大型风电机组整机及关键部件仿真分析与优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于环境恶化、能源危机等因素,风力发电技术成为人们越来越多的关注焦点。随着风力发电机组单机容量增大,复杂程度的增加,加上海上风力发电机组的兴起,对我国在风力发电机组自主设计和制造水平上提出了更高要求。我国在风电机组总体设计与国际水平还存在较大差距,尤其在整机建模、性能仿真、载荷计算等方面尚存许多问题没有解决。本文课题来源于重庆市科技计划重点攻关项目“风力发电机组系统设计关键技术”,以大型2MW变速变桨水平轴风力发电机组系统仿真及结构优化的关键技术进行研究。由此,论文研究的主要内容及结构如下:
     第一章分析了风电技术的发展趋势及研究热点,提出了风力发电机组系统仿真及优化的技术需求,综述了国内外风力发电机组空气动力学、结构动力学、系统建模仿真分析以及零部件优化技术的研究现状,从而提出了风电机组整机及关键零部件仿真分析与优化设计的研究,给出了论文的主要内容和结构。
     第二章提出了风力机空气动力问题的一种新理论——BEM-GDW综合理论。针对在风力机气动性能计算时广泛使用的修正后的叶素动量理论(BEM),指出它仍存在无法考虑三维气动效应以及时间迟滞等缺陷。同时引出另一种理论广义动态尾流理论(GDW),指出它的优点与BEM比较它可以描述风轮盘上更一般的压力分布,它存在时间迟滞,同时风轮的诱导速率能够从一系列一阶微分方程得出,避免了使用迭代,但它的缺点是在低风速下此方法计算很不稳定。为了弥补两个理论存在的不足,将两理论综合在一起,提出了BEM-GDW综合理论,同时考虑了动态失速的影响,并将此理论在Matlab中实现。
     第三章结合项目,对风力发电机组整机进行模拟仿真,计算了各关键零部件载荷。详细阐述了某大型2MW变速变桨水平轴风力发电机组的建模过程,模块特征和参数定义。将各个模块的特性以及参数对模型的影响都进行了详细的研究,根据实际风场特点,按照GL规范将风力机在外部条件下进行设计载荷工况的定义。建立了风力机整机系统模型,对其进行静态和动态仿真,从而获得风电机组各个零部件的极限和疲劳载荷。这对于风力发电机组设计的各个零部件的验证以及后续的设计都起到了指导作用。同时还对海况进行初步研究,为以后的海上风力发电机组的研究奠定了基础。
     第四章提出了对风力发电机组在冰载条件下的研究。首次以冰载条件下的风力机为研究对象,通过数值模拟的方法,分析了冰载对风力机叶片翼型、功率以及年发电量的影响。在Matlab中,基于BEM-GDW综合理论开发了计算冰载影响因素的风力机气动性能、功率及年发电量的程序,并以某2MW变速变桨型风力机为例进行了性能仿真,将所得的功率曲线与GH Bladed软件的结果进行比较分析,验证了该数值模拟方法的正确性和实用性。
     第五章基于BEM-GDW综合理论,考虑实际年风速分布概率,以年发电量最大为目标,结合遗传算法搜索寻优,建立叶片优化设计程序。运用此程序,对某2MW水平轴风力机叶片进行优化设计。优化后的风力机叶片的扭角、弦长及相对厚度的分布均保持光滑并连续性过渡,便于生产和加工。同时叶片捕风能力与年发电量较之原叶片都大大提高,具有一定的理论和工程实用价值。
     第六章基于风力机整机的稳定性,提出了一种研究风力机塔筒结构优化的新方法。该方法以减小系统振动为目标函数,塔筒的直径和壁厚为优化参数,通过强度、变形量及质量等作为约束条件建立优化模型,利用内点惩罚函数法求解此优化问题,最后运用坎贝尔图(Campbell图)对叶片与塔筒耦合的风力机整机系统的稳定性进行分析。应用此方法对某2MW水平轴风力机塔筒结构进行优化同时用有限元软件加以验证,整机的稳定性能得到很大改善同时塔筒质量减少13%,有效地优化了原有的设计。有助于国产风力发电机组关键零部件的优化设计,为提高国产风力发电机组的设计水平和国产化打下了良好的基础,拓宽了设计思路。
     最后,在第七章总结了全文的主要内容和成果,并展望了未来的研究工作。
Due to environment deterioration, energy crisis and other factors, wind power technology has been becoming more and more attractive to people. With the increment of single wind turbine (WT) capacity, complexity and the rise of offshore WTs, higher requirements are proposed in domestic independent wind turbine design and manufacturing. There’s still a huge gap of synthetic wind turbine design level between China and western countries, and many problems need to be solved especially on whole turbine modeling, performance simulation, load calculation, etc. This research is under the support of Chongqing Key Technologies R &D Program titled”Wind Turbine System Design Key Technology”with focus on system simulation and structure optimization of certain 2MW variable speed-pitch horizontal wind turbine. The main content and structure of the dissertation are as follows:
     In chapter 1,the status and hot research topics of wind power technology is analyzed. The technical requirements of WT system simulation and optimization is proposed. The research status of wind turbine system in terms of aerodynamics, structural dynamics, system modeling and simulation, and component optimization technology is reviewed. Therefore the research of wind turbine system and key components simulation and optimization is proposed. The main content and skeleton of the thesis are given as well.
