肥厚性心肌病左室舒张早期血流传播速度与心肌肥厚和左室局部舒张功能之间关系的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 检测肥厚性心肌病(HCM)病人左室舒张早期血流传播速度的变化,探讨左室舒张早期血流传播速度与心肌肥厚和左室局部舒张功能之间的关系,以及在HCM左室舒张功能评价中的临床应用价值。方法 选取HCM病人52例和年龄匹配的健康志愿者30例。在胸骨旁二尖瓣腱索水平、乳头肌水平和心尖水平左室短轴切面,应用二维超声心动图测量室间隔、左室前壁、侧壁和下壁等12个心肌节段的室壁厚度,以计算左室心肌厚度指数(WTI)和心肌肥厚不对称性指数(WAI)。在心尖四腔心切面,应用脉冲多普勒超声获取舒张期二尖瓣血流频谱,测量舒张早期峰值流速(E)、心房收缩期峰值流速(A)、E/A和E波减速时间(DT)。在心尖四腔心和心尖两腔心切面,应用组织多普勒成像获取室间隔、左室侧壁、前壁和下壁的基底段和中间段等8个心肌节段沿左室长轴运动的速度频谱,测量每个心肌节段的舒张早期心肌峰值运动速度(Em)和位移(De)、心房收缩期心肌峰值运动速度(Am)和位移(Da)以及Em/Am,计算各指标的平均值和左室心肌舒张不协调性指数(RAI)。在心尖四腔心切面,应用彩色M型多普勒超声心动图测量左室舒张早期血流传播速度(Vp)。结果WTI在HCM组和正常对照组之间存在显著性差异,分别为184.56+23.81和111.21+8.88(t=-11.69,P<0.0001),WAI也存在着显著性差异,分别为0.36+0.11和0.07+0.01(t=-14.04,P<0.0001)。HCM组E、A、E/A和DT与正常对照组之间无显著性差异(t=-0.99~2.23,P>0.05)。HCM组左室各心肌节段的Em、De、Em/Am、平均Em、平均De和平均Fm/Am明显小于正常对照组(t=0.09~14.13,P<0.0001),Am和平均Am也显著小于正常对照组(t=-2.31~5.38,P<0.05)。RAI在HCM组和正常对照组分别为0.11±0.02和0.04+0.01,二者之间存在着显著性差异(t=-3.67,P<0.0001)。Vp在HCM组和正常对照组分别为33.54±10.08cm/s和66.20±17.50 cm/s,二者之间存在着显著性差异(t=8.42,P<0.0001),多元线性回归分析表明在HCM病人RAI、LVEF和WAI是Vp的重要影响因素。根据左室舒张功能减退的不同程度,将52例HCM病人分为主动松弛性减低、假性正常化和限制型充盈三个亚组。在正常对照组、主动松弛性减低组、假性正常化组和限制型充盈组,Vp分别为(66.20+17.50)cm/s、(42.44±9.17)cm/s、(34.85+9.99)
    
    中文摘要
    em/S和(21.86士5.48)ernjs,呈逐渐减小的显著性变化(F= 29.80,P<0.001),
    spearma。等级相关分析显示Vp的变化与左室舒张功能分级之间存在良好的相关
    性(r=0.41,p<0.001)。平均Eln、平均De和平均Em/Am在正常对照组、主动松弛
    性减低组、假性正常化组和限制型充盈组也呈逐渐减小的显著性变化(F=
    5.05一66.93,p<0.001),Spearman等级相关分析显示平均Em,平均De和平均Em/Am
    的变化与左室舒张功能分级之间的相关性良好(r= 0.55一0.61,尸<0.001),尽管平
    均Am和平均Da的变化也存在显著性差异(介2.18一22.20,p<0.00一),但是speannan
    等级相关分析显示平均Am和平均Da的变化与左室舒张功能分级之间的无显著相
    关性(r二一0.051一0.18,P>0.05)。在正常对照组、主动松弛性减低组、假性正常化
    组和限制型充盈组,E呈现先减小后增大的显著性变化(F= 17.55,P<0 .001),但
    是spe~an等级相关分析显示E的变化与左室舒张功能分级之间无相关性(r=o.26,
    尸>0.05),A、E/A和DT在各组之间无显著性差异。结论HCM病人Vp显著低
    于正常对照组,并且随着左室舒张功能减退程度的加重,VP逐渐减小,左室局部
    心肌的松弛性能也随之逐渐减低。HCM病人的VP与左室肥厚心肌的不对称性分布
    及左室局部舒张功能之间相互关联,但受左室肥厚影响较小。
Objective To assess the change of the left ventricular early diastolic flow propagation velocity (Vp) in patients with hypertrophic cardiomyopathy, and to discuss the relation between Vp and left ventricular regional diastolic function as well as myocardial hypertrophy and the clinical application value of Vp in evaluating left ventricular diastolic function in patients with hypertrophic cardiomyopathy. Methods We studied 52 patients with hypertrophic cardiomyopathy and 30 healthy volunteers matched with age. The thickness of twelve myocardial segments of interseptal, lateral, inferior and anterior left ventricular wall was measured ar mitral, papillary muscle and apical level from a cross sectional image in the parasternal short axis view by transthoracic two-dimensional echocardiography to calculate left ventricular wall thickness index (WTI) and left ventricular wall asymmetry index (WAI). From the apical four chamber view, the image of mitral inflow was obtained and early diastolic peak flow velocity (E)
