中国炕的烟气流动与传热性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炕作为中国最古老的供暖方式至今仍被广泛使用。2004年底全国约有6700万铺炕,使用人口达1.75亿。在建筑中使用炕供暖可利用生物质能源来改善室内热环境并减少商品能源消耗。目前,炕的设计主要基于民间经验,缺少理论基础支持。炕在实际应用中仍存在室内空气污染严重、炕表面热舒适性差等问题,导致炕有逐渐被使用商品能的供暖方式(如土暖气、家用锅炉等)替代的趋势,长此下去这将加重我国农村能源供应负担。目前北方农村能源消耗占全国农村总能源消耗量的56%,且超过80%的农村能源消耗用于采暖需求。考虑到炕的地域分布广、应用数量大、使用时间长、搭建经验丰富、文化底蕴深厚等特点,对炕进行改进或创新是我国北方农村建筑供暖技术转换和更新的关键。如何合理地设计和使用炕以提高其热性能需要深入地研究和探讨,从而为炕的工程设计提供科学依据。本文对此进行了实验研究和理论分析,其主要的学术贡献如下:
     首先,设计和搭建炕实验平台,对典型炕的热性能进行实验研究,科学地认识了炕的传热机理及烟气流动特性,系统地分析了炕的得热、蓄热和散热性能。研究发现,炕烟道内烟气流动状态为紊流,炕体外表面散热以辐射方式为主,炕表面温度随着时间变化波动大,在空间分布上存在炕头表面温度过热和炕梢表面温度过冷问题。
     其次,针对炕在实际使用过程中常出现的倒烟回流问题,建立了炕的传热与烟气流动宏观描述模型,探究了在风压和热压共同作用下炕的烟气流动规律,讨论了炕烟气流量的多解性、稳定性和跳跃性,从理论上解释了炕在实际运行过程中出现的倒烟回流现象,提出了炕烟气正向流的初步设计方法和解决烟气倒流的措施。
     再次,为了改善炕表面的热舒适性,分析了在连续加热和间歇加热条件下炕的蓄热特性,对影响炕板温度的各因素进行了敏感性分析,得出了炕板时间常数和加热方式是影响炕表面温度波动的主要因素,并提出了将炕表面温度控制在舒适范围内的方法。同时,采用数值模拟方法研究了不同烟道布置形式对炕表面温度分布均匀性的影响,对选定的烟道布置形式进行了改进。结果表明,调整烟道出口处挡烟板的高度比β=0.25和在烟道进口处增加平面尺寸为0.5m×0.5m、倾斜角γ=5°的挡烟板可以有效地改善炕表面温度的均匀性。
     最后,建立了炕建筑动态热过程计算模型,分别开发出了面向研究分析用的炕建筑动态热过程模拟程序和便于工程应用的DeST-k软件包。选取一典型炕住宅进行案例分析,从炕的运行方式、炕板热容量、烟道布置形式等方面对炕的热性能进行优化设计;同时,在此基础上定量分析了炕在不同气候和建筑热工特性等条件下的全年运行效果。结果表明,通过合理地设计炕的结构和控制炕的运行方式可以保证炕表面温度满足热舒适性要求:适当地提高建筑围护结构的热工特性可以充分发挥炕对建筑的供暖效果:在选取的北方8个代表城市的气候条件下,使用炕采暖可以使建筑热负荷降低50%-80%。
     综上所述,本文工作为中国炕的热性能研究及其应用提供了科学依据和理论基础。
Chinese kangs, the most ancient heating system in China, are still widely used today. There were about 67 million kangs used by 175 million people in 2004. A kang utilizes the sustainable biomass energy for space heating to improve indoor thermal environment and reduce commercial energy consumption. However, the existing design of kangs is largely based on the accumulation of craftsman experience and there is a lack of scientific studies and engineering design guidelines. Several problems are found in the use of kangs, such as serious indoor air pollution and poor thermal comfort, which results in a gradual replacement of kangs with the heating technologies using commercial energy. This will add a heavy burden to the rural energy supply of China. The rural energy consumption of Northern China represents 56% of total energy use in rural China, and more than 80% of rural northern energy consumption is used for home heating. While considering the scope of wide usage, large quantity, long history, abundant experience and great culture accumulations of Chinese kangs, the improvements or innovations of the traditional kangs are crucial for the future transition and new heating technologies for rural residences in northern China. How to design and use the kang scientifically to improve its thermal performance needs a detailed study, which can form a basis for engineering design. In the thesis, the following work was accomplished by both experimental studies and theoretical analysis.