     In chapter 2, a new theory of WT aerodynamics - BEM GDW comprehensive theory is proposed. With respect to the extensively used and revised blade element momentum theory (BEM) on WT aerodynamic performance calculation, its defects, such as no 3D aerodynamic effects,time delay, etc. are identified. Meanwhile, another theory named generalized dynamic wake theory (GDW) is solicited. GDW, compared to BEM, can describe more general pressure distribution. It does exist time delay, and the rotor induction rate can be obtained from a series of first order partial differential equation which prevents iterations. However, its calculation is unstable under low wind speeds. To remedy the deficiencies of both theories, via combination, BEM-GDW comprehensive theory is presented. The theory is fulfilled in Matlab taking account of dynamic stall.
     In chapter 3, the whole WT is modeled and simulated, and loads on various key components are calculated. The typical modeling process, module characteristics and parameter definition of the 2MW variable speed-pith horizontal wind turbine generator system is elaborated. Detailed research of the effects of module characteristics and parameters on the model is conducted. Based on practical wind field characteristics, design load cases of the wind turbine under real operation in accordance with GL certification are defined. The model of the whole WT system is established, and static and dynamic simulation are conducted to obtain extreme and fatigue loads of every components. It plays a guiding role on component certification and subsequent design. Also preliminary research is performed on sea condition, and lays a foundation for off shore wind turbine system design.
     In chapter 4, emphasis is put on ice load investigation of WTGS (wind turbine generator system). It is the first time to investigate wind turbine under ice loads. Through numerical simulation, the effects of ice load on wind turbine airfoil, power and annual power output are studied. Using Matlab, a routine which is initially used to calculate wind turbine aerodynamic performance, power and annual power output based on BEM-GDW comprehensive theory is further developed to incorporate the effects coming from ice loads. The 2MW variable speed-pitch wind turbine is used as an example to do performance simulation. The obtained power curve is compare to the results from GH Bladed, and the accuracy and practicability of the numerical simulation method is verified.
     In chapter 5,based on BEM-GDW comprehensive theory, considering actual annual wind distribution probability and targeting maximum annual power output, a wind turbine blade optimization routine has been developed combined with genetic algorithm technique. The routine is applied to conduct optimization design of the 2MW horizontal wind turbine blade. Smooth geometric transition along the optimized blade span with respect to twist, chord length and thickness distribution is found which is beneficial for manufacturing. Meanwhile, the energy capturing efficiency and annual power output has greatly improved based on the current optimized design, yielding evidently practical engineering application value.
     In chapter 6,a new method, which constructs and solves optimization model to optimize the structure of wind turbine in order to improve the stability of whole wind turbine system with coupled blade and tower, is developed. The optimization model formulation is described as the following: minimizing system vibration is the objective function, diameter and thickness of tower are decision variables, and constraints include strength, deformation and mass. Interior penalty function technique is applied to solve the optimization model, and Campbell diagram is employed to analyze the system stability. The formulation and solution method were applied to the 2MW horizontal axis wind turbine, and the stability of the whole turbine was greatly improved and tower mass was reduced by 13%, which demonstrates the proposed method not only contributes to theory research but also leads to great benefits in practice and effectively optimizes the original design, contribute to the key components of domestic wind turbine optimum design to improve the domestic wind turbine design standards, and domestic and lay a good foundation and broaden the design ideas.