    , late diastolic peak flow velocity (A), the ratio of E/A and deceleration time of E wave were measured. From the apical four chamber and two chamber view, the basical segment and middle segment of interventricular septal, left ventricular lateral wall, anterior wall and inferior wall were obtained by tissue Doppler imaging. Early diastolic myocardial motion velocity (Em) and displacement (De), late diastolic peak myocardial motion velocity(Am) and displacement (Da), and the ratio of Em/Am were measured. The mean value of parameters and left ventricular wall relaxation asynchrony index (RAI) were calculated. From the apical four chamber view, left ventricular early diastolic flow propagation velocity (Vp) was measured by color M-mode echocardiography. Results WTI was significantly higher in the HCM group than in the control group, 154.56+23.81 and 92.94+8.88, respectively (t= -11.69, P<0.0001) . WAI was also significantly higher, 0.36+0.11 and 0.07+0.01, respectively (t= -14.04, p<0.0001) . There were no sig
    nificant differences in E, A, E/A and DT between the control and HCM groups (t= -0.99-2.23, P>0.05). Em, Am, Em/Am, De, Da, mean Em, mean Am, mean Em/Am, mean De and mean Da were significantly lower in the HCM group than in the control group ( t= 0.09-14.13, P<0.0001) . The value of RAI were 0.11+0.02 and 0.04+0.01 in the control group and HCM group respectively and there was a significant difference ( t= -3.67. P<0.0001 ) . The value of Vp were 38.54+ 10.08 cm/s and
    
    
    66.20+ 17.50 cm/s in the control group and HCM group, respectively, and there was a significant difference ( t= 8.42, p<0.0001) . Multinomial linear regression analysis showed WTI, RAI, WAI and LVEF were determinant to Vp in HCM group. According to various degrees of left ventricular diastolic dysfunction, hypertrophic cardiomyopathy group (52 cases) was divided into three subgroups: damaged left ventricular effective relaxation subgroup, pseudonormal filling pattern subgroup and restrictive filling pattern subgroups. The values of Vp in different left ventricular diastolic function groups were
    (66.20+ 17.50) cm/s, (42.44+9.17) cm/s, (34.85+9.99) cm/sand (21.86+5.48) cm/s, respectively. There was a decreasing gradually trend and a significantly difference
    (F= 29.80, P<0.001) . Spearman rank correlation analysis showed the correlation between the change of Vp and the degrees of left ventricular diastolic dysfunction was excellent (r= 0.41, p<0.001) . The mean Em and mean Em/Am decreased gradually significantly in the control group, damaged left ventricular effective relaxation subgroup, pseudonormal filling pattern subgroup and restrictive filling pattern subgroup (F= 5.05-66.93, P<0.001) . Spearman rank correlation analysis showed the values of the mean Em, mean De and mean Em/Am decreased gradually, and there were significant differences (F= 5.05-66.93, p<0.001) . Spearman rank correlation analysis showed there were excellent correlation between the changes of the mean Em, mean De, mean Em/Am and the degrees of left ventricular dias
引文
1 Rakowski H, Appleton C, Chan KL, et al. Canadian consensus recommendations for the measurement and reporting of diastolic dysfunction by echocardiography: from the investigators of Consensus on Diastolic Dysfunction by Echocardiography (review). J Am Soc Echocardiogr, 1996, 9:736-760
    2 Marchi SF, Allemann Y, Seiler C. Relaxation in hypertrophic cardiomyopathy and hypertensive heart disease: relations between hypertrophy and diastolic function. Heart, 2000, 83(6):678-684
