耦合量子点系统热电和热自旋效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是能够将电能和热能相互转换的功能性材料,人们利用热电材料制造的设备能够实现发电和制冷的目的。近年来,由于低维材料结构具有高的能量转换效率而被广泛研究。关于低维结构中电子自旋极化输运问题的研究发现电子的自旋极化可以影响低维量子结构的热电效应,尤其是对量子点体系的自旋极化热电输运的影响极为明显。研究自旋极化对量子点系统热电效应和热自旋效应的影响,需要解决的问题是:有效控制产生自旋极化的参量;自旋极化对热和电输运的影响程度;如何更恰当的提高热电材料器件的性能。因此,论文利用非平衡态格林函数和Dyson方程方法,研究耦合量子点体系热电效应,自旋相关热电效应和热自旋效应等问题,并讨论了Rashba自旋轨道耦合效应、量子点中磁场塞曼劈裂和非均匀磁场效应等多种因素的作用下,平行耦合量子点体系的自旋相关热电传输特性。
     首先,研究了Rashba自旋轨道耦合影响平行耦合双量子点系统热电势的物理机制。研究结果表明,由于Rashba自旋轨道耦合的存在而产生自旋相关相位因子影响电子的输运特性。Rashba自旋轨道耦合和磁场通量共同作用是导致热电势的符号和大小改变的主要原因,而且在选择适当Rashba自旋轨道耦合诱生的相位因子和磁场通量相位因子情况下,对于某些确定的量子点内电子-电子库仑相互作用,可以得到符号不变的热电势,即材料导电类型相对固定;同时,这些参量对热电势出现绝对值最大值的工作温度也有影响,在温度近似等效于量子点和电极之间耦合的展宽能级时,热电势绝对值达到最大值。在研究中还发现,由于Rashba自旋轨道耦合的存在,Rashba自旋轨道耦合与磁场共同作用能够产生电子的自旋分离现象,从而可以产生自旋依赖的热电效应现象,并发现自旋依赖热电势和电荷热电势随量子点体系参量的变化规律明显不同。
     对镶嵌量子点的Aharonov-Bohm(AB)干涉系统的热自旋效应进行了研究。考虑磁场作用下量子点中电子能级的塞曼劈裂、Rashba自旋轨道耦合和磁场通量的共同作用下,耦合双量子点体系热电和热自旋现象呈现出新特征。研究结果表明由于塞曼劈裂和库仑相互作用,电子透射共振峰值分别向体系的分子成键态和反键态方向移动。当量子点分子态能级高于和低于电极中电子化学势的两种情形下,体系的塞贝克系数符号相反,系统塞贝克系数受电子透射谱中Fano共振的调制。而且量子点和电极之间的非对称耦合同样可以对系统热自旋输运特性产生影响,从而影响自旋热电优值。研究也表明塞曼劈裂是影响耦合双量子点体系热电优值的关键因素之一。
     对非均匀磁场作用下的平行耦合双量子点系统的微小温差产生自旋流的特性进行了研究。发现量子点之间隧穿结上施加的反向磁场能使自旋相关塞贝克系数产生自旋倒逆现象,从而可以通过改变量子点之间隧穿结上的磁场方向来改变自旋塞贝克系数的符号。如果将量子点能级调节到接近电极的费米能级附近某一区间内,两电极的温差可以产生自旋流;Rashba自旋轨道耦合引起的相位因子BRB=0时,自旋塞贝克系数为零,系统温差无产生自旋流的能力,随着两左右AB环中磁场通量差值引起的相位差值δ的增加,量子点能级的改变使电荷塞贝克系数随之发生振荡变化,当BRB≠0时,电荷塞贝克系数随着δ的增加,幅值和频率变化很小,而自旋塞贝克系数随量子点能级的变化振荡加剧;Rashba自旋轨道耦合强度对自旋塞贝克系数的影响表现为最大值和出现最大值的量子点能级位置发生改变;研究表明自旋相关的量子点间隧穿耦合强度是影响体系热电优值的另一个关键因素。
     最后,研究了磁场对平行耦合三量子点系统的热电和自旋相关热电效应的影响。结果表明,磁场通量和塞曼场共同作用使系统不再满足维德曼-弗朗兹定律。通过对多通道系统的分析发现,随着点间隧穿耦合强度的增加,系统热电优值降低,说明多通道系统抑制了系统热电优值的增加,这对设计更好的热电转换设备具有很重要的参考价值。通过与不同构型三量子点体系的计算结果对比发现,耦合双量子点结构是获得高热电优值较理想的体系。
     总之,论文考虑点间隧穿耦合、Rashba自旋轨道耦合、磁场通量、磁场塞曼劈裂以及量子点与电极之间隧穿耦合强度等参量的作用,深入研究了耦合量子点系统的热电和热自旋传输特性。也指出了如何通过调节体系的结构参量和外部条件来提高系统的热电效应和热自旋效应的途径。期望对具有广阔应用前景的自旋电子设备、热电制冷和发电设备的研制提供可供参考的有价值的理论依据。
Thermoelectric material is a functional material which can convert electricalenergy and thermal energy. In recent years, the low dimensional thermoelectricmaterial was widely used due to the high thermoelectric figure of merit. Theinvestigation of the spintronic in low dimensional material and system makes usknown that the thermoelectric effect is very sensitive to the spin polarizedtransportation in quantum dot system. Theoretical and experimental works havebeen devoted to investigate it. The most important issues in the field ofthermoelectric and thermospin effects are: manipulation of the spin polarizedparameter; how does spin polarization influence the thermal and electrical energyconversation; how to enhance performance of the thermoelectric device. In thisthesis, based on the non-equilibrium Green function and Dyson equation, weinvestigate the thermoelectric effect, thermospin effect and spin-dependentthermoelectric effect. Rashba spin-orbit coupling effect, Zeeman splitting effect andnon-uniform magnetic field effect are also discussed in this work.