     In Chapter 7, the important results and conclusions of the dissertation are summarized, and the prospective research work is presented.
引文
[1]能源领域组,能源领域科技发展“十五规划”和2015年远景研究[R]. 1999.
    [2]网易新闻.福岛不会成为切尔诺贝利[EB/OL]. http://discover.news.163.com/special/nuclearpowerplant/. 2011-03-20.
    [3]尹炼,刘文洲编著.风力发电[M].北京:中国电力出版社,2001.
    [4]中国风电行业报告[R]. 2009.
    [5] Kühn, M. Dynamics and Design Optimisation of Offshore Wind Energy Conversion Systems[D]. Delft University Wind Energy Research Institute. 2001.
    [6]可再生能源中长期发展规范(2004-2020)[R].国家发改委.
    [7]余维州.我国风电产业化发展的难道与前景[J].经济管理,2009,31(06):29-34.
    [8] BTM Consult ApS, World Wind Energy Development Report 2008[R]. Ringk?bing, Denmark. 2009.
    [9]新浪财经.哥本哈根协议文件(全文) [EB/OL].http://finance.sina.com.cn/j/20091220/08217128048.html. 2009-12-20.
    [10]金乐琴,刘瑞.低碳经济与中国经济发展模式转型[J].经济问题探索,2009,(01):84-87.
    [11]张坤民.低碳世界中的中国:地位、挑战和战略[EB/OL]. http://zhiku.ditan360.com/xsyj/48.html. 2009-08-30.
    [12]刘桦.风电机组系统动力学模型及关键零部件优化研究[D].重庆大学,2009.
    [13]施鹏飞.中国风电开发政策下的发展战略[C]. 2004中美合作风电场开发研讨会.
    [14]《可再生能源中长期发展规划(2004-2020)》,国家发改委编制.
    [15] Li, Zhi. Wind turbine industry: innovation is the best way to respond to crises[J]. China Investment. 2009.July 25 (in Chinese).
    [16] Tavner P.Wind power as a clean-energy contributor[J]. Energy Policy 2008, 36(12):397–400.
    [17]贺德馨.风工程与工业空气动力学[M].国防工业出版社,2006.
    [18] E A Bossany.GH Bladed Theory Manual[R].2007,Garrad Hassan & Partners Limited.
    [19] D.M. Pitt,D.A. Peters.Theoretical Prediction of Dynamic inflow Derivatives[J].Vertica,1981,5(1):21-34.
    [20] Akihiro Suzuki.Application of Dynamic Inflow Theory to Wind Turbine Rotors[D].The University of Utah,2000.
    [21] Hodges D H, Patil M J. Multi-flexible-body analysis for application to wind turbine control design[C]. AIAA Paper 2000-0030,2000.
    [22] Molenaar D P. Kijistra S. Modeling the structural dynamics of flexible wind turbines[J]. Proc. of 1999 EWEC, Nice, France, March 1999,234-237.
    [23] Molenaar D P. Modeling the structural dynamics of the Lagerwey LW-50/750 turbine[R]. Report N-522, Delft Univ. of Techn., 1998.
    [24] Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base. Journal of Guidance, Control and Dynamics, 1987, 10(2):139-151.
    [25] Malcolm, David J,Wright, Alan D. Use of ADAMS to model the AWT-26 prototype. Solar Energy Division. 1994,(15):125-131.
    [26] Rosenthal, Dan E. SYMBOLIC MULTIBODY EQUATIONS VIA KANE'S METHOD. Advances in the Astronautical Sciences. 1984,54(1):68.
    [27] David. Laino, A. Craig Hansen. YawDyn User’s Guide[EB/OL]. http://wind.nrel.gov/designcodes/simulators/. 2010-09-26.
    [28] Jason M. Jonkman, Marshall L. Buhl Jr. FAST User’s Guide[EB/OL]. http://wind.nrel.gov/designcodes/simulators/. 2010-09-26.
    [29] Anders Ahlstrom. Aeroelastic Simulation ofWind Turbine Dynamics[D]. Royal Institute of Technology. 2005.
