Boost斩波型直驱式永磁风力发电系统功率变换器运行控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直驱式永磁风力发电系统因具有能量转换效率高、可靠性高、抗电网干扰能力较强等优点,成为继双馈风力发电系统之后风电技术领域的重要发展方向。本文以一种较为常见Boost斩波型直驱式永磁风力发电系统为研究对象,重点研究了全功率变换器的运行特性,并提出了相应的控制策略。
     永磁同步发电机和电机侧Boost斩波型变换器属于强非线性系统,采用普通的PI控制器难以在正常运行范围内保证系统性能,且非线性系统PI控制器参数难于整定。针对其非线性特性,在适当简化的基础上,采用分区间建模的方法,以功率器件开关信号占空比为输入变量,发电机转速为输出变量,建立了发电机与变换器整体二阶仿射非线性模型;引入微分几何理论,利用反馈线性化方法,在单区间内将非线性系统转换为线性系统;根据线性系统设计闭环转速控制器,并利用线性二次型最优控制方法对发电机转速进行控制。经仿真验证,基于该控制器的系统具有良好的稳态和动态性能。
     在发电机与变换器二阶模型基础上,将发电机角位置作为状态变量,分区间建立了三阶仿射非线性模型,重新构造输出函数,以发电机角位置作为输出变量,实现了单区间内系统完全输入-输出反馈线性化;根据输出变量与发电机转速的数学关系,设计闭环转速控制器,并利用时间与绝对误差乘积积分指标对控制器参数进行了整定。经仿真和实验验证,基于该控制器的系统能够在较大范围内快速跟踪参考转速的变化,具有较好的稳态和动态性能,对电机侧Boost斩波型变换器控制策略的设计具有一定的参考价值。
     根据网侧变换器数学模型,以瞬时功率理论为基础,详细分析了电网电压平衡和不平衡情况下电网瞬时功率表现形式,给出了瞬时功率直流分量和交流分量解析表达式;基于该表达式,利用误差反馈控制原理,针对不同情况,设计了未含不平衡算法的恒频直接功率控制策略和含不平衡算法的恒频直接功率控制策略;基于这两种控制策略的系统具有动态响应快,交流侧滤波器参数易于设计等优点。经仿真和实验验证,电网电压平衡时,基于两种控制策略的系统均能满足电网要求,具有良好的稳态和动态性能;电网电压不平衡时,含不平衡算法的恒频直接功率控制策略可有效地抑制瞬时有功功率波动,减小交流侧电流谐波污染,改善系统性能。
The direct driven permanent magnet synchronous generator (PMSG)-based wind energy conversion system (WECS), which has the advantages of high efficiency and reliability and high ability to reject the grid disturbances, is a main type of WECS as well as the doubly fed induction generator (DFIG)-based WECS. The boost-chopper converter followed by a three-phase full-wave converter is a common topology of the full-power AC-DC-AC converter in the PMSG-based WECS, whose performance is analyzed in this paper. Then novel control strategies are purposed.
     The PMSG and the boost-chopper generator side converter form a nonlinear system. Therefore it is difficult for the system to maintain good dynamic performance within normal operating range under control of the ordinary proportional-integral (PI) controller. Besides, the parameters of the PI controller used in the nonlinear system are always difficult to be tuned. Consequently, a piecewise 2nd-order affine nonlinear mathematical model for the whole system including the generator and the generator side converter is built based on certain assumptions, whose input variable and output variable are the duty ratio of the switching signal for the power device and the speed of the generator respectively. Subsequently the nonlinear mathematical model is transformed into a linear one within every single interval by the input-output feedback linearization (IOFL) method based on the differential geometry theory. In addition, a closed loop speed controller is designed on the basis of the optimal control theory. Simulation results verify the good steady and dynamic performance of the system using the proposed controller within normal operating range.
