结核分枝杆菌多重耐药基因快速检测方法学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代以来,结核病(tuberculosis,TB)的疫情有重新上升的趋势,一个主要因素是结核分枝杆菌耐药性问题。随着联合药物治疗的使用,使高耐药及多耐药菌株不断出现和传播,对化疗效果及结核病的流行产生了极大影响,增加了死亡率。据世界卫生组织估计,目前全球约有20亿人感染结核分枝杆菌(Mycobacterium tuberculosis,MTB),其中约有5000万人感染耐药结核分枝杆菌。不合理用药引起的结核分枝杆菌内一些酶的基因突变或缺失是产生致结核分枝杆菌耐药性的主要原因。耐药结核分枝杆菌,特别是多重耐药结核分枝杆菌的增加,严重影响了结核病的化疗效果,给结核病控制带来了极大的困难。传统的药敏试验是建立在生物生长代谢过程中的表型上,这种方法所需时间长,通常为1~2个月,不能满足现代短程化疗的需求。因此,结核分枝杆菌耐药性的快速准确检测,为尽快制定最佳治疗方案提供依据,将有效地降低耐药菌株在人群中的扩散。
     近年来,由于分子生物学技术的发展,一线抗结核药物的耐药分子机制逐步被阐明,也相应地建立了一些用基因技术对结核分枝杆菌耐药性进行检测的方法,为快速检测结核分枝杆菌的耐药基因开辟了一条新的途径。目前较为成熟的基因诊断方法有DNA直接测
    
    第四军医大学硕士学位论文
    序法归ireet Sequencing,Ds)、杂交法、多聚酶链反应一单链构象多态
    性分析(polymerase Chain Reaetion一Single一strand Conformation
    polymo甲hism,pCR一ssCp)法等。而PeR一sseP又以其操作简便,
    费用较低和快速敏感等优点,更适合在临床推广使用。
     多耐药性结核病(Multiple一Drug Resistanee几berulbosis,
    MDR一TB)是指对2种或2种以上抗结核药物耐药的结核分枝杆菌
    引起的结核病,它是人类消灭结核病的一大障碍。利福平(rifampin,
    RFp)、链霉素(strepto娜cin,sM)和异烟脐(isoniazid,INH)
    是主要的抗痔一线药物,其耐药性的出现对感染患者的治疗带来很
    大困难。建立一种敏感、特异并且能同时检测多个药物耐药性的方
    法,成为临床迫切需要解决的问题,也是目前国内外研究的热点。
    目前虽有PCR-SSCP检测耐药基因的报道,但均为单一基因的检测,
    从而使目前标准的化疗方案治疗失败。为此,本研究的主要目的为:
    建立一种同时检测孙P、SM和E,H主要耐药基因rpoB、rpsL、katG
    基因突变的方法,为临床早期治疗提供快速而准确可靠的方法及依
    据。
     首先建立检测3个耐药基因的multi一PCR方法。已经证实,RFP
    耐药性的产生主要是由于编码RNA聚合酶的p亚单位的编码基因
    印oB发生突变,大约90%一95%的突变主要发生在rp0B基因中央
    的81饰区域内(507一533位27个氨基酸密码子)。编码结核分枝杆
    菌核糖体16srRNA的rrs基因与512蛋白质的印sL基因发生突变导
    致耐链霉素。印sL基因突变是耐sM的主要分子机制,rpsL基因突
    变占SM耐药株的60%一70%,其突变多见于43,88位点。刀呵H耐
    药主要与过氧化氢酶一过氧化物酶的编码基因katG有关,还与即hC
    启动子、ixlllA基因的突变有关。K叔G基因突变占D妊J耐药株的50
    %一70%,主要发生在315、304位点。基于此,本实验在设计PCR
    特异性引物时涵盖了这3个基因突变的高发区域。rpoB基因特异性
    引物根据Genebank:L27989序列设计:P15’一CCC AGGACGTGG
    