    [30] Anders Ahlstrom. Influence of wind turbine flexibility on loads and power production[J]. Wind Energy. 2006,9(3):237-249.
    [31] Lee, D, Hodges D H, Patil M J. Multi-flexible-body dynamic analysis of horizontal axis wind turbines. Wind Energy 2002, 5:281-300.
    [32] Karam Y. Maalawi . Badawy,A direct method for evaluating performance of horizontal axis wind turbines[J]. Renewable and Sustainable Energy Reviews,2001,5:175-190.
    [33] LeRoy M. Fitzwater. Estimation of fatigue and extreme load distributions from limiteddata with application to wind energy systems[R]. Stanford University.2004.
    [34] Alejandro Gómez, Joerg R. Seume. Aerodynamic Coupling of Rotor and Tower in HAWTs[C]. Proceedings of the European Wind Energy Conference.2009.3.16.
    [35] G. Bir, J. Jonkman. Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines[C]. EAWE 2007 Torque from Wind ConferenceTechnical University of Denmark. 2007.8
    [36] J.M. Jonkman, M.L. Buhl, Jr. Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation[C]. WindPower 2007 Conference & Exhibition Los Angeles, California.2007.1
    [37] Denis Matha,Tim Fischer. Model Development and Loads Analysis of a Wind Turbine on a Floating Offshore Tension Leg Platform[C]. 2009 European Offshore Wind Conference and Exhibition Stockholm, Sweden.2009.9.
    [38]凌爱民,庄岳兴.大型风力发电机组动力学分析方法[J].风力发电. 2001, (4):42-49.
    [39]杨校生,何家兴,钮旋. LY70-1500变速恒频风电机组的力学性分析[C].中国电机工程学会第八届青年学术会议.2004.
    [40]黄珊秋,陆萍. ZOND Z-40风力机塔架的模态分析[J].太阳能学报. 2001,22(3):153-156.
    [41]张晨晨,兆瓦级风力发电机组的动力学分析[D].沈阳工业大学. 2007,03.
    [42]李声艳,大型风力发电机组的动力学特性计算分析[D].天津工业大学.2007,01.
    [43]谢开炎,大中型风力发电机组可靠性研究[J].太阳能学报. 2002,23(1):80-82.
    [44]李晶,宋家桦.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报. 2004,24(6):100-105.
    [45]信伟平.风力机旋转叶片动力特性及响应分析[D].汕头大学硕士学位论文. 2005.
    [46]任晓晨,韩磊.风力发电机组数学建模仿真实验[J].中国科技博览. 2010 (10):98
    [47]张锁怀,张文礼,张青雷.基于Adams的MW级风力发电机组动力学建模[J].华北电力大学学报. 2009,36(4):51-57
    [48]贾军利.风力发电机组载荷测试系统的设计与软件实现[D].新疆农业大学. 2009.
    [49]李建林.我国风电产业发展亟待解决的几个关键问题[J].变频器世界. 2009(8) :20-21.
    [50] Karam Y. Maalawi. A model for yawing dynamic optimization of a wind turbine structure[J]. International Journal of Mechanical Sciences. 2007(49):1130-1138.
    [51] B. Boukhezzar , H. Siguerdidjane. Comparison between linear and nonlinear control strategies for variable speed wind turbines[J]. Control Engineering Practice. 2010(8):1357-1368.
    [52] Alireza Emami , Pirooz Noghreh. New approach on optimization in placement of windturbines within wind farm by genetic algorithms[J]. Renewable Energy. 2010(35):1559-1564.
    [53] M. Jureczko, M. Pawlak, A. M??yk. Optimisation of windturbine blades[J]. Journal of Materials Processing Technology. 2005(167):463-471.
    [54] P. Fuglsang, H.A. Madsen. Optimization method for wind turbine rotors[J]. Journal of Wind Engineering. 1999(80):191-206.
    [55] Andrew Kusiak , Haiyang Zheng. Power optimization of wind turbines with data mining and evolutionary computation[J]. Renewable Energy. 2010(35):695-702.
    [56] Ivan Mustakerov, Daniela Borissova. Wind turbines type and number choice using combinatorial optimization[J]. Renewable Energy. 2010(35):1887-1894.
