热敏元件综合特性测试系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子材料与元器件的新理论、新材料、新器件的不断涌现,对相关的测试技术提出了较高要求,其中许多特性参数的测量原理与测试技术都尚待研究。本文以热敏元件零功率电阻-温度特性、电流-时间特性、静态伏-安特性及电压效应特性等四大综合特性的测试为研究内容,深入分析了四大综合特性的测量方法,采用集成仪器技术的思想,提出了热敏元件综合特性测试系统架构,并分别提出了四大功能模块子系统的设计方案,最终把各测试模块集成在一个最小集合的、低成本的通用检测设备硬件平台(基于PCI总线的数据采集及控制单元)上,利用该通用硬件平台,调用不同的测试软件就能构成不同测试功能的仪器,实现多种测试功能集一体的集成仪器,从而实现了热敏元件四大综合特性的测量。
     在本系统中,需要采用电阻炉作为加热源,精确可靠地测量和控制电阻炉的温度,是保证精确测量的必要条件。本文将模糊控制和PI-PID控制结合起来,设计了FUZZY-PI-PID复合控制器,最终实现对PID参数的在线自适应调整。最大超调量小于2℃,最大稳态误差小于0.25℃。从而实现了温度的智能化精确控制。
     为了提高测试系统精度,以及实现高可靠运行,本文分别从硬件和软件抗干扰来论述抑制干扰噪声的方法:消除和削弱干扰源;设法使检测电路对干扰噪声不敏感;使噪声传输通道的耦合作用最小化;使用合适的数字滤波算法和相关检测技术进行数据处理。最终实现测试系统高精度的测量。
     该测试系统是一个实时多任务控制系统,控制程序十分复杂,在软件设计时,本系统采用了至顶向下和模块化、层次化的设计方法。用这些子模块构造更大的功能模块。最后将各功能模块整合起来,构造成完整的测试系统软件。论文分别对界面模块、计算机及外围电路接口驱动模块、温度控制模块、测量流程控制模块、脉冲信号控制程序、开关控制程序、自动换档测量模块、软件保护报警模块、数据采集卡的驱动和控制模块、数据采集控制模块、数据处理及显示模块等进行了讨论和设计。这种软件设计方法,便于对整个开发过程的管理、程序的修改和整个系统功能的扩展、升级。
     本文依据测试系统所提供的实际测试结果,结合热敏材料的相关理论,对热敏元件四大特性的测试结果做了详细分析,着重从脉冲电压源、零功率伏-安特性、不同电压下电阻-温度特性、不同温度下电阻-电压特性的测量来讨论热敏电阻的电压效应。并结合热敏电阻的微观结构,对热敏电阻的电压效应机理做了初步的探讨。采用短时脉冲法实现热敏电阻电压效应的自动测量,为国内首创,对科研人员深入研究热敏材料的电压效应机理具有重要意义。
With very rapid innovation of new theories, development of new electronic materials and new electronic components, much higher requirements on related test technologies are demanded, but most test principles and technologies of characteristics parameter are still needed to be studied more deeply. This article focused on researching methods to test the system characteristics of thermistors, especially the four most important such as zero-power Resistance-Temperature characteristics, Current-Time characteristics, static V-I characteristics and voltage-effect. Based on the idea of system integration, put forward the systematic frame of testing thermistors system characteristics, proposed the design schemes of four main function subsystems respectively, and integrated all subsystems into one minimum universal hardware platform at very low cost (one data acquisition control unit based on PCI bus). Using this platform, called related test programs respectively to do different function test, which realized to integrate many test functions into one instrument and to be competent for testing the four system characteristics of thermistors.
     In this system, the electric furnace worked as the heat source, so, in order for assuring the test precision, it was a vital prerequisite to measure and control the furnace temperature precisely and reliably. By combining Fuzzy Control Theory and PI-PID control technology, this article designed one FUZZY-PI-PID compound controller, which realized automatic adaptive adjustment on PID parameters. The maximum overshoot was smaller than 2℃, and the steady state error was lower than 0.25℃. Thus, this system had the ability to intelligently control the temperature precisely.
     In order for improving the test system precision and assuring high reliable operation, this article described the methods of noise suppression from the designing of hardware and software respectively: removal and attenuating interference source, making the detecting circuit immune to the noise, minimizing the coupling effects in the noise transmission channel, utilizing appropriate digital filter algorithm and related detection techniques to do data processing, which finally realized very high precision system test .