     Firstly, we theoretically investigate the spin-dependent thermopower of theparallel coupled double quantum dots system in the presence of the Rashbaspin-orbit interaction. The results show that the coaction of the Rashba spin-orbitinteraction and the mangetic field flux is the main reason for tunning the magnitudeand sign of the thermopower. The intradot Coulomb interaction can make the sign ofthe thermopower stable in the whole period, and the type of the material carrier arealso can be tunned. In this case, the optimize work temperature for thermopower isapproach to the bandwidth function between dots and leads. It is found that thespin-dependent thermopower is different from the charge thermopower and the spinpolarization phenomenon occur due to the existence of the Rashba spin-orbitinteraction and the magnetic field flux.
     Secondly, we investigate the thermospin effect of an Aharonov-Bohm (AB)double quantum dot ring considering magnetic field flux, Zeeman splitting andRashba spin-orbit interaction. The results show that the coaction of these parametersmake the themoelectric and thermospin effect become obviously due to the Fanointerference. In the molecular reprsentation, the transmission resonance movetoward the bonding energy state and antibonding energy state due to the correctionof the Zeeman splitting and Coulomb interaction to the eigenstate of the quantumdot molecule states. With increasing temperature, the Seebeck coefficient signreversed when the chemical potential sweep the molecule state, it is related to the Fano resonance. The structure parameter also can influence the spin-dependenttransportation and the spin thermoelectric figure of merit. The results also show thatthe Zeeman splitting is one of the key factor to influence the thermoelectric figure ofmerit of the system.
     Thirdly, we theoretically study the non-uniform magnetic field effect oftemperature difference induced spin current in parallel coupled double quantum dotsytem. The influence of the spin-dependent interdot tunnel coupling strength,magnetic field flux difference and Zeeman splitting difference on the temperaturegradient induced spin polarized current was investigated by us. The magnetic fieldon the tunnel junction can induce spin flip. When the quantum dot energy is in thevicinity of Fermi energy, the temperature difference can induce spin current for while S=0in the case of=0and with increasing of δ, the charge Seebeckcoefficient oscillate with quantum dot energy. In the case of BRB≠0, the Spin Seebeckcoefficient oscillate with quantum dot energy and with increasing δ, the amplitudeand sign changed. At last, the result about the influence of Zeeman splittingdifference on the magnitude and sign of the spin-dependent Seebeck coefficient wasalso investigated.
     Finally, the magnetic field dependence of thermoelectric effect in the parallelcoupled three quantum dots molecular system was investigated. The results showthat the violation of the Wiedeman Franz law due to the coaction of the magneticflux and Zeeman splitting; it is very significant to find that the thermoelectric figureof merit decrease with increasing interdot tunnel coupling strength which means thatthe multi-channel system suppress the thermoelectric conversion efficiency;comparing with different three quantum dots system, the double coupled quantumdots system is found to be a good reference device for designing a betterthermoelectric conversion device.
     In conclusion, we systematically investigate the spin-dependent thermoelectrictransport properties for coupled quantum dots system and the parameters which cangenerate spin polarization on the system. It is clarified that these kind of parametersimprove the development of the enhancement of thermoelectric materialperformance. We anticipate that our research can provide the theoretical referencefor designing and manufacturing spin-polarization, thermoelectric generator andcooler devices.
引文
[1]Paulsson M and Datta S. Thermoelectric Effect in Molecular Electronics[J]. Phys. Rev. B,2003,67(24):241403(R).
    [2]网页原理彩图http://en.wikipedia.org/wiki/Thermoelectric-effect.
    [3]Zutic I, Fabian and Sarma S D. Spintronics:Fundamentals and Applications [J]. Rev. Mod. Phys,2004,76(2):323-410.
    [4]Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E. Observation of the Spin Seebeck Effect[J]. Nature (London),2008,455(7214):778-781.
    [5]Sinova J, Spin Seebeck Effect Thinks Globally But Acts Locally [J]. Nature Materials,2010,9(11):880-881.
    [6]Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S and Saitoh E. Spin Seebeck Insulator[J]. Nature Materials,2010,9(11):894-897.
    [7]梁拥成,张英,郭万林,反常霍尔效应理论的研究进展[J].物理,2007,36(5):385-390.
    [8]Kampen N G V. The expansion of the master equation[M]. Adv. Chem. Phys,1976,34:245-309.
    [9]Alexander W. Optische Untersuchungen von Intersubniveau-Ubergangen in Selbstorgan-I-Sierten InGaAs/GaAs-Quantenpunkten, Berlin, Technische Universitat, Fakultat II, Diss.,(2005).
    [10]Kastner M A. Artificial Atoms. Physics Today,1993,6(1):24-31.