    [57]韩中合、吴铁军.基于遗传算法的风力机桨叶优化设计[J].风机技术. 2008(1):46-51.
    [58]徐奴文、李俊杰、王卫争.基于遗传算法的风力机塔架最优化设计方法[J].可再生能源. 2008,26(1):13-16.
    [59]刘雄、陈严、叶枝全.遗传算法在风力机风轮叶片优化设计中的应用[J].太阳能学报. 2006,27(2):180-185.
    [60]何玉林,陈新厂,金鑫等.风力发电机组轮毂有限元分析与优化[J].机械与电子. 2008(4):56-58.
    [61] Martin O.L. Hansen. Aerodynamics of wind turbines[M]. London Sterling. 2008.
    [62] Ulrik V?lcker Andersen. Load reduction of support structures of offshore wind turbines[D]. Technical University of Denmark. 2008.
    [63] Tony Burton, David Sharpe, Nick Jenkins, Ervin Bossanyi. WIND ENERGY HANDBOOK. JOHN WILEY & SONS, LTD, 2001.
    [64] Glauert, H. "Airplane Propellers." Aerodynamic Theory (W. F. Durand, ed.), Div. L, Chapter XI. Berlin:Springer Verlag, 1935.
    [65]刘桦,何玉林,金鑫,等.基于GDW理论的失速型风力机整机性能分析[J].太阳能学报,2008,29(3):343-348.
    [66] Leishman, J.G.; Beddoes, T.S. A Semi-Empirical Model for Dynamic Stall[J]. Journal of the American Helicopter Society. 1989,34 (3): 3-17.
    [67] Bisplinghoff, R.L, Ashley H., Halfman, R.L. Aeroelasticity. Reading. Addison Wesley. 1955:332-353.
    [68] Thwaites, B. Incompressible Aerodynamics. Oxford University Press. 1960:168-170.
    [69] Germanischer Lloyd Wind Engergie GmbH.Guideline for the certification of wind turbine[S].Germany.2003.
    [70] INTERNATIONAL STANDARD. IEC61400-1. Wind turbines[S]. GENEVA, SWITZERLAND :IEC Central Office.
    [71]松坂知行,王丽珠.风力发电机输出功率波动的稳定性控制[J].大中型风力发电技术,2000, 1:110-121.
    [72] Endusa Billy Muhando,Tomonobu Senjyu,Naomitsu Urasaki.Gainscheduling controlof variable speed WTG under widely varying turbulence loading[J].Renewable Energy,2007,32:2407-2423.
    [73] Van der Hooft,E.L Schaak.P ,van Engelen.T.G.. Wind turbine control algorithms. Holland :Dutch ministry of Economic Affairs.2003:69-75.
    [74] Mobinder S.Grewal , Angus P. Andrews. Kalman Filtering Theory and Practice Using MATLAB . A JOHN WILEY&SONS. INC.,2008.
    [75] B.Boukhezzar , H.Siguerdidjane , M.Maureen Hand. Nonlinear control of variable-Speed Wind Turbines Generator Torque Limiting and Power Optimization . Journal of Solar Energy Engineering, 2006 , 128:516-530.
    [76]王秋瑾,张新房.基于WLS-SVM的变速风力机有效风速估计[J].系统仿真学报,2005,17(7):1590-1593.
    [77] Xin Ma. Adaptive extremum control and wind turbine control. PhD thesis, Danemark, May 1997.
    [78] S. Schreck, J. Lundquist,W. Shaw. U.S. Department of Energy Workshop Report: Research Needs for Wind Resource Characterization[R]. 2008.
    [79] H.Gerber. Innere dynamische Zusatzkr?fte bei Stirnradgetrieben: Modellbildung, innere Anregung un D?mpfung[D]. TU Munich,Munich,Germany,1984.
    [80] Joris PEETERS. Simulation of dynamic drive train loads in a wind turbine[D]. Katholieke Universiteit Leuven. 2006.
    [81]陈严,欧阳高飞,叶枝全.大型水平轴风力机传动系统的动力性研究[J].太阳能学报,2003,24 (5):729-734.
    [82] Germanischer Lloyd Wind Engergie GmbH.Guideline for the certification of offshore wind turbine[S].Germany.2003.
