基于微分几何移动机械臂非线性控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动机械臂因广阔的工作空间和灵活的操作能力而具有潜在的应用前景,近年来已引起国际学术界和工业界的高度重视。而移动机械臂是时变、强耦合的非线性系统,其运动过程中受到非完整性约束,实际的控制系统又受到参数不确定性、外扰动和未建模动态等因素的影响,其运动控制问题相当困难。另外,随着移动机械臂的任务不断趋向复杂化,对控制精度和运动控制范围提出更高的要求。因此,研究这类系统的大范围非线性控制问题有十分重要的理论价值和实践意义。
     微分几何方法可在全局意义下精确实现系统的线性化和解耦问题,实现系统的大范围分析和综合。但是,由于抽象的微分几何理论缺乏面向非线性控制的系统理论,且它必须依赖于系统的精确数学模型,这严重制约了它在实际工程中的广泛应用。本文在系统总结微分几何方法的基础上,采用微分几何方法和滑模变结构控制相结合的非线性控制策略,实现了移动机械臂轨迹跟踪控制。仿真结果表明,这种策略既提高了系统的鲁棒性和控制精度,又解决了非线性系统滑模面不易构造的难题。
     本文首先系统地总结了面向非线性控制应用的微分几何基本理论,讨论了非线性系统精确线性化和解耦控制的充要条件,给出系统精确性化和解耦问题求解的具体步骤。然后利用非完整系统理论和Lagrange建模方法建立了移动机械臂的统一数学模型,并分析了系统的可控性。
     其次,通过两次构造非线性反馈律和微分同胚,利用微分几何控制方法实现了移动机械臂的输入输出精确解耦,并用零动态分析了系统的内部动态品质。在解耦线性化的基础上,设计了PD轨迹跟踪控制器,利用S函数建立了可移植性强、适合于时实动态仿真的移动机械臂控制系统仿真模型,并仿真分析了PD跟踪控制效果和系统的鲁棒性。
     最后,针对系统鲁棒性差和滑模变结构控制的抖振问题,提出了两种改进方案,即基于改进趋近律的滑模变结构控制和基于动态切换函数的动态积分滑模变结构控制。仿真结果表明,它们很好地实现了移动机械臂的轨迹跟踪控制,且在动力学参数摄动+40%和未建模动态及外扰动两种情况下,系统的鲁棒性强较PD跟踪控制强很多,并削弱了控制的抖振现象。
Due to its vast workspace and flexible manipulation, a mobile manipulator has an extensive background of applications, and has attracted great attention in the international academic and industrial fields. And the mobile manipulator is time-varying, the strong coupling of nonlinear system, its course of the campaign is restricted by nonholonomic constraints. the practical control system could not exclude the influence of parameter perturbation and disturbances from the external environments or unmodelled dynamics etc,which to some extent make it difficult to control. In addition, as the complexity of its tasks increase, we need higher precision and larger scale of control. Therefore, the study of such systems and the large-scale nonlinear control issues has important theoretical and practical significance.
     Differential geometric method makes it possible to be realized globally by the decoupling and exact linearization control strategy based on the new theory. However, the abstract differential geometric method is lack of system theory for nonlinear system and relies on the precise of the system, which to some extent limited its application. The paper systematically summed up the methods of differential geometry and presented the nonlinear control strategy which employs the sliding mode control approach and the differential geometric method to realize trajectory tracking of the mobile manipulator. The simulation results indicate that the presented strategy has not only promoted the system to be more robust and precise, also solved the problem of constructing the nonlinear sliding surfaces. The main topics are as follows:
     Firstly, the paper summed up the differential geometry basic theory for the control of nonlinear system, discussed the necessary and sufficient conditions for exact linearization and decoupling control of the nonlinear system and presented the detailed steps. Next, Nonholonomic theory and a Lagrange approach are used to obtain unified mathematical model of the mobile manipulator, and analysis the system’s controllable.
     Secondly, through the two nonlinear feedback law and diffeomorphism, realize control exact input and output decoupling for the mobile manipulator using of differential geometric method, and use zero dynamics to analyze the internal dynamic quality of the system, designed the PD tracking controller on the basis of the linear decoupling system. Next, build the substitutable simulation model using of the S-function, which is suitable for real-time dynamic simulation of the mobile manipulator control, then analyze PD tracking control and robustness of the mobile manipulator.