    [11]Beenakker C W J. Theory of Coulomb-Blockade Oscillations in the Conduct-ance of a Quantum Dot[J]. Phys. Rev. B,1991,44(4):1646-1656.
    [12]Yacoby A, Heiblum M, Mahalu D and Hadas S. Coherence and Phase Sensitive Measurements in a Quantum Dot[J]. Phys. Rev. Lett,1995,74(20):4047-4050.
    [13]Yacoby A, Schuster R and Heiblum M. Phase Rigidity and h/2e Oscillations in a Single-Ring Aharonov-Bohm Experiment[J]. Phys. Rev. B,1996,53(15):9583-9586.
    [14]Schuster R, Buks E, Heiblum M, Mahalu D, Umansky V and Shtrikman H. Measurement in a Quantum Dot via a Double-Slit Interference Experiment [J]. Nature (London),1997,385(30):417-420.
    [15]Walter H, Jurgen K and Herbert S. Kondo Correlations and the Fano Effect in Closed Aharonov-Bohm Interfereometers[J]. Phys. Rev. Lett,2001,87(15):156803.
    [16] Kobayashi K, Aikawa H, Katsumoto S, and Iye Y. Tuning of the Fano EffectThrough a Quantum Dot in an Aharonov-Bohm Interferometer[J]. Phys. Rev.Lett,2002,88(25):256806.
    [17]马中水,介观物理基础和近期发展几个方面的物理介绍[J].物理,2006,8(5):752-791.
    [18] Meir Y and Wingreen N S. Low-Temperature Transport Through a QuantumDot: The Anderson Model out of Equilibrium[J]. Phys. Rev. Lett,1993,70(17):2601-2604.
    [19] Gores J, Gordon D G, Heemeyer S and Kastner M A. Fano Resonances inElectronic Transport Through a Single-Electron Transistor[J]. Phys. Rev. B,2000,62(3):2188-2194.
    [20] Rashba E I. Theory of Electrical Spin Injection: Tunnel Contacts as a Soluti-onof the Conductivity Mismatch Problem.[J]. Phys. Rev. B,2000,62(24):R16267–R16270.
    [21] Rashba E I and Efros A L L. Orbital Mechanisms of Electron-Spin Manipul-lation by an Electric Field[J]. Phys. Rev. Lett,2003,91(12):126405.
    [22] Bychkov Y A, Rashba E I. Oscillatory Effects and the Magnetic Susceptibil-ityof Carriers in Inversion Layers[J]. J. Phys. C,1984,17(33):6039-6045.
    [23] Dresselhaus G, Spin-Orbit Coupling Effects in Zinc Blende Structures[J].Phys.Rev,1955,100(2):580-586.
    [24] Gurvizt S A, Prager Y S, Mircscopic Derivation of Rate Equations for QuantumTransport[J]. Phys. Rev. B,1996,53(23):15932-15943.
    [25] Li X Q, Luo J Y, Yang Y G, Ping C and Yan Y J, Quantum Master-equationApproach to Quantum Transport Through Mesoscopic Systems[J].2005,71(20):205304.
    [26] Mahan G D and Sofo J O. The Best Thermoelectric[J]. PNAS,1996,93(15):7436-7439.
    [27] Hicks L D and Dresselhaus M S. Thermoelectric Figure of Merit of a One-Dimensional Conductor[J]. Phys. Rev. B,1993,47(24):16631-16634.
    [28] Majumdar A. Thermoelectricity in Semiconductor Nanostructures[J]. Science,2004,303(5659):777-778.
    [29] Venkabramanian R, Siivola E, Colpitts T and Qiunn B O. Thin-Film Therm-oelectric Devices with High Room-Temperature Figures of Merit[J]. Nature,2001,413(6856):597-602.
    [30] Harman T C, Taylor P J, Walsh M P and Laforge B E. Quantum Dot Superla-ttice Thermoelectric Materials and Devices[J]. Science,2002,197(5990): 2229-2232.
    [31]Hochbaum A I, Chen R K, Raul D D, Liang W J, Garnett E C, Najarian M, Majumdar A and Yang P D. Enhanced Thermoelectric Performance of Roug-gh Silicon Nanowires[J]. Allon Nature,2008,451(1):163-167.
    [32]Baheti K, Malen J A, Doak P, Reddy P, Jang S Y, Tilley T D, Majumdar A and Segalman R A. Segalman Probing the Chemistry of Molecular Heteroju-nctions Using Thermoelectricity[J]. Nano. Lett,2008,8(2):715-719.
    [33]Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Anderasson J, Bahl C R H and Iversen B B. Avoided Crossing of Rattler Modes in Thermoelectric Materials[J]. Nature Materials,2008,7(8):811-815.
    [34]Joshi G, Lee H, Wang X W, Zhu G H, Wang D Z, Gould RW, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z F. Enhanced Thermoelectric Figure of Merit in Nanostructured p-type Silicon Germanium Bulk Alloys[J]. Nano Lett,2008,8(12):4670-4674.
    [35]Terasaki I, Sasago Y and Uchinokura K. Large Thermoelectric Power in NaCo2O4Single Crystals[J]. Phys. Rev. B,1997,56(20):12685-12687.
    [36]Wang Y Y, Rogado N S, Cava R J and Ong N P. Spin Entropy as the Likely Source of Enhanced Thermopower in NaxCo2O4[J]. Nature,2003,423(5):425-428.