    [83] Ian Baring-Gould. Wind energy projects in cold climate[R]. 2009.
    [84] Gray VH.Prediction of aerodynamic penalties caused by ice formations on various airfoils.NASA TN D–2166,1964.
    [85] Brumby RE.Wing surface roughness—cause & effect. D.C. Flight Approach, Jan. 1979.p.2–7.
    [86] Carroll TC, McAvoy WH.Formation of ice on airplanes.Airway Age, September 1928.p.58–9.
    [87] Gulick BG.Effects of simulated ice formation on the aerodynamic characteristics of an airfoil.NACA Wr L-292, 1938.
    [88] Johnson CL.Wing loading, icing and associated aspects of modern transport design.J Aero Sci 1940;8(2):43–54.
    [89] Gray VH, Von Glahn UH.Effect of ice and frost formations on drag of NACA 65-212airfoil for various modes of thermal ice protection.NACA TN 2962, June 1953.
    [90] Gray VH, Von Glahn UH.Aerodyn amic effects caused by icing of an unswept NACA65A004 airfoil.NACA TN 4155, 1957.
    [91] Gray VH.Correlation s among ice measurements, impingement rates, icing conditions, and drag coefficients for unswept NACA 65A004 airfoil.NACA TN 4151,February 1958.
    [92] Gray VH.Prediction of aerodynamic penalties caused by ice formations on various airfoils.NASA TN D–2166,1964.
    [93] Aircraft Icing.NASA Conference Publication 2086 or FAA-RD-78-109, July, 1978
    [94] Potapczuk MG, Gerhart PM.Progress in the development of a Navier–Stokes solver forevaluation of iced airfoil performance.AIAA Paper 85-0410, 1985.
    [95] Cebeci T.Effects of environmentally imposed roughness on airfoil performance.NASA CR 179639, June, 1987.
    [96] Kwon O, Sankar L.Numeric al study of the effects of ICING on finite wing aerodynamics.AIAA Paper 90-0757, 1990.
    [97] Zaman KBMQ, Potapczuk MG.The low frequency oscillation in the flow over a NACA airfoil with an iced leading edge.In: Mueller TJ, editor.Low Reynolds number aerodynamics.New York: Springer; 1989.p.271–82.
    [98] Zierten TA, Hill EG.Effects of wing simulated ground frost on aircraft performance.VKI Lecture Series, 1987.
    [99] Van Hengst J, Boer JN.The effect of hoar-frosted wings on the FOKKER 50m Take-off characteristics.AGARDCP 496, 1991.
    [100] Bragg MB, Heinrich DC, Valarezo WO, McGhee RJ. Effect of underwing frost on a transport aircraft airfoil at flight reynolds number.AIAA J Aircr 1994;31(6):1372–9.
    [101] Kerho MF, Bragg MB.Airfoil boundary-layer development and transition with large leading-edge roughness.AIAA J 1997;35(1):75–84.
    [102] Ashenden R, Lindburg W, Marwitz J.Two-dimensi onal NACA 23012 airfoil performance degradation by super cooled cloud, drizzle and rain drop icing.AIAA Paper 96-0870,1996.
    [103] Ashenden R, Lindburg W, Marwitz JD, Hoxie B.Airfoil performance degradation by supercooled cloud drizzle and rain drop icing.AIAA J Aircr 1996;33(6):1040–1046.
    [104] Miller DR, Addy Jr HE, Ide RF.A study of large droplet ice accretions in the NASA-Lewis IRT at near-freezing conditions.AIAA Paper 96-0934, 1996.
    [105] Addy Jr HE, Miller DR, Ide RF.A study of large droplet ice accretion in the NASA Lewis IRT at near-freezing conditions; Part 2.NASA TM-107424, April 1997.
    [106] Gile-Laflin BE, Papadakis M.Experimen tal investigation of simulated ice accretions ona natural laminar flow airfoil.AIAA Paper 2001-0088, 2001.
    [107] Jackson DG, Bragg MB.Aerodynam ic performance of an NLF airfoil with simulated ice.AIAA Paper 99-0373,1999.
    [108] Broeren AP, Addy Jr HE, Bragg MB.Effect of intercycle ice accretions on airfoil performance.AIAA Paper 2002-0240, 2002.