     This test system was one multi-task real-time control system with quite complex control programs. The concepts of top-down method, modularization and hierarchical model were adopted during designing software. The final test system software was integrated by all function blocks. This article included: module of operating interface, driver module of computer and its peripheral circuit interface, temperature control module, test flow control module, pulse signal control module, switch control module, automatic shift control module, software protection alert module, drivers and control module of data acquisition card, data acquisition control module, data processing and display module, etc. This kind software design method is convenient for the management and program modification during the whole software development, which is also easy to the function expansion and upgrade.
     Through the practical test results obtained by this kind test system, and based on the relative thermistors materials theory, this article analyzed the four important characteristics in detail. Especially from the results of pulse voltage source, zero-power V-I characteristics, Resistance-Temperature characteristics under different voltage and Resistance-Voltage characteristics under different temperature, the thermistors voltage-effect was researched. Referring to the microstructure of thermistors, the voltage-effect mechanism was discussed. In China, it is pioneer to utilizing short pulse method to realize the automatic measurement on voltage-effect of thermistors, which is also greatly significant in much more deeply researches on its mechanism for research and development personnel.
引文
[1]赖根,肖明清,夏锐.国外自动测试系统发展现状综述.探测与控制学报, 2005, 27(3): 26-30
    [2]沈兰荪.仪器仪表智能化的进展.测控技术, 1999, 18(l): 32-35
    [3]于劲松,李行善.下一代自动测试系统体系结构与关键技术.计算机测量与控制, 2005, 13(1): 1-3
    [4]王鸿钰,董奇.自动测量仪器和测试系统的发展综述.计算机自动测量与控制, 2000, 8(4): 7-9
    [5] PCI Local Bus Specification, Revision 2. 2. December 18, 1998
    [6] PXI Specification, Revision 1. 0, August 20, 1997, National Instrument
    [7] Paul J. The Evolution and Application of VXIbus Common Core Based ATS Design. AUTOTESTCON’98, 1998
    [8] Heftman G. Future Military Test Systems Hinge on Synthetic Instrument Development. Defense Electronics, 2004
    [9] Orlet J L, Murdock G L. Practical Implementation of Synthetic Instrumentation. Autotestcon'2004, 2004
    [10] Orlidge L A, Stoll E D. Measurement Hardware Emulator: Synthetic Instrument and Cass. Autotestcon'99, 1999
    [11]周东祥,潘晓光.电子元件与材料测试技术.武汉:华中科技大学出版社, 1993. 1-3
    [12] Heywang W. Resistivity Anormaly in Doped BariumTitanate. J. Am. Ceram. Soc., 1964, 47(10): 484-90
    [13] Daniels J, Haerdtl K H, Wernicke R. The PTC effect of barium titanate. Philips Technical Review, 1978, 38(3): 73-82
    [14] Jonker G. H, Some Aspects of Semiconducting Barium Titanate. Solid State Electron, 1964, 7(12): 895-903
    [15]周东祥,龚树萍. PTC材料及应用.武汉:华中科技大学出版社, 1990. 228-234
    [16] Meyer J. Glass transition temperature as a guide to selection of polymers suitable for PTC materials. Polym Eng Sci, 1973, 13: 462-486
    [17] Gul' V E. Structure and Properties of Conducting Polymer Composites. Brill Academic Publishers, 1996. 3-6