     Finally, presented the two improvement methods for problems of poor robustness and chattering, they are the improved reaching law and the dynamic integration sliding mode variable structure control based on dynamic switching functions. The simulation results show that they achieve a good performance for trajectory tracking control of the mobile manipulator, and promote the system to be more robust to the kinetic parameters perturbation +40% and external disturbances than PD tracking control. Moreover, weaken the chattering problem of the mobile manipulator.
引文
1张明路,丁承君,段萍.移动机器人的研究现状与趋势.河北工业大学学报. 2004, 33(2):110~115
    2 Jindong Tan and Ning Xi. Unified Model Approach for Planning and Control of Mobile Manipulators. Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul. Korea. 2001:3145~3152
    3 A. Mazur, B. Lukasik. The Input-Output Decoupling Controller for Nonholonomic Mobile Manipulators. Fourth International Workshop on Robot Motion and Control. 2004:155~160
    4 Alicja Mazur. New Approach to the Control Problem of Mobile Manipulators. Third International Workshop on Robot Motion and Control. 2002:297~301
    5李佳宁,易建强,赵冬斌,邓旭玥,西广成.一种全方位移动机械手的体系结构设计与分析.机器人.2004, 26(3):272~276
    6杨树风.带有机械臂的全方位移动机器人的研制.哈尔滨工业大学硕士论文.2006:59
    7赵山衫.移动机械手运动学和动力学分析及仿真.河北工业大学硕士论文.2006:2~5
    8宋佐时,易建强,赵冬斌.移动机械手控制研究进展.机器人. 2003, 25(5):465~470
    9 Carriker W F, Khosla P K, Krogh B H. Path Planning for Mobile manipulators for Multiple Task Execution. IEEE Transactions on Robotics and Automation. 1991, 7(3):403~408
    10 Akira M, Seiji F, Yamamoto M. Trajectory Planning of Mobile Manipulator with End-Effector’s Specified Path. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.2001:2264~2269
    11 Seiji Furuno, Motoji Yamamoto and Akira Mohri. Trajectory Planning of Mobile Manipulator with Stability Considerations. Taipei, Taiwan, 2003: 3403~3408
    12 Liu K, Lewis F L. Decentralized Continuous Robust Controller for MobileRobots. Proceedings of IEEE International Conference on Robotics and Automation.1990, 1822~1827
    13 Sheng L, Goldenberg A A. Neural-Network Control of Mobile Manipulators. IEEE Transactions on Neural Networks 2001, 12(5):1121~1133
    14董文杰,徐文立.不确定非完整移动机械手的鲁棒控制.清华大学学报. 2002, 42 (9): 1261~1264
    15 Dong W J, Xu Y S, Wang Q. On Tracking Control of Mobile Manipulators. Proceedings of IEEE International Conference on Robotics and Automation. 2000. 3455 ~3460
    16李航,孙厚芳.智能控制及其在机器人领域的应用.河南科技大学学报. 2005, 26(1): 35~39
    17 Brockett R.W. Volterra Series and Geometric Control Theory, Automatica 12: 167~176
    18李瑰贤.空间几何建模及工程应用.北京:高教出版社, 2007:310~332
    19张嗣瀛,王景才,刘晓平.微分几何方法与非线性控制系统(2).信息与控制. 1992, 21(2):101~106
    20李永刚,宋轶民,张策.基于现代微分几何的机器人研究现状.中国机械工程. 2007,18(2): 238~243
    21 G. Yang, I. M. Chen, W. K. Lim, et al. Self-calibration of Three-Legged Modular Reconfigurable Parallel Robots Based on Leg-End Distance Errors. Robotica. 2001, 19(2): 187~198
    22 Han Y, Park F C. Least Squares Tracking on the Euclidean Croup. IEEE Transaction on Automatic Control, 2001, 46(7):1127~1132