    [109] Haines, AB, Young, AD.Scale effects on aircraft and weapon aerodynamics. AGAR Dograph 1994.p.323.
    [110] Dunn TA, Loth E, Bragg MB.Computatio nal investigation of simulated large-droplet ice shapes on airfoil aerodynamics.AIAA J Aircr 1999;36(5): 836–43.
    [111] Bragg MB, Loth E.Effects of large-droplet ice accretion on airfoil and wing aerodynamics and control.FAA/DOT/AR-00/14, Apr.2000.
    [112] Pan J, Loth E, Bragg MB.RANS simulations of airfoils with ice shapes.AIAA Paper 2003-0729, 2003.
    [113] Wright WB.Validation methods and results for a two dimensional ice accretion code.AIAA J Aircr 1999;36(5):827–35.
    [114] Gurbacki HM, Bragg MB.Unstea dy aerodynamic measurements on an iced airfoil.AIAA Paper 2002-0241, 2002.
    [115] Ratvasky TP, Van Zante JF, Riley JT.NASA/FAA Tailplane icing program overview.AIAA Paper 99-0370,1999.
    [116] Vargas M, Reshotko E.Parametric experimental study of the formation of glaze ice shapes on swept wings.AIAA Paper 99-0094, 1999, also NASA TM-1998-206616.
    [117] Potapczuk MG, Papadakis M, Vargas M.LEWICE modeling of swept wing ice accretions.AIAA Paper 2003-0730, 2003.
    [118] Papadakis M, Yeong HW, Wong SC, Vargas M, Potapczuk MG.Aerodyn amic performance of a swept wing with ice accretions.AIAA Paper 2003-0731,2003.
    [119] M. Durstewitz, H. Dobesch, G. Kury, et al. European experience with wind turbines inicing conditions[EB/OL]. http://www.2004ewec.info/files/23_1400_michaeldurstewitz_01.pdf.
    [120] Lasse Makkonen, Timo Laakso, Mauri Marjaniemi, et al. Modelling and prevention of ice accretion on wind turbines[J]. Wind Engineering. 2001,25(1):3-21.
    [121] Clement Hochart, Guy Fortin, Jean Perron. Wind turbine performance under icing conditions[J]. Wind Energy. 2008; 11:319-333.
    [122] M.B. Bragg, A.P. Broeren, L.A. Blumenthal. Iced-airfoil aerodynamics[J]. Aerospace Sciences. 2005,(41): 323-362.
    [123] Masoud Mirzaei, Mohammad A. Ardekani, Mehdi Doosttalab. Numerical and experimental study of flow field characteristics of an iced airfoil[J]. Aerospace Science and Technology. 2009, (13): 267-276.
    [124] Timo Laakso. Wind Energy and Ice Detection.http://www.meteo.bg/meteorology/wp5.pdf/2005.11.29
    [125] P.J. Moriarty, A.C. Hansen. AeroDyn Theory Manual[EB/OL].http://wind.nrel.gov/designcodes/simulators.
    [126]蒋莉萍,2008年国内外风电发展情况综述[J].电力技术经济, 2009,21(2):12-15.
    [127]张晓明,风力发电复合材料叶片的现状与未来[J].纤维复合材料, 2006,60(2):60-63.
    [128]潘艺,周鹏展,王进,风力发电机叶片技术发展概述[J].湖南工业大学学报, 2007,21(3):48-51.
    [129] Det Norake Veritas,RisφNational Laboratory. Guidelines for design of wind turbines[M]. Det Norske Veritas and RisφNational Laboratory, 2002.
    [130]刘雄,陈严,叶枝全.遗传算法在风力机风轮叶片优化设计中的应用[J].太阳能学报,2006,27(2):180-185.
    [131]运筹学.教材编写组.运筹学[M].北京:清华大学出版社. 1990.
    [132]袁亚湘,孙文瑜.最优化理论与算法[M].北京:科学出版社. 1999.
    [133]张光澄等.最优化方法[M].成都:成都科技大学出版社. 1990.
    [134]林锉云,董家礼.多目标优化的方法与理论[M].吉林:吉林教育出版社. 1992.
    [135]陈国良,王煦法,庄镇泉,等.遗传算法及其应用[M].人民邮电出版社,1996.