     Firstly, an experimental study on thermal performance of a full-scale typical elevated kang was carried out to understand the smoke flow and heat transfer mechanisms of the kang and analyze the heat charge, thermal storage and heat discharge of the kang system. It is found that the smoke flow in the kang is turbulent. The radiative heat plays the major role in the heat release from the surfaces of kang body. The surface temperature of the kang upper plate fluctuates a lot with time and seems to be overheated at the kang head and undercooled at the kang tail.
     Secondly, a macroscopic smoke flow and heat transfer model of an elevated kang was developed to deal with the backflow problems usually appeared when the kang works, which can be used to explore the kang smoke flow under the combined thermal buoyancy and wind force. The solution multiplicity, stability and switching of the smoke mass flow rates are discussed. This study explains the smoke backflow phenomenon, and presents a preliminary smoke flow design method to ensure upward flows and also proposals to eliminate smoke backflows for the kang.
     Thirdly, in order to improve thermal comfort related to the outside surface of the upper kang plate, the thermal storage performances of the elevated kang under both continuous and intermittent firings are investigated. It is obtained that the time constant of the kang plate and the firing pattern are the key parameters that affect the magnitudes and fluctuations of the outside surface temperature of the upper kang plate by a parameter sensitivity analysis. A control method for the outside surface of the upper kang plate within the thermal comfort range is proposed. In addition, the effect of the kang flue layout on the outside surface temperature uniformity of the upper kang plate is investigated by numeric simulations, and the specified flue layout is improved. The results indicate that the outside surface temperature uniformity of the upper kang plate can be greatly improved by regulating the ratio of the smoke stopper height to the flue heightβ=0.25 and adding a 0.5m×0.5m panel with the incline angleγof 5°at the inlet of the kang flue.
     Finally, a dynamical thermal process model of a home with a kang is developed, which is implemented in both a computer program of the dynamical thermal process model of a kang building for academic use, and a commercial software package DeST-k (original package developed by Tsinghua University) for engineering use. A typical kang residence in northern China is selected for a case study to optimize thermal performance of the kang in the aspects of firing pattern, thermal capacity of the kang plate and the kang flue layout. In addition, the annual practical effects of the optimal kang under different insulation levels of building envelope and climatic conditions are also discussed. The simulated results show that the thermal comfort requirement of the outside surface of the upper kang plate can be met by a proper design of the kang construction and control of the firing pattern. The better the insulation level of building envelope or the room air tightness is, the greater the indoor air temperature rise and the building heating load decrease are by the kang heating. In the climates of the selected eight cities in northern China, use of a kang for home heating can reduce by 50%-80% of building heating load.
     In summary, the studies in this thesis have provided some scientific basis and theories for further study on the thermal performance and the application of Chinese kangs.
引文
[1] 清华大学建筑节能研究中心.中国建筑节能2007年度发展研究报告[M].北京:中国建筑工业出版社,2007.
    [2] 中华人民共和国国家统计局.中国统计年鉴2008[M].北京:中国统计出版社,2008.
    [3] Yang X D, Jiang Y. Energy and environment in Chinese rural housing: road to sustainability[C]. //Tianjin University and Dalian University of Technology. The First International Conference on Building Energy and Environment, July 13-16, 2008, Dalian, China. c1-19.
    [4] Li J, Bai J, Ralph O. Assessment of Biomass Resource Availability in China[J]. Beijing:China Environmental Science Press,1998.
    [5] 辞源(三)[M].北京:商务印书馆,1982.
    [6] 门睿.万事由来[M].北京:中国经济出版社,2004.
    [7] 华阳.东北地区古代火炕初探[J].北方文物,2004(1):40-48.
    [8] 清华大学北方农村能源与环境调研组.2006年清华大学北方农村能源与环境调研工作总结报告[R].北京:清华大学,2007.
    [9] 单德启.从传统民居到地区建筑[M].北京:中国建材工业出版社,2004.
    [10] 郭继业.省柴节煤灶炕[M].北京:中国农业出版社,2002.
    [11] Bruce N, Perez-Padilla R, Albalak R. Indoor air pollution in developing countries:a major environmental and public health challenge[J]. Bulletin of the World Health Organization, 2000, 78 (9): 1078-1092.
    [12] Ezzati M, Kammen D M. Indoor air pollution from biomass combustion and acute respiratory infections in Kenya: an exposure-response study[J]. Lancet, 2001, 358(9282) :619-624.