    第四军医大学硕士学位论文
    AGG CGA TCAC一3’;P25’一TGC CGC ACC AAI,CGC TGC TC一3’,
    扩增片段365bp。;印sL基因特异性引物根据Genebank:L08011序
    列设计:P,5’一CCG CGT GII’A CAC CAC CAC TC一3’;P25’一CTA
    o认Goe oee AAo eGA一3’,扩增片段Zolbp。kato基因特异性弓}
    物根据Genebank:X68081序列设计:P15’一CGG CGATGAGCG
    TTA CAG一3’;P:5’一CGT CCT TGG CGG TGT ATTG一3’,扩增片段
    458bP。
     实验中对multi一PcR反应体系中退火温度、M犷+浓度、模板DNA
    用量、多重引物用量、循环次数多面进行优化,选择最佳反应条件,
    成功建立了multi一PCR扩增方法。对H37Rv标准株和临床分离株分
    别采用常规PCR和multi一PCR同时进行扩增,结果两种扩增方法均
    能扩增出预期的目的片段,符合率达100%。
     按绝对浓度间接法进行药敏试验。78株临床分离株中,敏感株
    22株,耐药株56株,耐多药株51株。其中,耐利福平46株,高耐
    药株33株,低耐药株13株;耐链霉素43株,高耐药株34株,低
    耐药株9株;耐异烟腆45株,高耐药株35株,低耐药株10株。
     用单基因PCR一SSCP法分别扩增结核分枝杆菌H37Rv和78株临
    床分离株的rp0B、印sL、katG基因,并将扩增产物进行sscP电泳
    分析。共检出48株突变株,其中耐药株中检出47株(83.9%),敏
    感株中检出1株(4 .5%)。印OB基因突变发生率为87%(40/46),
    另检出1株敏感株突变;rpsL基因突变发生率为74.4%(犯/43);
    katG基因突变发生率为“.7%(30/45)。
     将56株耐药临床株和1株PCR一SSCP法检出突变的敏感株的扩
    增产物切下进行胶回收,然后进行测序分析。共检出50株突变株,
    其中1株即为ssCP法检出突变的敏感株。检出rpoB基因突变发生
    率89.1%(4一/46);印sL基因突变发生率74.4%(犯/43);katG基
    因突变发生率68.9%(31/45)。
The epidemic of tuberculosis got a recovery from 1980s in last century, because of the drug resistance of mycobacterium tuberculosis. The epidemic situation and chemotherapy effect experienced a great change result from multidrug resistant and high resistant strains occurred or transmitted. WHO estimate 2 billion individuals or so infected with mycobacterium tuberculosis in the world and about 50 million in them caused by resistant strains now. Most resistant strains related to the gene mutation or deletion of some enzymes in mycobacterium tuberculosis owing to unreasonable chemotherapy. Those strains, especially the increase of multi-drug resistant organisms, led negative impact on chemotherapy effect and brought trouble to control tuberculosis. The traditional drug sensitive test, which based on the mechanism of microorganism metabolism cost time usually from 1 to 2 mouths and can not meet the requirement from modern short course chemotherapy, so the rapid and accurate detecting of drug resistance in mycob
    acterium tuberculosis will be provide gist for establish the best chemotherapy project and effective lower the diffusion of drug-resistant strains in crowed.
    Along with the development of molecular biology recently, the
    