    3 Steine K, Stugaard M, Smiseth OA. Mechanisms of retarded apical filling in acute ischemic left ventricular failure. Circulation 1999, 99:2048-2054
    4 Garcia MJ, Thomas JD, Klein AL. New Doppler echocardiographic applications for the study of diastolic function. J Am Coll Cardiol, 1998,32(4):865-875
    5 Courtois M, Ludbrook PA. Intraventricular pressure transients during relaxation and filling. In: Gaasch WH, LeWinter MM, editors. Left Ventricular Diastolic Dysfunction and Heart Failure. Philadelphia: Lea & Febiger, 1994:150-66
    6 Brun P, Tribouilly C, Dural AM, et al: Left ventricular flow propagation during early filling is related to wall relaxation: a color M-mode Doppler analyses. J Am Coll Cardiol, 1992, 20:420
    7 Steen T, Steen S. Filling of a model left ventricle studied by color M mode Doppler. Cardiovasc Res 1994, 28:1821-27
    8 Garcia MJ, Palac RT, Malenka DJ, Terrell P, Plehn JF. Color M-mode Doppler flow propagation velocity is a relatively preload-independent index of left ventricular filling. J Am Soc Echocardiogr, 1999, 12:129-37
    9 Takatsuji H, Mikami T, Urasawa K, et al. A new approach for evaluation of left ventricular diastolic function: spatial and temporal analysis of left ventricular filling flow propagation by color M-mode Doppler echocardiography. J Am Coll Cardiol 1996;27:365-71
    10 Jacobs LE, Kotler MN, Party WR, et al: Flow patterns in dilated cardiomyopathy: a pulsed-wave and color flow Doppler study .J Am Soc Echocardiogr, 1990, 3:294-302
    11 Sessoms MW, Lisauskas J, Kovacs SJ. The left ventricular color M-mode Doppler flow propagation velocity Vp: In vivo comparison of alternative methods including physiologic implications. J Am Soc Echocardiofr, 2002, 15(4):339-348
    12 Wigle ED. The diagnosis of hypertrophic cardiomyopathy. Heart, 2001,86:709-714
    13 Brutsaert DL, Sys SU. Relaxation and diastole of the heart. Physiol Rev 1989, 69:1228-1315Brutsaert DL. Nonuniformity: a physiologic modulator of
    
    contraction and relaxation of the normal heart. J Am Coil Cardiol, 1987, 9:341-348
    14 Brutsaert DL, Housmans PR, Goethals MA. Dual control of relaxation: its role in the ventricular function in the mammalian heart. Circ Res, 1980, 47:637-652
    15 Brutsaert DL, Rademakers FE, Sys SU. Triple control of relaxation: implications in cardiac disease. Circulation, 1984, 69:190-196
    16 Brutsaert DL, Sys SU. Relaxation and diastole of the heart. Physiol Rev, 1989, 69:1228-315
    17 Ommen SR, Nishimura RA, Appleton CP, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study. Circulation, 2000, 102:1788-1794
    18 Thomas JD, Weyman AE. Echocardiographic Doppler evaluation of left ventricular diastolic function: physics and physiology. Circulation, 1991, 84:977-990
    19 陈宇翔,钱蕴秋,张俊,等.应用M型彩色多普勒测量舒张早期左室内血流传播速度—评价左室舒张功能的新指标.中国超声医学杂志,1998,14:50-52
    20 章仁品,赵宝珍,徐静,等.彩色M型超声测量血流传播速度评价左心室舒张功能。中华超声影像学杂志,2002,11:637-638
    21 Nishihara K, Mikami T, Takatsuji H, et al: Usefulness of early diastolic flow propagation velocity measured by color M-mode Doppler technique for the assessment of left ventricular diastolic functiom in patients with hypertrophic cardiomyopathy. J Am Soc Echocaardiogr, 2000, 13:801-808