    [13] Smith K R, Mehta S, Maeusezahl-Feuz M. Comparative quantification of health risks:global and regional burden of disease due to selected major risk factors[M]. Geneva:World Health Organization, 2004.
    [14] 李玉国,孙鹤泉,杨旭东,等.中国北方农村能源生态综合利用情况调研考察报告[R].香港:香港大学,2006.
    [15] 徐庆福,王立海.现有生物质能转换利用技术综合评价[J].森林工程,2007,23(4):8-11.
    [16] 吕增安.生物质能转换技术市场化发展的战略问题初探[J].农村能源,1998,81(5):4-5.
    [17] 李玉国,杨旭东.北方农村火炕的科学问题及火炕的现状和未来[C].//东南大学能源与环境学院.第四届全国制冷空调新技术研讨会论文集,2006,南京.c82-87.
    [18] Wang X P, Mendelsohn R. An economic analysis of using crop residues for energy in China[J]. Environment and development economics, 2003, 8(3):467-480.
    [19]Nordqvist J. Rural residential district heating in North China[D]. Lund:Lund University, 2000.
    [20]郭继业.北方省柴节煤炕连灶技术讲座(二)[J].农村能源,1998(6):12-14.
    [21]郝芳洲,贾振航,王明洲.实用节能炉灶[M].北京:化学工业出版社,2004.
    [22]Hao F Z. Development and counter measures for rural stoves in China[R]. Beijing:Workshop on Rural Energy, Stoves, and Indoor Air Quality in China, 2005.
    [23]郭继业.吊炕热性能的调节[J].新农业,2001(7):49-50.
    [24]陈荣耀,吕良.关于民用炕连灶热性能测试方法浅探[J].应用能源技术,1985(1):36-40.
    [25]中华人民共和国农牧渔业部.GB/T 7651-1987 民用炕连灶热性能测试方法[S].
    [26]郭继业.吊炕的结构和材料选择[J].新农业,2001(3):42-43.
    [27]朱颖心,彦启森.建筑环境学(第二版)[M].北京:中国建筑工业出版社,2005.
    [28]中国建筑科学研究院.JGJ142-2004地面辐射供暖技术规程[S].
    [29]Mcintyre D A. Indoor climate [M]. London: Applied Science Publication LTD, 1980.
    [30]辽宁省质量技术监督局.DB21/T 1275-2004高效预制组装架空炕连灶施工工艺规程[S].
    [31]杨绍海.火炕的调查与实测[c]//北方土木建筑学会.北方土木建筑学会论文集,1963.
    [32]徐洪波,焦庆余,徐国堂.高效预制组装架空火炕的研究[J].农业工程学报,1991,27(3):81-86.
    [33]金虹,赵华.关于严寒地区乡村住宅节能设计的思考[J].哈尔滨建筑大学学报,2001,34(3):96-100.
    [34]Deguchi K, Sanda T. Thermal environment of private houses with traditional heating system in the northern China[C]// Society of Heating, Air-Conditioning and Sanitary Engineers. Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan, Japan, c2002:583-584.
    [35]王洪林.被动式太阳房地炕相结合效益好[J].农村能源,1994(1):8-9.
    [36]陈滨,庄智,杨文秀.被动式太阳能集热墙和新型节能灶炕耦合运行模式下农村住宅室内热环境的研究[J].暖通空调,2006,36(2):20-24.
    [37]竟峰,王婧,张旭.寒冷地区太阳能炕采暖系统[J].低温建筑技术,2006(3):113-115.
    [38]Yeo M, Yang I, Kim K. Historical changes and recent energy saving potential of residential heating in Korea[J]. Energy and Buildings, 2003, 35(7) :715-727.
    [39]Yeo H S, K. N. H., Sohn J Y. The evaluation of indoor thermal environmental characteristics in the traditional ondol heating system[J]. Journal of the Architectural Institute of Korea, 2003. 23(1):593-601.
    [40]Bea S, Kim D C. Transient heat conduction through the ondol floor and heat loss to the ground[J]. Journal of the S. A. R. E. K., 1975, 4(1) :6-17.
    [41]Cho S H, Kim K H. Analysis of ground heat loss in ondol heating system[J]. Journal of the S. A. R. E. K., 1978, 7 (3) : 160-166.
    [42]Kim Y D,Min M K.The effect of an insulation of low temperature gas chimney on the optimun chimney height[J].Transactions of the Society of Air-conditioning and Refrigerating Engineers of Korea,1990,2(3):177-181.