    [37]Mukerjee S and Moore J E. Doping Dependence of Thermopower and Ther-moelectricity in Strongly Correlated Materials[J]. Appl. Phys. Lett,2007,90(11):112107.
    [38]Boukai A I, Bunimovich Y, Khelly J T, Yu J K, Goddard, Goddard III W A and Heath J R. Silicon Nanowires as Efficient Thermoelectric Materials[J]. Nature,2008,451(1):168-171.
    [39]Murphy P G and Moore J E. Coherent Phonon Scattering Effects on Thermal Transport in Thin Semiconductor Nanowires[J]. Phys. Rev. B,2007,76(15):155313.
    [40]Beenakker C W J and Staring A A M. Theory of the Thermopower of a Qua-ntum Dot[J]. Phys. Rev. B,1992,46(15):9667-9676.
    [41]Turek M and Matveev K A. Cotunneling Thermopower of Single Electron Transistors[J]. Phys. Rev. B,2002,65(11):115332.
    [42]Koch J, Oppen F V, Oreg Y and Sela E. Thermopower of Single-Molecule Devices[J]. Phys. Rev. B,2004,70(19):195107.
    [43]Zianni X. Coulomb Oscillations in the Electron Thermal Conductance of a Dot in the Linear Regime[J]. Phys. Rev. B,2007,75(4):045344.
    [44]Tsaousidou M and Triberis G P. Thermal Conductance of a Weakly Coupled Quantum dot[J]. AIP Conf. Proc,2007,893:801-802.
    [45]Reddy P, Jang S Y, Segalman R A and Majumdar A. Thermoelectricity in Molecular Junctions[J]. Science,2007,315(5818):1568-1571.
    [46]Nozaki D, Sevincli H, Li W, Gutierrez R and Cuniberti G Engineering the Figure of Merit and Thermopower in Single-Molecule Devices Connected to Semiconducting Electrodes[J]. Phys. Rev. B,2010,81(23):235406.
    [47]Smith A D, Tinkham M and Skocpol W J. New Thermoelectric Effect in Tunnel Junctions[J]. Phys. Rev. B,1980,22(9):4346-4354.
    [48]Marschall J and Majumdar A J. Charge and Energy Transport by Tunneling Thermoelectric Effect[J]. J. Appl. Phys,1993,74(6):4000-4005.
    [49]Kubala B Konig J and Pekola J. Violation of the Wiedemann-Franz Law in a Single-Electron Transistor[J]. Phys. Rev. Lett,2008,100(6):066801.
    [50]Krawiec M and Wysokinski K I. Thermoelectric Effects in Strongly Interact-ing Quantum Dot Coupled to Ferromagnetic Leads. Phys[J]. Rev. B,2006,73(7):075307.
    [51]Wierzbicki M and Swirkowicz R. Electric and Thermoelectric Phenomena in a Multilevel Quantum Dot Attached to Ferromagnetic Electrodes[J]. Phys. Rev. B,2010,82(16):165334.
    [52]Boese D and Fazio R. Thermoelectric Effects in Kondo-Correlated Quantum Dots[J]. Europhys. Lett,2001,56(4):576-582.
    [53]Murphy P G, Mukerjee S and Moore J E. Optimal Thermoelectric Figure of Merit of a Molecular Junction[J]. Phys. Rev. B,2008,78(16):161406.
    [54]Paulsson M and Datta S. Thermoelectric Effect in Molecular Electronics[J]. Phys. Rev. B,2003,67(24):241403.
    [55]Segal D. Thermoelectric Effect in Molecular Junctions:A Tool for Revealing Transport Mechanisms[J]. Phys. Rev. B,2005,72(16):165426.
    [56]Pauly F, Viljas J K and Cuevas J C. Length-Dependent Conductance and Th-ermopower in Single-Molecule Junctions of Dithiolated Oligophenylene Derivatives:A Density Functional Study[J]. Phys. Rev. B,2008,78(3):035315.
    [57]Finch C M, Suarez V M G and Lambert C J. Giant Thermopower and Figure of Merit in Single-Molecule Devices[J]. Phys. Rev. B,2009,79(3):033405.
    [58]Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G and Ren Z F. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys[J]. Science,2008,320(5876):634-638.
    [59] Tsaousidou M and Triberis G P. Thermoelectric Properties of a WeaklyCoupled Quantum Dot: Enhanced Thermoelectric Efficiency[J]. J. Phys:Condensed Matter.2010,22(35):355304.
    [60] Slack G A. CRC Handbook of Thermoelectrics[J]. Florida: CRC Press,1995,407-440.
    [61] Holleitner A W, Decker C R, Qin H, Eberl K and Blick R H. Coherent Coup-ling of Two Quantum Dots Embedded in an Aharonov-Bohm Interferometer [J].Phys. Rev. Lett,2001,87(25):256802.
    [62] Loss D and DiVincenzo D P. Quantum Computation with Quantum Dots[J].Phys. Rev. A,1998,57(1):120–126.
    [63] Loss D and Sukhorukov E V. Probing Entanglement and Nonlocality of Ele-ctrons in a Double-Dot via Transport and Noise[J]. Phys. Rev. Lett,2000,84(5):1035–1038.