     A more precise piecewise 3rd-order affine nonlinear mathematical model is built whose state variables are namely the angle of the generator, the speed of the generator and the current of DC-link inductor respectively. Among then, the angle of the generator is selected as the output variable for complete input-output feedback linearization within every single interval. Then a closed loop controller is designed according to the relationship between the output variable and the speed of the generator considering the integral of time multiplied by the absolute error (ITAE). Finally, simulation and experimental results prove that the system has good steady and dynamic performance with the proposed strategy, such as its rapid step response, through which some drawbacks of the ordinary PI controller are overcome. Also, the proposed strategy can be referred to for the generator side controller design of the direct driven PMSG-based WECS with the boost-chopper converter.
     According to the instantaneous power theory and the mathematical model of the grid side converter, the analytical equations of DC and AC components of the instantaneous power are given under balanced and unbalanced grid voltages respectively. Then two constant switching frequency direct power control (CSF-DPC) strategies are designed using the feedback control theory. One of them contains unbalanced algorithm while the other does not. The two controllers have the advantages of fixed switching frequency and good dynamic performance. At last, simulation and experimental results demonstrate that the two controllers have good steady and dynamic performance under the balanced grid voltages and the controller containing unbalanced algorithm can effectively improve the performance of the system under the unbalanced grid voltages by reducing input current harmonics and the fluctuations of the instantaneous active power.
引文
[1]李果仁,刘亦红.中国能源安全报告[M].北京:红旗出版社,2009.
    [2]倪健民,郭云涛.能源安全[M].杭州:浙江大学出版社,2009.
    [3]王承煦,张源.风力发电[M].北京:中国电力出版社,2003.
    [4]尹烁,刘文洲.风力发电[M].北京:中国电力出版社,2001.
    [5] Global Wind Energy Council.Global Wind Statistics 2010[R].www.gwec.net,2011.
    [6] World Wind Energy Association.World Wind Energy Report 2009[R].Turkey:Istanbul,2010.
    [7] Xia C L,Song Z F.Wind energy in China:current scenario and future perspectives[J].Renewable & Sustainable Energy Reviews,2009,13(8):1974-1996.
    [8]李俊峰,施鹏飞,高虎.中国风电发展报告2010[M].海口:海南出版社,2010.
    [9]丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110.
    [10]李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报,2005,25(21):41-44.
    [11]耿华,杨耕.变速变桨距风电系统的功率水平控制[J].中国电机工程学报,2008,28(25):130-137.
    [12]李晶,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报,2004,24(6):100-105.
    [13]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制及建模仿真[J].中国电机工程学报,2006,26(5):43-49.
    [14]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报,2003,23(13):122-125.
    [15]辜承林,韦忠朝,黄声华,等.对转子交流励磁电流实行矢量控制的变速恒频发电机[J].中国电机工程学报,1996,16(2):119-124.
    [16]卞松江.变速恒频风力发电系统关键技术研究[D].[博士学位论文],杭州:浙江大学,2003.
    [17]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [18]刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制[J].中国电机工程学报,2004,24(3):6-11.
    [19]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究[J].中国电机工程学报,2003,23(8):159-162.
    [20]郎永强,徐殿国,Hadianmrei S R,等.交流励磁双馈电机分段并网控制策略[J].中国电机工程学报,2006,26(19):133-138.
    [21]张红光,张粒子,陈树勇,等.大容量风电场接入电网的暂态稳定特性和调度对策研究[J].中国电机工程学报,2007,27(31):45-51.
    [22]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2006,26(3):164-170.
    [23]梁亮,李建林,许洪华.双馈感应式风力发电系统低电压穿越研究[J].电力电子技术,2008,42(3):19-21.
    [24]龙泽强,肖劲松.风力发电研究和开发的现状与展望[J].世界科技研究与发展,2003,(4):26-30.
    [25]李亚西,武鑫,赵斌,等.世界风力发电现状及发展趋势[J].太阳能,2004,(1):6-7.
    [26]高小法.国内风力发电的现状和前景[J].新能源及工艺,2002(4):19-22.
    [27]叶启明.大型风力发电机组系统的结构与特点[J].华中电力,2002,15(2):67-68.
    [28] Datta R,Ranganathan V T.Variable-speed wind power generation using doubly-fed wound rotor induction machine-A comparison with alternative schemes[J].IEEE Transactions on Energy Conversion,2002,17(3):414-421.