    
    mechanism of drug resistance of the basic drugs to treat TB were established step by step, and develop some detections of mycobacterium tuberculosis using of gene technique, which opened a new way for the test of resistant strains rapidly. Now some better methods includes direct sequencing, hybridization and Polymerase Chain Reaction-Single- Strand conformation polymorphism but the last one is more optional for clinic application because of convenience, low cost and sentivity.
    Multi-drug resistance tuberculosis, which is resistant to more than two anti- tuberculosis drugs, threw the shadow on our determination of elimination tuberculosis. The resistant of the most commonly used anti-tuberculosis drugs, mostly includeing rifampin, streptomycin and isoniazid, brought much trouble for patient. It is urgent for clinic to establish a sensitive and sepecific protocol aimed at multi-drug resistant detection at the same time.Although there were reports about the PCR-SSCP detection of drug- resistant genes now, failing to detect the majority of the drug-resistant genes at the time. This leads an ineffective treatment with standard chemotherapy. For this, the main research objective of the theme is as follows: to develop a method in order to test RFP, SM and IHN resistant gene mutation named rpoB, rpsL and katG respectively at the same time, and provide rapid , nicety and trusty means for early of clinic theraty.
    First, to develop the multi-PCR technique. It has been verified that RFP resistance result from the mutation of rpoB which encode subunit in RNA polymerase and about 90%~95% mutation occurred at the 81bp region (507~533 site 27 amino acid codons) in the center of rpoB gene. The mutation of rrs gene encode 16SrRNA and rpsL gene encode S12 protein lead resistant to streptomycin. The mutation of rpsL, 60%~
    
    
    70% occupied SM-resistant strains, usually happened at the site of 43 and 88, is the major molecular mechanism for SM resistant. The katG gene of the encoded hydrogen oxide - peroxidase is the main reason that leads to the resistance of mycobacterium tuberculosis to isoniazid, and associated with the mutation of genes of the inhA and aphC promoter. KatG gene mutation 50% ~70% occupied INH-resistant strains, mostly occurred at the site of 315 and 304. For this purpose, the experiment designed the specific primers to cover as much as possible the mutation sites for the drug-resistant genes. The specific primer of the rpoB gene according to the Genbank: L27989, P1 5'-GAT CAA GAG TCA GAC GGT GTT C-3'; P2 5'-ACG GTG TTG TCC TTC TCC AG-3', the extended section was 365bp; The specific primer of the rpsL gene according to the Genbank: L08011, P, 5'-ACA CCA CCA CTC CGA AGA AG-3'; P25'-TGC GTA TCC AGC GAA CCG-3', the extended section was 201bp; The specific primer of the katG gene was self-designed
引文
[1] Wang W, Li HM, Wang AS, Wu XQ, Ye YX, Li SM. Drug-sensitive test and detecting drug resistance genes to Mycobacterium tuberculosis. J Chin Physician, 2001,3(7): 502-504.
    [2] Hu ZY, Jin AJ,Jing FX,Wang LL,Wang F. Detection of three genes with drug resistance in multiple resistant strains of Mycobacterium tuberculosis. Chin J Lab Med,2001,24(2):73-75.
    [3] Wu XQ, Zhuang YH, Zhang JH, Zhang XG, He XY, Li GL. Study on the molecular of multi-drug resistance in clinical isolates of Mycobacterium tuberculosis. Chin J Tuberc Dis, 1997,20(6):332-335.
    [4] Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature,1998,393 (6685):537-544.
    [5] Ramaswamy S, Muaser JM. Molecular genetic basis of antinaierobial agent resistance in Mycobacterium tuberculosis; 1998 update. Tnber Lung Dis, 1998,79(1): 3-29.
    [6] Quan S, Venter H, Dabbs ER. Ribosylative inactivation of rifampin by Mycobacterium smegmatis is a principal contributor to its low susceptibility to this antibiotic. Antimicrob Agents Chemother. 1997,41 (11):2456-2460.
    [7] Tanaka Y, Yazawa K, Dabbs ER, Nishikawa K, Komaki H, Mikami Y, Miyaji M, Morisaki N, Iwasaki S. Different rifarnpicin inactivation mechanims in Noeardia and related Taxa. Microbiol Immunol,
    