    [43]Park J J,Rhee G H.Numerical analysis for thermal characteristic in traditional gudul [C]//Proceedings of the SAREK 2005 Summer Annual Conference,Pyeongchang,2005.
    [44]Jeng K B.A flow distribution characteristics on traditional ondol[J].Journal of the Architectural Institute of Korea,1992,10(2):373-376.
    [45]Min M K,Kim Y D.Numerical analysis of two-dimensional ondol panel heating model[C]// International Symposium on Transport Phenomena in Thermal Engi neering,Seoul,Korea,1993.
    [46]Bansal N,Shail.Characteristic parameters of a hypocaust construction[J].Building and Environment,1999,34(3):305-318.
    [47]Bansal N H,Minke G.Passive Building Design-A Handbook of Natural Climatic Control[M].Elsevier Science B V,1994.
    [48]Basaran T,liken Z.Thermal analysis of the heating system of the Small Bath in ancient Phaselis[J].Energy and Buildings,1998,27(1):1-11.
    [49]Li Y G.Analysis of natural ventilation-a summary of existing analytical solutions[R].International Energy Agency Annex 35 project Technical Report,Denmark,2002.
    [50]Li Y G,Delsante A.Natural ventilation induced by combined wind and thermal forces [J].Building and Environment,2001,36(1):59-71.
    [51]Andersen KT.Theory for natural ventilation by thermal buoyancy in one zone with uniform temperature[J].Building and Environment,2003,38(11):1281-1289.
    [52]Patankar S V.Numerical Heat Transfer and Fluid Flow [M].Hemisphere Publishing Corporation,1980.
    [53]Nilsen P V.Flow in air conditioning rooms[D].Copenhagen:Technical University of Denmark,1974.
    [54]Fluent Inc.Fluent User' s Guide[M].Fluent Inc.,2003.
    [55]Antonopoulos K A,Koronaki E.Apparent and effective thermal capacitance of buildings [J].Energy,1998,23(3):183-192.
    [56]Antonopoulos K A,Koronaki E.Envelope and indoor thermal capacitance of buildings [J].Applied Thermal Engineering,2000,19(7):743-756.
    [57]Balaras C A.The role of thermal mass on the cooling load of buildings-an overview of computational methodsQ].Energy and Buildings,1996,24(1):1-10.
    [58]Asan H,Sancaktar Y S.Effects of Wall' s thermophysical properties on time lag and decrement factor[J].Energy and Buildings,1998,28(2):159-166.
    [59]Asan H. Effects of wall' s insulation thickness and position on time lag and decrement factor [J]. Energy and Buildings, 1998, 28(3) :299-305.
    [60]Ren M J, Wright J A. A ventilated slab thermal storage system model [J]. Building and Environment, 1998, 33(1): 43-52.
    [61]Yam J, Li Y, Zheng Z. Nonlinear coupling between thermal mass and natural ventilation in buildings[J]. International Journal of Heat and Mass Transfer, 2003, 46 (7): 1251-1264.
    [62]Li Y, Xu P. Thermal mass design in buildings - heavy or light? [J]. International Journal of Ventilation, 2006, 5(1): 143-149.
    [63]覃小玲.建筑蓄热与通风的耦合[D].长沙:湖南大学,2006.
    [64]陈友明.建筑围护结构非稳定传热分析新方法[M].北京:科学出版社,2004.
    [65]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2001.
    [66]Pedersen C 0, Fisher D E, Liesen R J. Development of a heat balance procedure for calculating cooling loads [J]. ASHRAE Transaction, 1997, 4(1): 459-468.
    [67]陈华,涂光备,陈红兵.建筑能耗模拟的研究和进展[J].洁净与空调技术,2003(3):5-9.
    [68]清华大学DeST开发组.建筑环境系统模拟分析方法-DeST[M].北京:中国建筑工业出版社,2004.
    [69]http://www. esru. strath. ac. uk/Programs/ESP-r. htm
    [70]http://appsl. eere.energy. gov/buildings/energyplus
    [71]高书堂.炕的故事[J].海燕,1994(11):57-58.
    [72]彭景勋.节能炉灶烟囱砌筑[J].农业工程技术,1988(2):13.
    [73]杨大业,周临川.S型皮托管的应用及标定分析[J].计量技术,2000(7):38-40.
    [74]国家技术监督局.GB5468-91锅炉烟尘测试方法标准[S].
    [75]王丽娜,郑财,王世龙.利用“速度场常数”测量烟气平均流速方法的研究[J].计量技术,2004(10):3-4.