    23吴磊,陈红坤.智能变结构控制方法综述及其应用.控制工程. 2003, 10(增): 14~17
    24 Slotine J J, Sastry S S. Tracking Control of Nonlinear Systems Using Sliding Surfaces with Application to Robot Manipulator. International Journal of Control, 1983, 38(2): 465~492
    25 Ficola A Cava M L. A Sliding Model Controller for a Two-Joint Robot with anElastic Link. Mathematics and Computers in Simulation, 1996, 41: 559~569
    26刘才山,王建明.滑模变结构控制在柔性机械臂中的应用.天津大学学报. 1999, 32(2):243~247
    27焦晓红,方一鸣.并联机器人轨迹跟踪离散变结构鲁棒控制器设计.工业仪表与自动化装置. 2001(5): 3~5
    28刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社, 2005: 4~15
    29韩冰.欠驱动船舶非线性控制研究.哈尔滨工程大学博士学位论文. 2004:6~8
    30 W. Dong, On Trajectory and Force Tracking Control of Constrained Mobile Manipulators with Parameter Uncertainty Automatic. 2002, 38(9): 1475~1484
    31 S. Lin and A. A. Goldenberg, Neural-network Control of Mobile Manipulators IEEE Trans. on Neural Networks. 2001,12(5): 1121~1133
    32 M. B. Cheng and C. C. Tsai, Hybrid Robust Tracking Control Using Sliding-Mode Neural Network for a Nonholonomic Mobile Manipulator, Accepted by Proc. IEEE Conference on Mechatronics, 2005
    33 Alberto Isidori.非线性控制系统.王奔,庄圣贤译. (第三版).北京:电子工业出版社, 2005,107~115
    34 V. J. Modi and F. Carrey Non-Linear Decoupling Control of a Flexible Space Platform. Acta Astronautica. 1995,35(2): 157~166
    35 J. E. Slotine.应用非线性控制.程代展等译.北京:机械工业出版社, 2006.4: 157~164
    36 R. Marino P. Tomei非线性系统设计—微分几何、自适应及鲁棒控制.姚郁,贺凤华译.北京:电子工业出版社, 2006.8: 132~137
    37崔平远,薛小平.一类非线性系统的输入-输出解耦算法.哈尔滨工业大学学报, 1995, 27(1): 83~88
    38胡跃明.非线性系统控制理论与应用.第2版.北京:国防工业出版社, 2005, 7: 81~83
    39 B. Bayle, J.Y. Fouryuet and M. Renaud Manipulate Ability Analysis for Mobile Manipulators International Proceedings of the 2001 IEEE Conference onRobotics & Automation Seoul, Korea. 2001: 1251~1256
    40毛建.轮式机器人控制问题的研究.南京理工大学硕士论文, 2002:7~8
    41 Tiemin Hu, Simon X. Yang, Fangju Wang and Gauri S. Mittal A Neural Network Controller for a Nonholonomic Mobile Robot with Unknown Robot Parameters. Proceedings of the 2002 IEEE International Conference on Robotics &Automation Washington, DC. 2002: 3540~3545
    42王东,周东华.解耦问题的发展.自动化博览, 2001, 4: 6~10
    43申铁龙.机器人鲁棒控制基础.北京:清华大学出版社. 2000: 56~59
    44宋佐时,易建强,赵冬斌,李新春.基于MATLAB的非完整动力学系统跟踪控制的动态仿真.系统仿真学报. 2004.16(7):1433~1436
    45贾秋玲,袁冬莉,栾云凤.基于MATLAB7.0/Simulink/Stateflow系统仿真、分析及设计.西北工业大学出版社, 2006.6 130~135
    46黄晓明,张国忠,徐春梅.基于S函数的时变系统仿真.计算机仿真.2004.21(5): 89~91
    47 Wang Wei, Tang Gong-you. Output Sliding Mode Decoupling Control for a Class of Nonlinear Multi-Delay Systems, Proceedings of the 5th WCICA 2004: 1159~1162
    48任元,孙玉坤,刘叶飞等.基于微分几何方法的永磁同步电动机变结构控制.微特电机. 2006(11): 33~35
    49王丰尧.滑模变结构控制.北京:机械工业出版社, 1998: 37~51
    50胡跃明.变结构控制理论与应用.科学出版社, 2003: 8~18
    51高为炳.变结构控制理论及设计方法.北京:科学出版社, 1996
    52吴玉香,冯颖,胡跃明.基于动态滑模控制的移动机械臂输出跟踪控制.华南理工大学学报(自然科学版) 2006.34(6): 29~33
    53 A.J. Koshkouei, K.J. Burnham and A.S.I. Zinober. Dynamic sliding mode control design. IEEE Proc.-Control Theory Appl, Vol. 152, No. 4, July 2005:392~396
    54顾文锦,雷军委,冯国虎.基于积分滑模的导弹过载控制稳定性研究. 2006, 24(1): 33~36