    1996,40(1):1-4.
    [8] Zhang Y, Heym B, Allen B, Young D, Cole S. The catalse-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature, 1992,358 (6387): 591-593.
    [9] Vilcheze C, Morbidoni HR, Weisbrod TR, Iwamoto H, Kuo M, Sacchettini JC, Jacobs WR Jr. Inactivation of the inhA-encoded fatty acid synthase Ⅱ (FAS Ⅱ) enoyl-acyl carrier protein reductase induces accumulation of the FAS Ⅰ end products and cell lysis of Mycobacterium smegmetis. J Bacteriol,2000, 182(14):4059-4067.
    [10] Slayden RA, Lee RE, Barry CE. Isoniazid affects multiple components of the type Ⅱ fatty acid synthase system of Mycobacterium tuberculosis. Mol Microbiol, 2000, 38(3): 514-525.
    [11] Zhang Y, Telenti A. Genetics of drug resistance in Mycobacterium tuberculosis. Molecular Genetics of Mycobacteria. Washington DC: ASM, 2000:235.
    [12] Ohno H, Koga H, Kohno S, Tashiro T, Hara K. Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan. Antimicrob Agents Chemother, 1996,40(4): 1053-1056.
    [13] Rattan A, Kalia A, Ahmad N. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg Infect Dis,1998,4(2):195-209.
    [14] Larsen MH, Vilcheze C, Kremer L, Besra GS, Parsons L, Salfinger M, Heifets L, Hazbon MH, Alland D, Sacchettini JC, Jacobs WR Jr. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M.tuberculosis. Mol Microbiol,2002,46(2):453-466.
    [15] Finken M, Kirsechner P, Meier A, Wrede A, Bottger EC. Molecular
    
    basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal S12 resistance in Mycobacterium tuberculosis: alterations of the ribosomal S12 gene and point mutations within a functional 16Sribosomal RNA pseudoknot. Mol Microbiol, 1993, 9(6):1239-1246.
    [16] Allen PN, Noller HF. Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16S ribosomal RNA. J Mol Biol, 1989,208(3): 457-468.
    [17] Tenover FC, Crawford JT, Huebner RE, Geiter LJ, Horsburgh CR Jr, Good RC. The Resurgence of Tuberculosis: Is Your Labortory Ready? J Clin Microbiol, 1993, 31(4):767-770.
    [18] Pozzi G, Meloni M, Zona E. rpoB mutation in multidrug-resistant strains of Mycobacterium tuberculosis isolated in Italy. J Clin Microbiol,1999,37:1197-1199.
    [19] Mokrousov I, Otten T, Filipenko M, Vyazovaya A, Chrapov E, Limeschenko E, Steklova L, Vyshnevskiy B, Narvskaya O. Detection of isoniazid-resistant Mycobacterium tuberculosis strains by a multiplex allele -specific PCR assay targeting katG codon 315 variation.. J Clin Microbiol, 2002,40(7): 2509-2512.
    [20] Felmlee TA, Liu Q, Whelen AC, Williams D, Sommer SS, Persing DH. Genotypic detection of Mycobacterium tuberculosis rifampin resistance: comparison of single-strand conformation polymorphism and dideoxy fingerprinting. J Clin Microbiol, 1995,33(6): 1617-1623.
    [21] Marttila HJ, Soini H, Vyshnevskiy BI, Otten TF, Vasilyef AV, Huovinen P, Viljanen MK. Rapid detection of rifampin -resistant Mycobacterium tuberculosis by sequencing and line probe assay. Stand J Infect Dis,1998, 30(2): 129-132.
    [22] Watterson SA, Wilson SM, Yates MD, Drobniewski FA.
    