    [18]黎步银,时峰,周东祥. PTCR老化特性测试仪.工业仪表与自动化装置, 2002, 3: 55~57
    [19]黎步银,赵俊,周东祥,吕文中.气体放电管直流击穿电压自动测试系统的研制.计量学报, 2005, 26(1): 74-76
    [20]姜胜林,黎步银,赵俊.多工位PTCR自动耐压测试仪.电子测量与仪器学报, 2007, 17(2): 26-30
    [21]黄慧勤,汪洪,赵俊,黎步银.用于敏感电阻的耐雷电波测试仪的研制.现代科学仪器, 2005, 4: 34-36
    [22]黎步银,王小军,赵俊,郝永德.湿敏元件综合参数虚拟仪器的研制.现代科学仪器, 2004, 1: 43-46
    [23] IEC Standard. Publication 738, 1982
    [24] Kulwicki B M. Ceramic Sensors and Transducers. J. Phys. Chem. Solids., 1984, 45(10): 1015-32
    [25] Philipp H R, Levinson L M. Theory of conduction in ZnO varistors. J. Appl. Phys., 1979, 50: 2799-2783
    [26] Mukherjee N, Roseman R. Microstructural Dependence of the Voltage Sensitivity of the PTCR Effect in Donor Doped Barium Titanate. Ferroelectrics, 2002, 281: 19-34
    [27]国家标准GB311-64《高压电气设备绝缘试验电压和试验方法》.水利电力部, 1964
    [28]中华人民共和国通信行业标准YD/T950-1998《电信交换设备过压过流防护技术要求及实验方法》. 1998
    [29]刘勇,庄志强.钛酸钡基PTCR的电压效应测量方法的研究.电子元件与材料, 2002, 21(10): 4-6
    [30]周东祥,王华刚,董浩斌,黎步银.虚拟仪器在PTCR零功率伏安特性测量中的应用.计算机测量与控制, 2003, 11 (10): 738-739
    [31]翟素平. PTCR电压效应计算机辅助测试系统: [华中科技大学硕士学位论文].武汉:华中科技大学图书馆, 1998
    [32] Li Y G., Cho S G.. Capacitance-voltage Relation for Ceramics with Positive Temperature Coefficient of Resistance. J. Appl. Phys., 2002, 91(7): 4535-4537
    [33] Yamamoto T, Hayashi K, Ikuhara Y. Current–Voltage Characteristics of S1 Boundaries with and without Cobalt Ions in Niobium-Doped SrTiO3 Bicrystals. J. Am. Ceram. Soc., 2000, 83(6): 1527-1529
    [34] Liou J W, Chiou B S. Effect of Direct-Current Biasing on the Dielectric Properties of Barium Strontium Titanate. J. Am. Ceram. Soc., 1997, 80 (12): 3093-3099
    [35] Gerthsen P, Hoffman B. Current-Voltage Characteristics and Capacitance of Single Grain Boundaries in Semiconducting BaTiO3 Ceramics. J. Am. Ceram. Soc., 1973, 16: 617-622
    [36] Pike G. E, Seager C H. The dc Voltage Dependence of Semiconductor Grain-Boundary Resistance. J. Appl. Phys., 1979, 50 (5): 3414-22
    [37] Mulato J. CASS Evolution to a COTS-Based Open-System Architecturem, IEEE AUTOTESTCON’99, 1999
    [38] Stora M J. Structured Architecture for Test System (SATS) Hardware Interface Standards. IEEE Autotestcon Proceedings 1999, 707-718
    [39] Baroth E, Hartsough C, Holst A, Wells G. An Evaluation of LabVIEW 5. 0 and HP VEE 5. 0. Measurement Technology Center, Jet Propulsion Laboratory, California Institute of Technology, 1999
    [40] National Instruments, LabVIEW, User and Function and VI Reference Manual, Austin, 1996
    [41] Strassberg D. Virtual-Instrument Software goes 32 Bit, EDN, 1996(1): 77-84
    [42] Bucci G., Landi C. VXI Based Virtual Instrument in Undergraduate Measurement Laboratory Experiments. Proc. of IEEE ZM7'C/97. Ottawa, Canada: 1997, 241-245
    [43] Zeger R, Integrating COTS VXI Hardware and Software for the Marine Corps. Third Echelon Test System, AUTOTESTCON’98, 1998
    [44] PCI Local Bus Specification Draft Revision 2. 1. 1995, 21-334
    [45] Advantech Co., Ltd《PCI-1710 Series 12/16bit Multifunction Card, User's Manual》
    [46] Advantech Co., Ltd《PCI-1752/1754/1756 64-channel Isolated Digital Input/Output Card, User's Manual》
    [47] Toshiba Insulated Gate Bipolar Transistor Silicon N-Channel Igbt. Gt15q101, 1997