    [29]夏长亮,宋战锋.变速恒频风力发电系统变桨距自抗扰控制[J].中国电机工程学报,2007,27(14):91-95.
    [30]陈炜,陈成,宋战锋,等.双馈风力发电系统双PWM变换器PR控制[J].中国电机工程学报,2009,29(15):1-6.
    [31]夏长亮,王慧敏,宋战锋,等.变速恒频双馈风力发电系统空载并网积分变结构控制[J].天津大学学报,2008,41(11):1281-1286.
    [32]邓先明,姜建国.无刷双馈电机的工作原理及电磁设计[J].中国电机工程学报,2003,23(11):126-132.
    [33] Chinchilla M,Arnaltes S,Burgos J C.Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[J].IEEE Transactions on Energy Conversion,2006,21(1):130-135.
    [34] Tan K,Islam S.Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors[J].IEEE Transactions on Energy Conversion,2004,19(2):392-399.
    [35] Polinder H,van der Pijl F F A,de Vilder G-J,et al.Comparison of direct-drive and geared generator concepts for wind turbines[J].IEEE Transactions on Energy Conversion,2006,21(3):725-733.
    [36]胡书举,李建林,许洪华.永磁直驱风电系统变流器拓扑分析[J].电力自动化设备,2008,28(4):77-81.
    [37] Baroudi J A,Dinavahi V,Knight A M.A review of power converter topologies for wind generators[C].IEEE International Conference on Electric Machines and Drives,2005,458-465.
    [38] Raju A B,Chatterjee K,Fernandes B G.A simple maximum power point tracker for grid connected variable speed wind energy conversion system with reduced switch count power converters[C] . IEEE 34th Annual Power Electronics Specialist Conference,2003,748-753.
    [39] Carrasco J M,Franquelo L G,Bialasiewicz J T,et al.Power-Electronic systems for the grid Integration of renewable energy sources:a survey[J].IEEE Transactions on Industrial Electronics,2006,53(4):1002-1016.
    [40]李建林,朱颖,胡书举,等.风力发电系统中大功率变流器的应用[J].高电压技术,2009,35(1):169-175.
    [41] Pahlevaninezhad M,Safaee A,Eren S,et al.Adaptive nonlinear maximum power point tracker for a WECS based on permanent magnet synchronous generator fed by a matrix converter[C].Energy Conversion Congress and Exposition,2009,2578-2583.
    [42] Middlebrook R D , Cuk S . A general unified approach to modeling switching-converter power stages[C].IEEE Power Electronics Specialists Conference,1976,18-34.
    [43] Sun J,Mitchell D M,Greuel M F,et al.Averaged modeling of PWM converters operating in discontinuous conduction mode[J].IEEE Transactions on Power Electronics,2001,16(4):482-492.
    [44] Van Dijk E,Spruijt H J N,O'Sullivan D M,et al.PWM-Switch modeling of DC-DC converters[J].IEEE Transactions on Power Electronics,1995,10(6):659-665.
    [45] Wu T-F,Chen Y-K.Modeling PWM DC/DC converters out of basic converter units[J].IEEE Transactions on Power Electronics,1998,13(5):870-881.
    [46]高潮,邱关源.直流电-直流电开关变流器的统一建模方法[J].电子学报,1995,23(2):53-58.
    [47]张波,曲颖.电压反馈型Boost变换器DCM的精确离散映射及其分岔和混沌现象[J].电工技术学报,2002,17(3):43-47.
    [48] Papafotiou G A,Margaris N I.Nonlinear discrete-time analysis of the fixed frequency switch-mode DC-DC converters dynamics[J].IEEE Transactions on Circuits and Systems-II,2005,52(6):322-326.
    [49] Mirecki A,Roboam X,Richardeau F.Architecture complexity and energy efficiency of small wind turbines[J] . IEEE Transactions on Industrial Electronics,2007,54(1):660-670.