    Comparetion of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol,1998,36(7): 1969-1973.
    [23] Nash KA, Gaytan A, Inderlied CB. Detection of rifampin resistance in Mycobacterium tuberculosis by use of a rapid, simple, and specific RNA/RNA mismatch assay. J Infect Dis, 1997,176:533-536.
    [24] Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridiration. Nat Biotech, 1996,14:303-308.
    [25] Piatek AS, Tyagi S, Pol AC, Telenti A, Miller LP, Krarner FR, Alland D. Molecular beacon sequence analysis for detect -ing drug resistance in Mycobacterium tuberculosis. Nat Biotech,1998,16(4):359-363.
    [26] Beckers B, Lang HR, Schirnke D, Lammers A. Evaluation of a bioluminescence assay for rapid amtimicrobial susceptibility testing of mycobacteria. Eur J Clin Microbiol, 1985,4(6):556-561.
    [27] Nilsson LE, Hoffner SE, Ansehn S. Rapid susceptibility testing for Mycobacterium tuberculosis by bioluminescence assay of Mycobacterium ATP. Antimicrob Agents Chemother, 1988,32(8): 1208-1212.
    [28] Jacobs WR Jr, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science, 1993,260(5109):819-822.
    [29] Riska PF, Su Y, Bardarov S, Freundlich L, Sarkis G, Hatfull G, Carriere C, Kumar V, Chan J, Jacobs WR Jr. Rapid Film-Based Determination of Antibiotic Susceptibility of Mycobacterium tuberculosis Strain by Using a Luciferase Reporter Phage and Bronx Box. J Clin Microbiol, 1999,37(4): 1144-1149.
    
    
    [30] Norden MA, Kurzynski TA, Bownds SE, Callister SM, Schell RF. Rapid Susceptibility Testing of Mycobacterium tuberculosis(H37Rv) by Flow Cytometry. J Ciin Microbiol, 1995, 33(5): 1231-1237.
    [31] Bownds SE, Kurzynski TA, Norden MA, Dufek JL, Schell RF. Rapid Suseeptibility Testing for Nontuberculosis Mycobacterium Using Flow Cytometry. J Clin Microbiol, 1996,34(6): 1386-1390.
    [32] David HL, Clavel S, Clement F, et al. Absorption and growth of the bacteiophage D29 in selected mycobacteria. Ann Virol,1999,131:167-184.
    [33] Eltringham IJ, Wilson SM, Drobinewski FA. Evaluation of a Bacteriophage-Based Assay as a Rapid Screen for Resistance to Isoniaid, Ethambutol, Streptomycin, Pyrazinamide, and Ciprofloxacin among Clinical Isolate of Mycobacterium tuberculosis. J Clin Microbiol,1999,37(11):3628-3532.
    [34] Hellyer TJ, Fletcher TW, Bates JH, Stead WW, Templeton GL, Cave MD, Eisenach KD. Strand Displacement Amplification and the Polymerase Chain Reaction for Monitoring Response to Treatment in Patient with Pulmonary Tuber culosis. J Infect Dis, 1996,173(4):934-941.
    [35] van der Vliet GM, Sehepers P, Sehukkink RA, van Gemen B, Klatser PR. Myeobacterium Viability by RNA Amplification. Antimicrob Agents Chemother, 1994,38(9): 1959-1965.
    [36] Moore DF, Curry JI, Knott CA, Jonas V. Amplificaton of rRNA for assessment of treatment respose of pulmonary tuberculosis patients during antimicrobial therapy. J Clin Microbiol, 1996,34(7): 1745-1749.
    [37] Jou NT, Yoshimori RB, Mason GR, Louie JS, Liebling MR. Single-Tube, Nested, Reverse Transcriptase PCR for Detection of Viable Mycobacterium tuberculosis. J Clin Microbiol, 1997,35(5): 1161-1165.
    [38] Hellyer TJ, DesJardin LE, Teixeira L, Perkins MD, Cave MD,
    