    [48] Hefner A R J, Blackburn D L. An analytical model for the steady-state and transient characteristics of the power insulated-gate bipolar transistor. Sol. St. Electron, 1988, 31(10): 1513-1532
    [49] National Semiconductor. DM54LS373/DM74LS373, TRI-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops
    [50]周东祥,张绪礼,李标荣.半导体陶瓷及应用.武汉:华中科技大学出版社, 1991. 194-195
    [51] Lt1009, 2. 5-V Integrated Reference Circuits, Texas Instruments
    [52] AD5228, 32-Position Manual Up/Down Control Potentiometer, Analog Devices
    [53] Lm334, Three Terminal Adjustable Current Sources, Stmicroelectronics
    [54]李银祥,胡军,姚向东.三端可调恒流源LM334及其应用.现代仪器, 2002, 1: 23-25
    [55] Lt1004, Micropower Integrated Voltage References, Texas Instruments
    [56] Toshiba Silicon N Channel Igbt. Mg100q2y50a, 1997
    [57]张青,康勇,陈坚. IGBT驱动模块EXB841剖析.电气传动, 1994, 4: 40-46
    [58] Henfner A R. An Investigation if the Drive Circuit Requirements for the Power IGBT. IEEE Trens. on Power Elec, 1991, 6(2): 208~219
    [59]王雪茹.大功率IGBT模块并联特性及缓冲电路研究: [硕士学位论文].西安:西安理工大学图书馆, 2004
    [60] Tpic6b595n, Power Logic 8-Bit Shift Register, Texas Instruments
    [61]周锋,孙慷.施主半导化BaTiO3 PTC陶瓷的电压效应.压电与声光, 1996, 18(2): 122-125
    [62] Li Y G, Cho S G. Current-voltage Characteristics of Ceramics with Positive Temperature Coefficient of Resistance. Journal of the Korean Ceramic Society. 2003, 40(10): 921-924
    [63]赵俊,孙毅,罗为,周东祥.基于PCI-1711数据采集卡的PTCR伏安特性测试系统.仪表技术与传感器, 2006, 4: 30-31
    [64] PGA102, High Speed PROGRAMMABLE GAIN AMPLIFIER, Burr-Brown Corporation
    [65] ISO122, Precision Lowest Cost ISOLATION AMPLIFIER, Burr-Brown Corporation
    [66]周东祥,孙义,赵俊,罗为.多工位PTCR电流-时间特性测试系统的研制.电子元件与材料, 2005, 24(7): 9-11
    [67] Zadeh L A. Fuzzy sets. Information and Control, 1965, 8(3): 338-353
    [68] Zadeh L A. Fuzzy Algorithms. Information and Control, 1968, 12(2): 94-102
    [69] Mandani E H. Application of Fuzzy Algorithms for the Control of a Dynamic Plant. Proc. IEEE 1974, 121(12): 1585-1588
    [70] Mamdani E H. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on computers, 1977, 26(12): 1182-1191
    [71] Wakileh B A M, Gill K F. Robot Control Using Self-Organizing Fuzzy Logic. Computer in Industry, 1990, 15(3): 175-186
    [72] Hajjaji E, Bentalba S. Fuzzy path tracking control for automatic steering of vehicles. Obotics and Autonomous Systems, 2003, 43(4): 203-213
    [73] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 1985, 15, 116-132
    [74] Falchieri D, Gabrielli A, Gandolfi E. Very fast rate 2-input fuzzy processor for high energy physics. Fuzzy Sets and Systems, 2002, 132(2 ): 261-272
    [75] Jang J S R, Sun C T. Neuro-fuzzy modeling and control. Proceedings of the IEEE, 1995, 83(3): 378-406
    [76] Daijin K, Chulhyun K. Forecasting time series with genetic fuzzy predictor ensemble. Fuzzy Systems. IEEE Transactions on, 1997, 5(4): 523-535
    [77] Russo F, Ramponi G. A fuzzy operator for the enhancement of blurred and noisy images. Image Processing. IEEE Transactions on, 1995, 4(8): 1169-1174
    [78] CechlárováK. Unique solvability of max-min fuzzy equations and strong regularity of matrices over fuzzy algebra. Fuzzy Sets and Systems, 1995, 75: 165-177
    [79] Chen J Y. Rule Regulation of Sliding Mode Controller Design: Direct Adaptive Approach. Fuzzy Sets and Systems, 2001, 120: 159-168