    [64] Hanson R and Burkard G. Universal Set of Quantum Gates for Double-DotSpin Qubits with Fixed Interdot Coupling[J]. Phys. Rev. Lett,2007,98(5):050502.
    [65] Liu H W, Fujisawa T, Hayashi T and Hirayama Y. Pauli Spin Blockade inCotunneling Transport Through a Double Quantum Dot[J]. Phys. Rev. B,2005,72(16):161305.
    [66] Fransson J and Rasander M. Pauli Spin Blockade in Weakly Coupled DoubleQuantum Dots[J]. Phys. Rev. B,2006,73(20):205333.
    [67] Inarrea J, Platero G and Donald A H M. Electronic Transport Through a DoubleQuantum Dot in the Spin-Blockade Regime: Theoretical Models[J]. Phys. Rev.B,2007,76(8):085329.
    [68] Palacios J J and Hawrylak P. Correlated Few-Electron States in VerticalDouble-Quantum-Dot Systems[J]. Phys. Rev. B,1995,51(3):1769–1777.
    [69] Aguado R and Langreth D C. Out-of-Equilibrium Kondo Effect in DoubleQuantum Dots[J]. Phys. Rev. Lett,2000,85(9):1946–1949.
    [70] Chen J C, Chang A M and Melloch M R.Transition Between Quantum States ina Parallel-Coupled Double Quantum Dot[J]. Phys. Rev. Lett,2004,92(17):176801.
    [71] Trocha P. Orbital Kondo Effect in Double Quantum Dots. Phys. Rev. B,2010,82(12):125323.
    [72] Guevara M L L D, Claro F and Orellana P A. Ghost Fano Resonance in aDouble Quantum Dot Molecule Attached to Leads[J]. Phys. Rev. B,2003,67(19):195335.
    [73] Lu H Z, Lu R and Zhu B F. Tunable Fano Effect in Parallel-Coupled DoubleQuantum Dot System[J]. Phys. Rev. B,2005,71(23):235320.
    [74] Kobayashi K, Aikawa H, Katsumoto S and Iye Y. Tuning of the Fano EffectThrough a Quantum Dot in an Aharonov-Bohm Interferometer[J]. Phys. Rev.Lett,2002,88(25):256806.
    [75] Rushforth A W, Smith C G, Farrer I, Ritchie D A, Jones G A C, Anderson Dand Pepper M. Fano Effect and Kondo Effect in Quantum Dots Formed inStrongly Coupled Quantum Wells[J]. Phys. Rev. B,2006,73(8):081305.
    [76] Chen X S, Buhmann H and Molenkamp L W. Thermo Power of the Molecul-arState in a Double Quantum Dot[J]. Phys. Rev. B,2000,61(24):16801-16806.
    [77] Zhang Z Y. Thermopower of Double Quantum Dots: Fano Effect and Comp-etition Between Kondo and Antiferromagnetic Correlation[J]. J. Phys.:Condens. Matter,2007,19(8):086214.
    [78] Franco R, Valencia J S and Figueira M S. Thermopower and Thermal Cond-uctance through Parallel Coupled Quantum Dots[J]. J. Appl. Phys,2008,103(7):07B726.
    [79] Liu Y S and Yang X F. Enhancement of Thermoelectric Efficiency in a Dou-ble-Quantum-Dot Molecular Junction[J]. J. Appl. Phys,2010,108(2):023710.
    [80] Zheng J, Zhu M J and Chi F. Fano Effect on the Thermoelectric Efficiency inParallel-Coupled Double Quantum Dots[J]. J. Low. Temp. Phys.2011,166(3-4):208-217.
    [81] Trocha P and Barna′s J. Large Enhancement of Thermoelectric Effects in aDouble Quantum Dot System due to Interference and Coulomb CorrelationPhenomena. arXiv:1108.2422v1[cond-mat.mes-hall],2011,1-12.
    [82]夏建白,葛惟昆,常凯.半导体自旋电子学[M].北京:科学出版社,2008:3-5.
    [83] Hu C M, Nitta J, Jensen A, Hansen J B and Takayanagi H. Spin-PolarizedTransport in a Two-Dimensional Electron Gas With Interdigital-Ferromagn-etic Contacts[J]. Phys. Rev. B,2001,63(12):125333.
    [84] Zhu H J, Ramsteiner M, Kostial H, Wassermeier M, Sch nherr H P and PloogK H. Room-Temperature Spin Injection from Fe into GaAs[J]. Phys. Rev. Lett,2001,87(1):016601.
    [85] Alvorado S F, Renand P. Observation of Spin-Polarized-Electron Tunnelingfrom a Ferromagnet into GaAs[J]. Phys.Rev. Lett,1992,68(9):1387-1390.
    [86] Upadhyay S K, Palanisami A, Louie R N and Buhrmanet R A. ProbingFerromagnets with Andreev Reflection[J]. Phys. Rev. Lett,1998,81(15):3247-3250.
    [87] Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A andMolenkamp L W. Injection and Detection of a Spin-Polarized Current in a Light-Emitting Diode[J]. Nature,1999,402(6763):787-790.
    [88]Jonker B T, Park Y D, Bennett B R, Cheong H D, Kioseoglou G and A. Petrou. Robust Electrical Spin Injection into a Semiconductor Heterostructure[J]. Phys. Rev. B,2000,62(12):8180-8183.