    Eisenach KD. Quantitative Analysis of mRNA as a Mark for Viability of Mycobactedum tuberculosis. J Clin Microbiol, 1999,37(12): 290-295.
    [39]潘毓萱,武玮.结核病化疗细菌学监控的分子标记物.中华结核和呼吸杂志,2001,24(7):393-396.
    [40]Desjardin LE, Perkins MD, Teixeira L, Cave MD, Eisenach KD. Alkaline Decotamination of Sputum Specimens Adversely Affects Stability of Mycobacterium mRNA. J Clin Microbiol, 1996,34(10): 2435-2439.
    [41]李国利,庄玉辉.分枝杆菌.北京:人民军医出版社.1985
    [42]Hermans PW, van Soolingen D, Dale JW, Schuitema AR, McAdam RA, Catty D, van Embden JD. Insertion element IS986 from Mycobacterium tuberculosis: a useful tool for diagnosis and epidemiology of tuberculosis. J Clin Microbiol, 1990,28(9):2051-2058.
    [43]李子玲,康晓明,杨毓华,罗文侗,叶曜岑,黄鹰,李学义.应用多重聚合酶链反应法检测并鉴别结核分枝杆菌与非结核分枝杆菌DNA.中华结核和呼吸杂志,1998,21(9):547-551.
    [44]苏明权,于文彬,马越云,张建芳,彭道荣,丁振若.多重聚合酶链反应快脑膜炎中的病原体.第四军医大学学报,2000,21(6):405-407.
    [45]Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet,1993,341 (8846):647-650.
    [46]Telenti A, Imboden P, Marchesi F, Schmidheini T, Bodmer T. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother,1993,37(10):2054-2058.
    [47]Scarpellini P, Braglia S, Brambilla AM, Dalessandro M, Cichero P,
    
    Gori A, Lazzarin A. Detection of rifampin resistance by single-strand conformation polymorphism analysis of cerebrospinal fluid of patients with tuberculosis of the central nervous system. J Clin Microbiol, 1997,35(11): 2802-2806.
    [48]程绍基,严碧涯,马屿,潘毓萱,朱莉贞.聚合酶链反应-冷单链构象多态性快速检测结核分枝杆菌rpoB基因突变.中华结核和呼吸杂志,1996,19(6):333-337.
    [49]Heym B, Alzari PM, Honore Met al. missense mutation in the catalase- peroxidase gene, katG; are associated with asoniazid resistance in M, tuberculosis. Mol Microb, 1995,15:235-237.
    [50]Ferrazoli L, Palaci M, Telles MAS et al. Catalase expression, katG, and MIC of isoniazid for M, tuberculosis from Sao Paulo, Brazil. JID,1995;171: 237-239.
    [51]陈素玲,赵美蓉,王明保.PCR-SSCP银染法检测结核分枝杆菌 rpsL基因突变.中国医师杂志,2001(3):16-17.
    [52]彭义利,王国斌,张舒林,伍学强,高三友,张莉,孙占强.结合分枝杆菌链霉素耐药分离株rpsL基因突变的检测.中华检验医学杂志,1996(19):342-345.
    [53]胡忠义,靳安佳,景奉香,王莉莉,王芳.结核分枝杆菌耐多药的基因研究.中华检验医学杂志,2001,24(2):73-75.
    [54]Williams DL, Waguespack C, Eisenach K, Crawford JT, Portaels F, Salfinger M, Nolan CM, Abe C, Sticht-Groh V, Gillis TP. Characterization of rifampin resistance in pathogenic mycobacteria. Antimicrob Agent Chemother, 1994,38(10): 2380-2386.
    [55]吴雪琼,张俊仙,庄玉辉,张晓刚,李国利,何秀云,张军芝,贾树林.16SrRNA基因突变与结核分枝杆菌耐链霉素的研究.中华结核和呼吸杂志,1998,21(9):569.
    [56]ZhangY, Telenti A. Genetics of drug resistance in Mycobacterium
    
    tuberculosis. Molecular Genetics of Mycobacteria. Washington, D C:ASM,2000:235-238.
    [57]程晓东,别良峰,苏明权,段艳,岳乔红,杨柳,张建芳,刘家云,郝晓柯,于文斌.结合分枝杆菌耐异烟肼基因突变的快速检测.第四军医大学学报,2003,24(23):2146-2149.
    [58]Morris S, Bai GH, Sufflys P, Portillo-Gomoz L, Fairchok M, Rouse D. Molecular mechanisms of multiple drug resistance in chinical isolates of Mycobacterium tuberculosis. J Infect Dis, 1995,171 (4):954-960.
    [59]吴雪琼,庄玉辉,张俊仙,张晓刚,何秀云,李国利.耐多药结核病耐药分子机制的研究.中华结核和呼吸杂志,1997;20(6):332-335.