    [50] dos Reis F S,Tan K,Islam S.Using PFC for harmonic mitigation in wind turbine energy conversion systems[C].IEEE 30th Annual Conference of Industrial Electronics Society,2004,3100-3105.
    [51] Knight A M,Peters G E.Simple wind energy controller for an expanded operating range[J].IEEE Transactions on Energy Conversion,2005,20(2):459-466.
    [52] Amei K,Takayasu Y,Ohji T,et al.A maximum power control of wind generator system using a permanent magnet synchronous generator and a boost chopper circuit[C].Power Conversion Conference,2002,1447-1452.
    [53] Muyeen S M,Takahashi R,Murata T,et al.Transient stability enhancement of variable speed wind turbine driven PMSG with rectifier-boost converter-inverter[C].18th International Conference on Electrical Machines,2008,1-6.
    [54] Haque M E,Negnevitsky M,Muttaqi K M.A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator[J].IEEE Transactions on Industry Applications,2010,46(1):331-339.
    [55] Kazimierczuk M K,Starman L A.Dynamic performance of PWM DC-DC boost converter with Input voltage feedforward Control[J].IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications,1999,46(12):1473-1481.
    [56]杨汝.平均电流模式的控制电路设计[J].电力电子技术,2002,36(4):66-69.
    [57]刘雁飞.平均电流控制下的DC/DC变换器大小信号统一动态模型[J].电工技术学报,2007,22(5):84-91.
    [58]高田,景占荣,羊彦,等.峰值电流控制模式中斜率补偿的研究[J].电力电子技术,2007,41(3):92-94.
    [59]何亮,方宇,李吉,等.峰值电流控制DC/DC变换器的恒值限流方法[J].电工技术学报,2006,21(10):86-89.
    [60]施刚,胡东,蔡旭.永磁直驱风力发电机变流系统的谐波分析[J].电机与控制应用,2009,36(5):28-32.
    [61] Xiong X,Liang H.Research on multiple boost converter based on MW-level wind energy conversion system[C].8th International Conference on Electrical Machines and Systems,2005,1046-1049.
    [62]苏晓东,梁晖.风力发电变流系统多重化升压斩波器控制方法研究[J].电气传动,2008,38(8):36-39.
    [63]阮新波,李斌,陈乾宏.一种适用于高压大功率变换器的三电平直流变换器[J].中国电机工程学报,2003,23(5):19-23.
    [64]何海洋,姚刚,邓焰.一种三电平交错并联Boost变换器[J].电工技术学报,2006,21(6):23-28.
    [65] Barbosa P,Canales F,Lee F.Analysis and evaluation of the two-switch three-level boost rectifier[C].IEEE 32nd Annual Power Electronics Specialists Conference,2001,1659-1664.
    [66] Bel Haj Youssef N,Al-Haddad K,Kanaan H Y.Implementation of a new linear control technique based on experimentally validated small-signal model of three-phase three-level boost-type vienna rectifier[J].IEEE Transactions on Industrial Electronics,2008,55(4):1666-1676.
    [67] N Bel Hadj-Youssef,K Al-Haddad,H Y Kanaan,et al.Small-signal perturbation technique used for DSP-based identification of a three-phase three-level boost-type Vienna rectifier[J].Electric Power Applications,2007,1(2):199-208.
    [68]邓卫华,张波,丘东元,等.电流连续型Boost变换器状态反馈精确线性化与非线性PID控制研究[J].中国电机工程学报,2004,24(8):45-50.
    [69]帅定新,谢运祥,王晓刚,等.Boost变换器非线性电流控制方法[J].中国电机工程学报,2009,29(15):15-21.
    [70]高朝晖,林辉,张晓斌.Boost变换器带恒功率负载状态反馈精确线性化与最优跟踪控制技术研究[J].中国电机工程学报,2007,27(13):70-75.
    [71] Malesani L,Spiazzi R G,Tenti P.Performance optimization of Cuk converters by sliding-mode control[J].IEEE Transactions on Power Electronics,1995,10(3):302-309.
    [72] Buja G S,Menis R,Valla M I.Variable structure control of an SRM drive[J].IEEE Transactions on Industrial Electronics,1993,40(1):56-63.