    [89]Ohno Y, Young D K, Beschton B F. Matsukura, H. Ohno and Awschalom D D. Electrical Spin Injection in a Ferromagnetic Semiconductor Heterostruct-ure[J]. Nature,1999,402(6763):790-792.
    [90]Heberle A P, Riihle W W and Ploog K. Quantum Beats of Electron Larmor Precession in GaAs wells[J]. Phys.Rev.Lett,1994,72(24):3887-3890.
    [91]Johnson M. Spin Caloritronics and the Thermomagnetoelectric System[J]. Solid State Communications,2010,150(3):543-547.
    [92]Swirkowicz R, Wierzbicki M and Barnas J. Thermoelectric Effects in Transport through Quantum Dots Attached to Ferromagnetic leads with Noncollinear Magnetic Moments [J]. Phys. Rev. B,2009,80(19):195409.
    [93]Chi F, Bai X F, Xiu X M, Gao Y J. Controlling Spin-Dependent Rransport via Inhomogeneous Magnetic Flux in Double-Dot Aharonov-Bohm Interferome-ter[J]. Physics Letters A,2008,372(7):1123-1128.
    [94]Dubi Y and Ventra M D. Thermospin Effects in a Quantum Dot Connected to Ferromagnetic Leads[J]. Phys. Rev. B,2009,79(8):081302.
    [95]Datta S and Das B. Electronic Analog of the Electro-Optic Modulator[J]. Appl. Phys. Lett,1990,56(7):665-667.
    [96]Wu B H and Cao J C. Magnetotransport Through a Ring Conductor With Rashba Spin-Orbit Interaction[J]. Phys. Rev. B,2006,74(11):115313.
    [97]Guy C, Oded H and Eran R. Constructing Spin Interference Devices from Nanometric Rings[J]. Phys. Rev. B,2007,76(23):235120.
    [98]Sheng J S and Kai C. Spin States and Persistent Currents in Mesoscopic Rings: Spin-Orbit Interactions[J]. Phys. Rev. B,2006,74(23):235315.
    [99]Nitta J, Akazaki T, Takayanagi H and Enoki T. Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostructure[J]. Phys. Rev. Lett,1997,78(7):1335-1338.
    [100]Grundler D. Large Rashba Splitting in InAs Quantum Wells due to Electron Wave Function Penetration into the Barrier Layers[J]. Phys. Rev. Lett,2000,84(26):6074-6077.
    [101]Chi F, Liu J L and Sun L L. Fano-Rashba Effect in a Double Quantum Dot Aharonov-Bohm Interferometer[J]. J. Appl. Phys,2007,101(9):093704.
    [102]Folk J A, Potok R M, Marcus C M and Umansky V. A Gate-Controlled Bidirectional Spin Filter Using Quantum Coherence[J]. Science,2003,299(31):679-682.
    [103]Song J F, Ochiai Y and Bird J P. Fano Resonances in Open Quantum Dots andtheir Application as Spin Filters[J]. Appl. Phys. Lett,2003,82(25):4561-4563.
    [104]Hedin E R, Perkins A C and Joe Y S. Combined Aharonov-Bohm and ZeemanSpin-Polarization Effects in a Double Quantum Dot Ring[J]. Phys. Lett. A,2011,375(3):651-653.
    [105]Hedin E R, Joe Y S and Satanin A M. Sharpened Aharanov-Bohm Oscillatio-ns Near Resonance in a Balanced Ring with Double Quantum Dots[J]. J.Comput. Electron,2008,7(3):280-283.
    [106]Hedin E R and Joe Y S. Sensitive Spin-Polarization Effects in an Aharonov-Bohm Double Quantum Dot Ring[J]. J. Appl.Phys,2011,110(2):026107.
    [107]Zhu L C, Jiang X D, Zu X T, Lü H F. Thermospin Phenomena in a QuantumDot Attached to Ferromagnetic Leads: Role of asymmetry and alignment[J].Phys. Lett. A,2010,374(14):4269-4273.
    [108]Liu Y S, Zhang D B, Yang X F and Feng J F. The Role of Coulomb Interacti-on in Thermoelectric Effects of an Aharonov–Bohm Interferometer[J].Nanotechnology,2011,22(22):225201.
    [109]Liu Y S, Chi F, Yang X F and Feng J F. Pure Spin Thermoelectric GeneratorBased on a Rashba Quantum Dot Molecule[J]. J. Appl. Phys,2011,109(5):053712.
    [110]Wierzbicki M and Swirkowicz R. Influence of Interference Effects onThermoelectric Properties of Double Quantum Dots[J]. Phys. Rev. B,2011,84(7):075410.
    [111]Kim T S and Hershfield S. Suppression of Current in Transport ThroughParallel Double Quantum Dots[J]. Phys. Rev. B,2001,63(24):245326.
    [112]Kim T S and Hershfield S. Thermopower of an Aharonov-Bohm Interfero-meter: Theoretical Studies of Quantum Dots in the Kondo Regime[J]. Phys.Rev. Lett,2002,88(13):136601.
    [113]Kim T S and Hershfield S. Thermoelectric Effects of an Aharonov-BohmInterferometer with an Embedded Quantum Dot in the Kondo Regime[J]. Phys.Rev. B,2003,67(16):165313.
