permeation and block of dopamine-modulated potassium channels on rat striatal neurons by cesium and bariumions.J. Neurophysiol. 76:1413–1422.
    44. Calabresi P, Benedetti M, Mercuri NB,et al. (1988) Depletion of catecholamines reveals inhibitory effects of bromocryptine and lysuride on neostriatal neurones recorded intracellularly in vitro. Neuropharmacology 27:579–587.
    45. Calabresi P, De Murtas M, Mercuri NB,et al.(1992)Chronic neuroleptic treatment: D2 dopamine receptor supersensitivity and striatal glutamatergic transmission.Ann. Neurol. 31:366–373.
    46. Calabresi, P., Centonze, D., Gubellini, P, et al.(1998) Endogenous Ach enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC activation. Eur. J. Neurosci. 10: 2887-2895.
    47. Calabresi, P., Centonze, D., Gubellini, P,et al.(1998) Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses. Eur. J. Neurosci. 10:3020-3023.
    48. Schi.mann, S.N., Lledo, P-M., Vincent, J-D .(1995) Dopamine D1 receptor modulates the voltage-gated sodium current in rat striatal neurones through a protein kinase A. J. Physiol. 483:95-107.
    49. Calabresi, P., Centonze, D., Pisani, A,et al.(1998)Striatal spiny neurons and cholinergic interneurons express di.erential ionotropic glutamatergic responses and vulnerability: implications for ischemia and Huntington's disease. Ann. Neurol. 43:586-597.
    50. Calabresi, P., Centonze, D., Pisani, A, et al.(1998) Muscarinic IPSPs in rat striatal cholinergic interneurones. J. Physiol. 510:421-427.
    51. Seeman, P., Guan, H.C., Van Tol, et al.(1993) Dopamine D4 receptors elevated in schizophrenia. Nature 365:441-445.
    52. Clark, D., White, F.J. (1997.)D1 dopamine receptor - the search for a funtion: a critical evaluation of the D1/D2 dopamine classification and its functional implications. Synapse 1:347-388.
    53. Cepeda, C., Colwell, C.S., Itri, J.N., et al.(1998)Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J. Neurophysiol. 79:82-94.
    54. Nicola, S.M., Malenka, R.C. (1998)Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. J. Neurophysiol. 79: 1768-1776.
    55. Umemiya, M., Raymond, L.A.(1997) Dopaminergic modulation of excitory postsynaptic currents in rat neostriatal neurons. J. Neurophysiol. 78:1248-1255.
    56. Flores-Hernaández, J., Gallaraga, E., Bargas, J. (1997) Dopamine selectsglutamatergic inputs to neostriatal neurons. Synapse 25: 185-195.
    57. Saugstad, J.A., Kinzie, J.M., Mulvihill, E.R., et al.(1994) Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptors. Mol. Pharmac. 45:367-372.
    58. Schoepp,D.D.,Goldsworthy,J.,Johnson, B.G., et al.(1994) 3,5-Dihydroxyphenylglycine is a highly selective agonist for phosphoinositide-linked metabotropic glutamate receptors in the rat hyppocampus. J. Neurochem. 63: 769-772.
    59. Pin, J.-P., Duvoisin, R.(1995)Neurotransmitter receptors I. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1-26.
    60. Pisani, A., Calabresi, P., Centonze, D., et al(1997) Activation of group III metabotropic glutamate receptors depresses glutamatergic transmission at corticostriatal synapse. Neuropharmacology 36: 845-851.
    61. Pisani, A., Calabresi, P., Centonze, D.,et al.(1997). Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones. Br. J. Pharmac. 120:1007-1014.
    62. Turski, L., Turski, W.A. (1993)Towards an understanding of the role of glutamate in neurodegenerative disorders: energy metabolism and neuropathology. Experentia 49:1064-1072.
    63. Fredholm, B.B., Abbracchio, M.P., Burnstock, G.,et al.(1994) Nomenclature and classification of purinoceptors. Pharmac. Rev. 46:143-156.
    64. Calabresi, P., Centonze, D., Pisani, A,et al.(1997) Endogenous adenosine mediates the presynaptic inhibition induced by aglycemia at corticostriatal synapses. J. Neurosci. 17: 4509-4516
    65. Mori, A., Shindou, T., Ichimura, M., et al. (1996)The role of adenosine A2a receptors in regulating GABAergic synaptic transmission in striatal medium spiny neurons. J. Neurosci. 16:605-611.
    66. Noèremberg, W., Wirkner, K., Illes, P. (1997) Effect of adenosine and some of its structural analogues on the conductance of NMDA receptor channels in a subset of rat neostriatal neurones. Br. J. Pharmac. 112, 71-80.
    67. L. F. Abbott , Wade G. Regehr..(2004) Synaptic computation Nature 431: 796-803.
    68. Richardson MJ, Melamed O, Silberberg G,et al. Short-term synaptic plasticity orchestrates the response of pyramidal cells and interneurons to population bursts. (2005)J Comput Neurosci 18:323–331.
    69. Kalivas, P.W., Nakamura, M. (1999).Neural systems for behavioral activation and reward. Curr. Opin. Neurobiol. 9:223–227.
    70. Kreitzer, A.C., Malenka, R.C..(2005) Dopamine modulation of statedependent endocannabinoid release and long-term depression in the striatum. J. Neurosci. 25:10537–10545.
    71. Z. Wang, L. Kai, M. Day, et al. (2006) Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 50:443–452.
    72. Zhou, F.M. et al. (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat. Neurosci. 4:1224–1229.
    73. Calabresi P, Pisani A, Mercuri NB, et al. (1992) Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur. J. Neurosci. 4:929–935.
    74. Centonze D, Gubellini P, Picconi B,et al. (1999) Unilateral dopamine denervation blocks corticostriatal LTP. J. Neurophysiol. 82:3575–3579.
    75. Kerr, J.N. ,Wickens, J.R. (2001) Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J. Neurophysiol. 85:117–124.
    76. Gerfen, C.R. (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 15:133–139.
    77. Gerfen CR, Engber TM, Mahan LC, et al. (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432.
    78. Calabresi P, Maj R, Pisani A, et al. (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci. 12:4224–4233.
    79. Wilson, C.J.,Kawaguchi, Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16: 2397–2410.
    80. Stern,E.A., Kincaid,AE., and Wilson(1997) Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 77:1697–1715.
    81. Jaber M.; Robinson S.W.; Missale C. et al. (1996) Dopamine receptors and brain function. Neuropharmacology 35, 1503–1519.
    82. Mahon S, Vautrelle N, Pezard L, et al. (2006) Distinct patterns of striatal medium spiny neuron activity during the natural sleep–wake cycle. J. Neurosci. 26, 12587–12595.