    [73]罗世国.一种谐波及无功电流的自适应检测方法[J].电工技术学报,1993,8(3):42-46.
    [74] Yu H.Robust combined adaptive and varable structure adaptive control of robot manipulators[J].Robotic,1998,1(16):623-659.
    [75] Farag W A,Quintana V H,Lambert-Torres G.A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems[J].IEEE Transactions on Neural Networks,1998,9(5):756-767.
    [76] Mattavelli P,Rossetto L,Spiazzi G,et al.General-purpose fuzzy controller for DC-DC converters[J].IEEE Transactions on Power Electronics,1997,12(1):79-86.
    [77] Bor-Ren Lin,Chihchiang Hua.Uninterruptible power supply with fuzzy logic approach[C].International Conference on Industrial Electronics,Control and Instrumentation,1993,1123-1128.
    [78] Naim R,Weiss G,Ben-Yaakov S.H∞control applied to boost power converters[J].IEEE Transactions on Power Electronics,1997,12(4):677-683.
    [79] Olranthichachat P,Saenthon A,Kaitwanidvilai S.Genetic algorithm based fixed-structure H∞loop shaping control of a buck-boost converter[C].IEEE International Conference on Robotics and Biomimetics,2008,1944-1949.
    [80] Vidal-Idiarte E,Martinez-Salamero L,Valderrama-Blavi H,et al.Analysis and design of H∞control of nonminimum phase-switching converters[J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2003,50(10):1316-1323.
    [81] Rim C T,Choi N S,Cho G C,et al.A complete DC and AC analysis of three-phase controlled-current PWM rectifier using circuit D-Q transformation[J].IEEE Transactions on Power Electronics,1994,9(4):390-396.
    [82] Zargari N R,Joos G.Performance investigation of a current-controlled voltage-regulated PWM rectifier in rotating and stationary frames[J].IEEE Transactions on Industrial Electronics,1995,42(4):396-401.
    [83] Draou A,Sato Y,Kataoka T.A new state feedback based transient control of PWM AC to DC voltage type converters[J].IEEE Transactions on Power Electronics,1995,10(6):716-724.
    [84] Dong-Choon Lee,Seung-Ki Sul,Min-Ho Park.High performance current regulator for a field-oriented controlled induction motor drive[J] . IEEE Transactions on Industry Applications,1994,30(5):1247-1257.
    [85] Zhang L,Hardan F.Vector controlled VSI-fed AC drive using a predictive space vector current regulation scheme[C].20th International Conference on Industrial Electronics,Control and Instrumentation,1994,61-66.
    [86] Wu R,Dewan S B,Slemon G R.Analysis of a PWM AC to DC voltage source converter under the predicted current control with a fixed switching frequency[J].IEEE Transactions on Industry Applications,1991,27(4):756-764.
    [87] Kawamura A,Haneyoshi T,Hoft R G.Deadbeat controlled PWM inverter with parameter estimation using only voltage sensor[J].IEEE Transactions on Power Electronics,1988,3(2):118-125.
    [88] Kawabata T,Miyashita T,Yamamoto Y.Dead beat control of three phase PWM inverter[J].IEEE Transactions on Power Electronics,1990,5(1):21-28.
    [89] Malesani L,Tenti P.A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency[J].IEEE Transactions on Industry Applications,1990,26(1):88-92.
    [90] Bong-Hwan Kwon,Tae-Woo Kim,Jang-Hyoun Youm.A novel SVM-based hysteresis current controller[J].IEEE Transactions on Power Electronics,1998,13(2):297-307.
    [91] Saetieo S,Torrey D A.Fuzzy logic control of a space-vector PWM current regulator for three-phase power converters[J].IEEE Transactions on Power Electronics,1998,13(3):419-426.
    [92] Dzieniakowski M A,Grabowski P Z.Fuzzy logic controller with state recognition for three phase PWM-VSI[C] . Proceedings of the IEEE International Symposium on Industrial Electronics,1996,438-443.