    [114]Krawiec M and Wysokiński K I. Nonequilibrium Kondo effect in asym-metrically coupled quantum dots[J]. Phys. Rev. B,2002,66(16):165408.
    [115]Krawiec M and Wysokiński K I. Thermoelectric Phenomena in a Quantum DotAsymmetrically Coupled to External Leads[J]. Phys. Rev. B,2007,75(15):155330.
    [116]Krawiec M and Wysokiński K I. Electron transport through a stronglyinteracting quantum dot coupled to a normal metal and BCS superconductor [J].Supercond. Sci. Technol,2004,17(1):103-112.
    [117]Krawiec M. Thermoelectric Transport Through a Quantum Dot Coupled to aNormal Metal and BCS Superconductor[J]. Acta. Phys. Pol. A,2008,114(1):115-122.
    [118]Francoa R, Silva V J and Figueira M S. Thermopower and ThermalConductance for a Kondo Correlated Quantum Dot[J]. J. Magn. Magn. Mater,2008,320(14): e242-e245.
    [119]Francoa R, Silva-Valencia J and Figueira M S. Thermopower and ThermalConductance Through Parallel Coupled Quantum Dots[J]. J. Appl. Phys,2008,103(7):07B726.
    [120]Murakami S, Nagaosa N and Zhang S C. Dissipationless Quantum SpinCurrent at Room Temperature[J]. Science,2003,301(5638):1348-1351.
    [121]Kato Y K, Myers R C, Gossard A C and Awschalom D D. Observation of theSpin Hall Effect in Semiconductors[J]. Science,2004,306(5703):1910-1913.
    [122]Chi F and Li S S. Spin-Polarized Transport through an Aharonov-BohmInterferometer with Rashba Spin-Orbit Interaction[J]. J. Appl. Phys,2006,100(11):113703.
    [123]Chi F and Zheng J. Spin Separation via a Three-Terminal Aharonov–BohmInterferometers[J]. Appl. Phys. Lett,2008,92(6):062106.
    [124]Yin H T, Lü T Q, Sun P N, Liu X J and Xue H J. Spin-Dependent Fano Effectthrough Parallel-Coupled Double Quantum Dots[J]. Phys. Lett. A,2009,373(34):3085-3090.
    [125]Hou T, Wu S Q, Bi A H, Yang F B, Chen J F and Fan M. Fano–Kondo Effect inthe T-Shaped Double Quantum Dots Coupled to Ferromagnetic Leads[J].Chin. Phys. B,2009,18(2):783-789.
    [126]Wu S Q, Hou T, Zhao G P and Yu W L. Magneto Transport Through anAharonov Bohm Ring with Parallel Double Quantum Dots Coupled toFerromagnetic Leads[J]. Chin. Phys. B,2010,19(4):047202.
    [127]Ying Y, Jin G J and Ma Y Q. Spin-Polarized Transport Through anAharonov–Bohm Interferometer Embedded with a Quantum Dot Molecule[J].J. Phys.: Condens. Matter,2009,21(27):275801.
    [128]Huang R, Wu S Q and Yan C H. Spin-Dependent Transport through anInteracting Quantum Dot System[J]. Chin. Phys. B,2010,19(7):077302.
    [129]Sun Q F, Wang J and Guo H. Quantum Transport Theory for Nanostructureswith Rashba Spin-Orbital Interaction[J]. Phys. Rev. B,2005,71(16):165310.
    [130]Sun Q F and Xie X C. Bias-Controllable Intrinsic Spin Polarization in aQuantum Dot: Proposed Scheme Based on Spin-Orbit Interaction[J]. Phys. Rev.B,2006,73(23):235301.
    [131]Cho S Y and McKenzie R H. Thermal and Electrical Currents in NanoscaleElectronic Interferometers[J]. Phys. Rev. B,2005,71(4):045317.
    [132]David K F and Stephen M G. Transport in Nanostructures[M]. Cambridge inEngland: Cambridge University press,1997:431-441.
    [133]Mahan G D. Many-Particle Physics[M]. New York: Plenum publishers,1981:179-180.
    [134]Yin H T, Lü T Q, Liu X J, Xue H J. Quantum interference through parallel-coupled double quantum dots with Rashba spin-orbit interaction [J]. Phys.Status. Solidi. B,2010,247(1):150-156.
    [135]Liu X J, Yin H T, Wan W L, Li H, Wang X Z, C B Yao. Kondo Effect in aDouble Quantum Dot Interferometer with Rashba Spin-orbit interaction[J].Physica Status Solidi (b),2011,248(7):1735–1739.
    [136]Sakano R, Kita T and Kawakami N. Thermopower of Multiorbital KondoEffect via Single Quantum Dot System at Finite Temperatures[J]. J. Phys. Soc.Jpn,2007,76(7):074709.
    [137]Cutler M and Mott N F. Observation of Anderson Localization in an ElectronGas[J]. Phys. Rev. B,1969,181(3):1336–1340.
    [138]Snyder G J and Toberer E S. Complex Thermoelectric Materials[J]. NatureMater,2008,7:105-114.
    [139]Blanter Y M, Bruder C, Fazio R and Schoeller H. Aharonov-Bohm-TypeOscillations of Thermopower in a Quantum Dot Ring Geometry[J]. Phys. Rev.B,1997,55(7):4069-4072.