    [80] Figueiredo M, Gomide F, Rocha A. Comparison of Yager's level set method for fuzzy logic control withMamdani's and Larsen's methods. Fuzzy Systems. IEEE Transactions on, 1993, 1(2): 156-159
    [81] Bennett S. The Past of PID Controllers. Annual Reviews in Control, 2001, 25: 43-53
    [82] Cohen G H, Coon G A. Theoretical Consideration of Retarded Control. Trans ASME, 1953, 75: 827-834
    [83] Ziegler J G, Nichols N B. Optimum Setting for Automatic Controllers. Trans ASME, 1942, 64: 759-768
    [84]王小华,何怡刚.铂电阻Pt 100特性数学模型.传感器技术, 2003, 22(10): 33-34
    [85] JJG229-98工业铂、铜热电阻检定规程.国家质量技术监督局, 1998
    [86]张翠莲,杨家强.铂电阻温度传感器的非线性特性及其线性化校正方法.微计算机信息, 2002, 18(1): 43-45
    [87]郑建国,胡学红.铂电阻器非线性校正的新方法.传感器技术, 1998, 17(1): 48-50
    [88]潘文诚.一种铂电阻高准确度测温方法.传感器技术, 2003, 22(11): 69-71
    [89] Microsoft Corp. Microsoft Visual C++ 6. 0 MFC Library Reference. Microsoft Press,1998
    [90]李永军,李田,马立元. PCI-1710数采卡在自动测试系统中的应用.兵工自动化, 2005, 24(1): 77~78
    [91]刘念.最小二乘插值与拟合推估.测绘科学, 2002, 27(3): 19-21
    [92] Zaratian B. Microsoft Visual C ++ 6. 0 Programmer's Guide. Microsoft Press, 1998
    [93] Liu F, Wang J F, Wang W. Frequency sensitivity in weak signal detection. The American Physical Society. 1999, 3: 3453-3460
    [94] Thomas D, Wickens. Elementary Signal Detection Theory. Oxford University Press US. 2001
    [95] Holman W T, Connelly J A, Dowlatabadi A B. An integrated analog/digital random noise source. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on. 1997, 44(6): 521-528
    [96] Clayton R. Introduction to Electromagnetic Compatibility. Wiley & Sons, Inc., USA. 1992. 13-230
    [97] Degauque P, Hamelin J. Electromagnetic Compatibility. Oxford University Press. 1993. 1-10
    [98]张明.电子设备结构的电磁兼容性设计策略.电子机械工程, 2006, 22(5): 5-9
    [99]丁岚.计算机软件抗干扰技术.中国仪器仪表, 1996(6): 17-18
    [100] Guo T, Chen D Y, Lee F C. Separation of common mode and differential mode conducted EMI noise. IEEE Transon Power Electronics, 19 96, 11(3): 480-487
    [101] Viollete J L N, Donald R J W, Violete M F. Electromagnetic Compatibility Handbook. 1987
    [102] Paul C R. A Comparison of the contributionso f common mode and differential mode currents in radiated emissions. IEEE Trans on EMC, 1989, 31(2): 189-193
    [103]金革.多通道系统中的信号串扰现象.仪表技术, 1998(5): 1-3
    [104]贾功贤,汪涛,袁祥辉.微机测试系统中的抗干扰技术.仪表技术, 2000(5): 37-38
    [105]张和生,张剑.计算机测试与控制系统抗干扰技术的研究与应用.电测与仪表, 1999, 36(7): 34-36
    [106]黄巍.相关检测在宽带雷达信号处理中的应用.现代雷达, 2005, 27(2): 36-39
    [107] Zhao J, Zhou D X, Gong S P, Sun Y. Research on the Voltage-effect of PTCR under Pulsed Voltage. Journal of Wuhan University of Technology-Materials Science Edition. 2007(Accepted)
    [108] Blatter G., Greuter F. Carrier transport through grain boundaries in semiconductors. The American Physical Society. 1986, 33: 3952-3958
    [109] Emtage P R. The physics of zinc oxide varistors. Journal of Applied Physics. 1977, 48(10): 4372-4384
    [110] Mahan G. D, Levinson L M, Philipp H R. Single grain junction studies of ZnO varistors—Theory and experiment. Applied Physics Letters. 1978, 33(9): 830-832
    [111] Mahan G. D, Levinson L M, Philipp H R. Theory of conduction in ZnO varistors. Journal of Applied Physics. 1979, 50(4): 2799-2812