    [93] Bimal K Bose.Neural Network Applications in Power Electronics and Motor Drives-An Introduction and Perspective[J].IEEE Transactions on Industrial Electronics,2007,54(1):14-33.
    [94] Kazmierkowski M P,Sobczuk D.Improved neural network current regulator for VS-PWM inverters[C].20th International Conference on Industrial Electronics,Control and Instrumentation,1994,1237-1241.
    [95] Akagi H,Kanazawa Y,Nabae A.Generalized theory of the instantaneous reactive power in three-phase circuits[C].International Power Electronics Conference,1983,1375-1386.
    [96] Ohnishi T.Three phase PWM converter/inverter by means of instantaneous active and reactive power control[C].International Conference on Industrial Electronics,Control and Instrumentation,1991,819-824.
    [97] Noguchi T,Tomiki H,Kondo S,et a1.Direct power control of PWM converter without power-source voltage sensors[J] . IEEE Transactions on Industry Applications,1998,34(3):473-479.
    [98] Malinowski M,Kazmierkowski M P,Hansen S,et al.Virtual-flux-based direct power control of three-phase PWM rectifiers[J].IEEE Transactions on Industry Applications,2001,37(4):1019-1027.
    [99]徐小品,黄进,杨家强.瞬时功率控制在三相PWM整流中的应用[J].电力电子技术,2004,38(2):30-31.
    [100]王久和,李华德.一种新的电压型PWM整流器直接功率控制策略[J].中国电机工程学报,2005,25(16):47-52.
    [101]陈伟,邹旭东,唐健,等.三相电压型PWM整流器直接功率控制调制机制[J].中国电机工程学报,2010,30(3):35-41.
    [102] Bouafia A,Gaubert J-P,Krim F.Analysis and design of new switching table for direct power control of three-phase PWM rectifier[C].Power Electronics and Motion Control Conference,2008,703-709.
    [103] Cirrincione M,Pucci M,Vitale G.New direct power control strategies of three-phase VSIs for the minimization of common-mode emissions in distributed generation systems[C] . 42nd IAS Annual Meeting , 2007 ,1962-1973.
    [104] Malinowski M,Jasinski M,Kazmierkowski M P.Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM)[J].IEEE Transactions on Industrial Electronics,2004,51(2):447-454.
    [105] Larrinaga S A,Vidal M A R,Oyarbide E,et a1.Predictive control strategy for DC/AC converters based on direct power control[J].IEEE Transactions on Industrial Electronics,2007,54(3):1261-1271.
    [106] Wei T Z.A novel direct power control method of three-phase active rectifiers in industrial drive system[C].IEEE International Conference on Mechatronics and Automation,2007,3712-3716.
    [107] Xu L,Zhi D W,Yao L Z.Direct power control of grid connected voltage source converters[C].Power Engineering Society General Meeting,2007,1-6.
    [108] Hong-Seok Song,In-Won Joo,Kwanghee Nam.Source voltage sensorless estimation scheme for PWM rectifiers under unbalanced conditions[J].IEEE Transactions on Industrial Electronics,2003,50(6):1238-1245.
    [109] Zhang G B,Zheng X.A new real-time negative and positive sequence components detecting method based on space vector[C] . IEEE Power Engineering Society Winter Meeting,2001,275-280.
    [110] Neves F A S,Cavalcanti M C,de Souza H E P,et al.A generalized delayed signal cancellation method for detecting fundamental-frequency positive-sequence three-phase signals[J] . IEEE Transactions on Power Delivery,2010,25(3):1816-1825.
    [111] Chen H R,Zheng X,Zhang F.Adaptive detecting method for fundamental positive sequence, negative sequence components and harmonic component based on space vector[C].Transmission and Distribution Conference and Exhibition,2006,726–732.
    [112] Enjeti P N,Choudhury S A.A new control strategy to improve the performance of a PWM AC to DC converter under unbalanced operating conditions[J].IEEE Transactions on Power Electronics,1993,8(4):493-500.
    [113] Rioual P,Pouliquen H,Louis J.Regulation of a PWM rectifier in the unbalanced network state using a generalized model[J].IEEE Transactions on Power Electronics,1996,11(3):495-502.