    [140]Lin C P J and Reinecke T L. Thermoelectric Figure of Merit of CompositeSuperlattice Systems[J]. Phys. Rev. B,1995,51(19):13244–13248.
    [141]Humphrey T E and Linke H. Reversible Thermoelectric Nanomaterials[J].Phys. Rev. Lett,2005,94(9):096601.
    [142]Chi F, Zheng J, Lu X D, Zhang K C. Thermoelectric Effect in a SerialTwo-Quantum-Dot[J]. Phys. Lett. A,2011,375(10):1352-1356.
    [143]Liu J, Sun Q F and Xie X C. Enhancement of the Thermoelectric Figure ofMerit in a Quantum Dot due to the Coulomb Blockade Effect[J]. Phys. Rev. B,2010,81(24):245323.
    [144]Sánchez R and Büttiker M. Optimal Energy Quanta to Current Conversion[J].Phys. Rev. B,2011,83(8):085428.
    [145]Jairo S. Spin Seebeck Effect: Thinks Globally but acts Locally[J]. NatureMaterials,2010,9(11):880-881.
    [146]Li Y X and Li B Z. Spin-dependent Transport and Thermopower in Ferrom-agnetic Quantum Point Contacts[J]. Phys. Lett. A,2004,330(3):274-279.
    [147]Li Y X and Li B Z. Effects of Spin-Orbit Interaction and Magnetic Field on theElectron Transport in Quasi-1D Ferromagnetic/Semiconductor/Ferromag-neticSystem[J]. Chinese Phys,2005,14(5):1021-1024.
    [148]Li Y X. Thermopoer in Quasi-one-dimensional Nano-constrictions with Spin-orbit Interaction[J]. Phy. Lett. A,2006,358(1):70-73.
    [149]Lü H F, Zhu L C, Zu X T and Zhang H W. Thermospin Effects of a Quasi-one-dimensional System in the presence of Spin-orbit interaction[J]. Appl.Phys. Lett,2010,96(12):123111.
    [150]Chi F and Li S S. Interdot Interaction Induced Zero-Bias Maximum of theDifferential Conductance in Parallel Double Quantum Dots[J]. J. Appl. Phys,2006,99(4):043705.
    [151]Chi F and Zhao H L. Splitting of the Fano Resonance by Coulomb Interactionsin a Two-Dot Quantum Ring[J]. Superlattices and Mirostructures,2010,47(3):452-458.
    [152]Liang B L, Wang Z M, Wang X Y, Lee J H, Mazur Y I, Shih C K, Salamo G J.Energy Transfer within Ultralow Density Twin InAs Quantum Dots Grown byDroplet Epitaxy[J]. ACS Nano,2008,2(11):2219-2224.
    [153]Vander W W G, Franceschi S D, Elzerman J M, Fujisawa T, Tarucha S,Kouwenhoven L P. Electron Transport through Double Quantum Dots[J]. Rev.Modern. Phys,2003,75(1):1-22.
    [154]Yin H T, Lü T Q, Liu X J, Xue H J. Voltage-controllable Spin-polarizedTransport through Parallel-coupled Double Quantum Dots with RashbaSpin-orbit Interaction[J]. Phys. Lett. A.2009,373(2):285-291.
    [155] Buttiker M. Larmor Precession and the Traversal Time for Tunneling Phys[J].Rev. B,1983,27(10):6178-6188.
    [156]Hüttel A K, Ludwig S, Lorenz H, Eberl K and Kotthaus J P. Direct Control ofthe Tunnel Splitting in a One-Electron Double Quantum Dot[J]. Phys. Rev. B,2005,72(8):081310.
    [157]Li Z J, Jin Y H, Nie Y H and Liang J Q. Electron Transport through DoubleQuantum Dots with Spin-polarization Dependent Interdot Coupling [J]. J. Phys.:Condens. Matter,2008,20(8):085214.
    [158]Chi F, Yuan X Q and Zheng J, Double Rashba quantum dots ring as a spinfilter[J]. Nanoscale. Res. Lett,2008,3(9):343-347.
    [159]Bai Z M, Yang M F and Chen Y C. Effect of Inhomogeneous magnetic Flux onDouble-Dot Aharonov-Bohm Interferometer[J]. J. Phys.: Condens. Matter,2004,16(12):2053-2063.
    [160]Ladrón G M L L and Orellana P A. Electronic Transport Through a Parallel-Coupled Triple Quantum Dot Molecule: Fano Resonance and Bond States inthe Continuum[J]. Phys. Rev. B,2006,73(20):205303.
    [161]Vallejo M L, Ladrón de Guevara M L and Orellana P A. Triple Rashba Dots asa Spin Filter: Bound States in the Continuum and Fano Effect[J]. Phys. Lett. A,2010,374(48):4928-4932.
    [162]Li Y X, Fano Resonance and Flux-Dependent Transport Through a Triple-ArmAharonov-Bohm Interferometer under an Applied Electric Field[J]. J. Phys.Condens. Matter,2007,19:496219.
    [163]Fu H H and Yao K L. Influence of interdot hopping and intradot many-bodyinteraction on conductance through parallel triple-quantum-dot device:Nonequilibrium Green’s function approach[J]. J. Appl. Phys,2010,108(8):084510-1-9.