    22 Choong CY, Abascal VM, Thomas JD, et al: Combined influence of ventricular loading and relaxation on the transmitral flow velocity profile in dogs measured by Doppler echocardiography. Circulation, 1988, 78:672-683
    23 王海燕,王志斌.多普勒超声心动图评价左室舒张功能的临床应用进展.医学影像学杂志,2004,14:68-70
    24 Nobuyuki Ohte, Hitomi Narita, Sachie Akita, et al. Striking Effect of Left Ventricular Systolic Performance on Propagation Velocity of Left Ventricular Early Diastolic Filling Flow. J Am Soc Echocardiogr, 2001, 14:1070-4
    25 李靖,刘延玲,王浩,等.多普勒组织成像评价非梗阻型肥厚性心肌病心功能.中国超声医学杂志,2003,19(6):418-421
    26 Sherif FN, Linda L, Denise MT, et al. Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation, 2001, 104:128-130
    27 Gulati VK, Katz WE, Follansbee WP, et al. Mitral annular descent velocity by Doppler tissue imaging as an index of global left ventricular function. Am J Cardiol,
    
    1996, 77:979-984
    28 Varnava AM, Elliott PM, Sharma S, et al. Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart, 2000, 84:476-482
    29 Spirito P, Maron BJ, Bonow RO, et al. Occurrence and significance of progressive left ventricular wall thinning and relative cavity dilatation in hypertrophic cardiomyopathy. Am J Cardiol, 1987, 60:123-9
    30 Pai RG, Gill KS. Amplitudes, duration, and timing of apically directed left ventricular myocardial velocities: I. Their normal pattern and coupling to ventricular filling and ejection. J Am Soc Echocardiogr, 1998, 11:105-111
    31 Vinereanu D, Florescu N, Seulthorpe N, et al. Differentiation between pathologic and physiologic left ventricular hypertrophy by tissue Doppler assessment of long-axis function in patients with hypertrophic cardiomyopathy or systemic hypertension and in athletes. Am J Caidiol, 2001, 88:53-58
    32 田新桥,钱蕴秋,周晓东,等.多普勒组织成像对正常人室壁运动速度的研究.中国超声医学杂志,1999,15:656-659
    33 王志斌,孙兆家,李艳,等.组织多普勒成像技术评价左心室舒张功能的临床价值.山东医约,2003,43(11):1-3
    34 Karwatowski SP, Mohiaddin RH, Yang GZ, et al. Regional myocardial velocity imaged by magnetic resonance in patients with ischemic heart disease. Br Heart J, 1994, 72:332-338
    35 Oki T, Mishiro Y, Yamad H, et al. Detection of left ventricular regional relaxation abnormalities and asynchrony in patients with hypertrophic cardiomyopathy with the use of tissue Doppler imaging. Am Heart J, 2000, 139(3)497-502
    36 Severino S, Caso P, Galderisi M, et al. Use of pulsed Doppler tissue imaging to assess regional left ventricular diastolic dysfunction in hypertrophic cardiomyopathy. Am J Cardiol, 1998, 82(11): 1394-1398
    37 Nagueh S, Middleton K, Koplen H, et al: Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 1997,30:1527-1533
    38 Maran BJ, Gardin JM, Flocack JM, et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults: echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation, 1995, 92:785
    39 Seiler C, Hess DM, Schoenbeck M, et al. Long-term followup of medical surgical therapy for hypertrophic cardiomyopathy: A retrospective study. JACC, 1991, 17:(3):634
    40 Bonow RO, Vitale DF, Maron BJ, et al. Regional left ventricular asynchrony and impaired global left ventricular filling in hypertrophic cardiomyopathy. J Am Coll Cardiol, 1987, 9:1108-1116