    [114] Vincenti D,Jin H.A three-phase regulated PWM rectifier with on-line feedforward input unbalance correction[J].IEEE Transactions on Industrial Electronics,1994,41(5):526-532.
    [115] Hadian Amrei S R,徐殿国,郎永强.一种PWM整流器直接功率控制方法[J].中国电机工程学报,2007,27(25):78-84.
    [116] Song H-S,Nam K.Dual current control scheme for PWM converter under unbalanced input voltage conditions[J] . IEEE Transactions on Industrial Electronics,1999,46(5):953-959.
    [117] Yongsug Suh,Tijeras V,Lipo T A.A nonlinear control of the instantaneous power in dq synchronous frame for PWM AC/DC converter under generalized unbalanced operating conditions[C].37th IAS Annual Meeting,2002,1189-1196.
    [118] Stankovic A V,Lipo T A.A novel control method for input output harmonic elimination of the PWM boost type rectifier under unbalanced operating conditions[J].IEEE Transactions on Power Electronics,2001,16(5):603-611.
    [119] Manwell J F,Gowan J,Rogers A L.Wind energy explained-Theory,design and application[M].London:John Wiley&Sons,2002.
    [120] Slootweg J G,Polinder H,Kling W L.Dynamic modelling of a wind turbine with doubly fed induction generator[C].IEEE Power Engineering Society Summer Meeting,2001,644-649.
    [121] Slootweg J G,de Haan S W H,Polinder H,et al.General model for representing variable speed wind turbines in power system dynamics simulations[J].IEEE Transactions on Power Systems,2003,18(1):144-151.
    [122] Yazhou Lei,Mullane A,Lightbody G,et al.Modeling of the wind turbine with a doubly fed induction generator for grid integration studies[J] . IEEE Transactions on Energy Conversion,2006,21(1):257-264.
    [123] Rabelo B,Hofmann W.Control of an optimized power flow in wind power plants with doubly-fed induction generators[C].IEEE 34th Annual Power Electronics Specialist Conference,2003,1563-1568.
    [124] Morimoto S,Nakayama H,Sanada M,ea al.Sensorless output maximization control for variable-speed wind generation system using IPMSG[J].IEEE Transactions on Industry Applications,2005,41(1):60-67.
    [125] Datta R,Ranganathan V T.A method of tracking the peak power points for a variable speed wind energy conversion system[J].IEEE Transactions on Energy Conversion,2003,18(1):163-168.
    [126]高景德,王祥珩,李发海.交流电机及其系统分析[M].北京:清华大学出版社,2005.
    [127] Burgos R P,Wiechmann E P,Holtz J.Complex state-space modeling and nonlinear control of active front-end converters[J].IEEE Transactions on Industrial Electronics,2005,52(2):363-377.
    [128] Lee D C,Lee G M,Lee K D.DC-Bus voltage control of three-phase AC/DC PWM converters using feedback linearization[J].IEEE Transactions on Industry Applications,2000,36(3):826-833.
    [129] Kim K H,Youn M J.A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique[J].IEEE Transactions on Industrial Electronics,2002,49(3):524-535.
    [130] Boukas T K,Habetler T G.High-Performance induction motor speed control using exact feedback linearization with state and state derivative feedback[J].IEEE Transactions on Power Electronics,2004,19(4):1022-1028.
    [131] Matas J,Castilla M,Guerrero J M,et al.Feedback linearization of direct-drive synchronous wind-turbines via a sliding mode approach[J].IEEE Transactions on Power Electronics,2008,23(3):1093-1103.
    [132] Slotine J-J E,Li W.Applied Nonlinear Control[M].NJ:Prentice-Hall,1991.
    [133]刘豹.现代控制理论第2版[M].北京:机械工业出版社,2000.
    [134]卢强,孙元章.电力系统非线性控制[M].北京:科学出版社,1993.
    [135] Dorf R C,Bishop R H.Modern Control Systems[M].NJ:Prentice-Hall,2004.
    [136]张崇魏,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.