    [76]奚士光,吴味隆,蒋君衍.锅炉及锅炉设备(第三版)[M].北京:中国建筑工业出版社,2002.
    [77]许圣华.烟气物性的直接计算方法[J].苏州丝绸工学院学报,1999,19(3):32-36.
    [78]蔡增基,龙天渝.流体力学泵与风机(第四版)[M].北京:中国建筑工业出版社,1999.
    [79]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2001.
    [80]Frank P I, David P D. Introduction to heat transfer(3rd ed). New York:John Wiley & Sons, 1996.
    [81]Raithby G D, Hollands K G. Natural convection [M]// Rohsenow W M, Hartnett J P, Cho Y I. Handbook of Heat Transfer (3rd ed)[M]. New York: McGraw-Hill, 1998.
    [82]Miura H, Hokoi S, Kondo S. Development of simple commissioning tools for floor heating systems in residences-performance evaluation of floor heating systems [J].Journal of Asian Architecture and Building Engineering, 2004, 3(1) :93-100.
    [83]Idelchik I E, Steinberg H O. Handbook of hydraulic resistance[M]. CRC Press, 1993.
    [84]Li Y G, Delsante A, Chen Z D, et al. Some examples of solution multiplicity in natural ventilation [J]. Building and Environment, 2001, 36(7):851-858.
    [85]Andersen K T. Airflow rates by combined natural ventilation with opposing wind unambiguous solutions for practical use[J]. Building and Environment, 2007,42(2): 534-542.
    [86]农业部科技教育司.省柴节煤炉灶技术手册[M].北京:中国农业出版社,2006.
    [87]http://www. eurocowl. co. uk/index. html
    [88]Van Melle A. Measurements of the static pressure around an actual residence[J].Journal of wind engineering and industrial aerodynamics, 1986(23):273-281.
    [89]Andreas P. Viktor D., Andreas W. Modelling of cowl performance in building simulation tools using experimental data and computational fluid dynamics[J]. Building and Environment, 2008, 43 (8): 1361-1372.
    [90]唐春福.新农村生态家园建设500问[M].北京:中国农业出版社,2004.
    [91]王福军.计算机流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [92]颜启森,赵庆珠.建筑热过程[M].北京:中国建筑工业出版社,1986.
    [93]McClellan T M, Pedersen C O. Investigation of outside heat balance models for use in a heat balance cooling load calculation procedure[J].ASHRAE Transaction, 1997, 4 (1) :469-484.
    [94]ASHRAE.ASHRAE Handbook of Fundamentals[S],1993.
    [95]王景云.建筑物理[M].北京:中国建筑工业出版社,1987.
    [96]Janssen H, Carmeliet J, Hens H. The influence of soil moisture in the unsaturated zone on the heat loss from buildings via the ground[J]. Journal of Thermal Envelope and Building Science, 2002, 25(4) :275-298.
    [97]Krarti M, Choi S. Simplified method for foundation heat loss calculation[J]. ASHRAE Transactions, 1996,102(1): 140-152.
    [98]Adjalia M H, Daviesb M, Reesc S W, et al. Temperatures in and under a slab-on-ground floor: two- and three-dimensional numerical simulations and comparison with experimental data[J]. Building and environment, 2000, 35(7):655-662.
    [99]Anderson B R. Calculation of the steady-state heat transfer through a slab-on-ground floor[J]. Building and Environment, 1991, 24(4):405-415.
    [100]Li Yuguo, Delsante Angelo, Symons Jeff. Prediction of natural ventilation in building with large openings[J]. Building and Environment,2000,35(3):191-206.
    [101]Liesen R J, Pedersen C O. An evaluation of inside surface heat balance models for cooling load calculations[J]. ASHRAE Transaction, 1997, 4(3) :485-502.
    [102]Walton G. A new algorithm for radiant interchange in room loads calculations [J]. ASHRAE Transactions, 1980, 86 (2): 190-208.
    [103]段双平,张国强,彭建国,等.自然通风技术研究进展[J].暖通空调,2004,34(3):22-28.
    [104]Hensen J. Modeling coupled heat and air flow: ping-pong vs. onions[C]//Proceedings of the 16th AIVC conference, Palm Springs, USA, 1995.
    [105]郑竺凌.我国北方典型农宅采暖能耗分析和比较[D].北京:清华大学,2007.
    [106]中国气象局气象信息中心气象资料室,清华大学建筑技术科学系.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社,2005.