    [136] Thomas Weise.Global Optimization Algorithms Theory and Application (Second edition)[M]. http://www.it-weise.de/. 2009.
    [137] Richard W. Vesel, Jr.Optimization of a wind turbine rotor with variable airfoil shape via a genetic algorithm[D]. The Ohio State University. 2009.
    [138]韩新月.水平轴风力机叶片多目标优化设计及结构动力学分析[D].汕头大学,2008.
    [139] Han Jingyi, ArthurP.J. Mol, Lu Yonglong, et al. Onshore wind power development in China: Challenges behind a successful story[J]. Energy Policy,2009 (37): 2941–2951.
    [140] P. J. Murtagh, B. Basu, B. M. Broderick. Simple models for natural frequencies and mode shapes of towers supporting utilities[J]. Computers and structures, 2004 (82):1745-1750.
    [141]赵吉文,谢芳等. 600kW风力机塔筒结构参数粒子群优化设计[J].中国机械工程,2007,18 (15):1776-1779.
    [142]庞强,董湘怀,王鹏.基于有限元模拟的风力机塔筒优化[J].机械设计与制造,2008,(8):1-3.
    [143]商大中,李宏亮,韩广才.结构动力分析[M].哈尔滨:哈尔滨工程大学出版社,2005.
    [144]汤炜梁,袁奇,韩中合,风力机塔筒抗台风设计[J].太阳能学报,2008,29(4):422-47
    [145] P E UYS, J FARKAS, K JARMAI, et al. Optimization of a steel tower for a wind turbine structure [J]. Engineering Structures, 2007, 29:1337- 1342.
    [146] CEN. Eurocode 1: Basis of design and actions on structures - Part 2.4:Actions on structures - wind actions. ENV I99 1-2-4- 1995[M]. Brussels:CEN.May 1995.
    [147] Karam Y, Maalawi, Hani M. Negm. Optimal frequency design of wind turbine blades[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002,90:961-986.
    [148]施光燕,董加礼.最优化方法[M] .北京:高等教育出版社,2002.
    [149]丁同梅,周正武,王晓峰,田毅红.基于SUMT法有约束非线性规划问题的优化[J].机械工程师. 2006(8):110-112.
    [150]张鄂.现代设计方法[M].西安交通大学出版社. 1999.
    [151]陈立周.机械优化设计方法(第2版) [M].冶金工业出版社. 2003.
    [152]陈立周.机械优化设计方法(第3版) [M].冶金工业出版社. 2005.
    [153]梁尚明,殷国富.现代机械优化设计方法[M].化学工业出版社. 2005.
    [154]韩中庚.数学建模方法及其应用[M].高等教育出版社. 2005.
    [155]朱德通.最优化模型与实验[M].同济大学出版社. 2003.
    [156]谢金星,薛毅.优化建模与LINDO/LINGO软件[M].清华大学出版社. 2005.
    [157]张杰,周硕.运筹学模型[M].东北大学出版社. 2005.
    [158]傅英定,成孝予,唐应辉.最优化理论与方法[M].国防工业出版社. 2008.
    [159]蒋金山,何春雄,潘少华.最优化计算方法[M].华南理工大学出版社. 2007.
    [160]韩中庚.实用运筹学模型、方法与计算[M].清华大学出版社. 2007.
    [161] Ander.L.T,ZHOU Jian. A simple quadratically convergen interior point algorithm for linear programming and convex quadratic programming.Large Scale Optimization: State ofthe Art[J]. Kluwer Academic Publishers B.V. 1993:1-17.
    [162] Zhu Zhibin. A feasible interior-point algorithm for nonconvex nonlinear programming[J].Applied Mathematics and Computation. 2005,163:745-753
    [163] Maalawi KY. Structural design optimization of wind turbines[D]. Dissertation. Faculty of Engeneering, Cairo university, 1997.
    [164] Van der Tempel J, Molenaar D-P. Wind turbine structural dynamics - A review of theprinciples for modern power generation, onshore and offshore[J]. Wind Engineering, 2002, 26 (4):211-222.
    [165]李华明.基于有限元法的风力发电机组塔筒优化设计与分析[D].新疆农业大学,2004.
    [166]孙靖民,米成秋.机械结构优化设计[M].哈尔滨:哈尔滨工业大学出版社,1985.