基于一种半直驱式风力发电装置的整流器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能是新兴的绿色能源。为了降低每千瓦时的发电成本,风力发电机组正朝着大功率方向发展,单机功率等级不断提高。快速提高的功率容量带来了新的机遇和挑战。本文对风力发电系统,主要侧重于机侧整流器部分,做了以下几个方面的研究和尝试。
     多个发电机与单级增速箱相结合的半直驱式替代永磁直驱装置,实现了发电机功率密度的提高和增速装置机械强度要求的降低。根据该装置特点,提出了新型整流器输出端串并联组合的多脉整流装置。由于机组多个发电机之间转速相同、输出端之间电气隔离,利用发电机输出交流电压的电角度不同和发电机之间电气角度的错位安装,整流器的输出电压串联叠加后,电压峰值脉波数增加,幅值变小,从而获得平稳的直流功率输出,降低滤波电容容量。多组整流模块并联扩容,并可以根据风速范围切入切出,提高变流器效率。
     为了克服现阶段IGBT器件对发电机输出端口电压和变流装置容量进一步发展的限制,在变拓扑柔性变流器理论的基础上,提出了具有宽电压输入范围的变拓扑晶闸管整流器。该整流器由两个晶闸管整流桥和包括二极管与开关的辅助电路组成。通过改变辅助电路中开关的状态,实现了两个晶闸管整流桥在串联和并联模式之间的动态切换:当风机转速比较低时,开关闭合,两个整流桥串联在一起,提高输入电压;当风机接近额定转速时,开关断开,两个整流桥并联在一起扩大功率容量。变拓扑整流器替代常用的三相六管PWM整流器或者不控整流加boost升压的二级串联整流器,整流侧完全采用晶闸管器件,使得电力电子器件不再是限制发电机输出电压等级和功率容量提升的瓶颈。
     工作过程中的动态结构切换是变拓扑变流器控制的核心问题,也是困扰变拓扑柔性变流器的难题。采用传统的PI控制时,虽然控制方法成熟,但是动态效果不理想,无法补偿变拓扑过程存在的电流过冲。新型电流峰值预测控制替代了传统方法用来消除拓扑切换过程的电流过冲,不但获得了切换过程中平滑的功率输出,而且取得快速的电流动态响应,提高了整流器抗谐波干扰能力。
     新的电流峰值预测控制方法基于交流电压伏秒积分的周期性变化。利用交流电压伏秒积分变化的周期性,晶闸管触发后,电感电流在本周期内将要到达的最大峰值可以根据上个周期的电压伏秒变化趋势做出预先判断。因此,预测模型只涉及直流侧电感上的电压伏秒积分与电流之间的关系,与负载无关,大大简化了控制计算,避免了以往预测控制中超越函数的求解。而且晶闸管的触发不再依赖电压相位信息,提高了抗谐波干扰能力。仿真和实验结果表明并行计算的两个电流峰值预测控制器成功实现了拓扑结构动态切换的平滑过渡,消除了电流过冲。说明变拓扑的变流器装置采用合理的控制策略,完全能够克服动态拓扑变化带来的不利影响,在拓扑切换的过程中仍保持平滑的功率输出。
     新型变拓扑结构的晶闸管整流器不能实现发电机的单位功率因数运行。但是六相双Y永磁同步发电机与变拓扑变流器配合使用时,发电机内部5、7次谐波磁势显著削弱,使得转子表面附加损耗和转子温升大大降低,因此,由于非正弦波形包含谐波所造成的发电机降额使用的情况显著得到改善。
     沉重的机舱通过细长的塔架支撑树立在半空中,是典型的欠阻尼系统,在受到风力作用将长时间前后振荡。采用多变量状态反馈扰动调节控制,对造成塔架振荡的风速扰动进行主动的变桨距调节,增加塔架阻尼,降低运行中塔架的机械应力和疲劳。
Wind power is an emerging clean energy source that can be relied on for the long-term future. The power capacity of wind turbines grow rapidly in recent years in order to cut the cost of per kWh down. The soaring growth in capacity of wind turbines brings new problems and challenges, too. New solutions provided in article are trying to solve some problems, especially focus on rectification side.
     Multi-generator with single-stage gearbox substitutes the single PM generator, achieving high power density with low mechanical stress. A converter suitable for this new type power system is proposed. Based on series and parallel connection between several electrical isolated rectifier modules with different phase angle, the multi-pulse rectifier achieves smooth power output with high voltage and low current.
     A novel flexible thyristor rectifier with wide input voltage range is presented based on flexible topology converter theory. The rectifier consists of two 3-phase thyristor bridges and an auxiliary circuit containing diodes and a switch. By changing the state of the switch, the relationship of the two rectifiers jumps dynamically between series and parallel mode. When the turbine speed is low, the switch is turned on; the two bridges work in series mode to increase the input voltage. When the turbine speed is approaching to the rated speed, the switch is off; the two bridges work in parallel to enlarge power capacity. The switchable thyristor rectifier substitutes traditional 3-phase PWM rectifier or diode plus dc-dc boost rectifier as front end, the generator design is free from voltage and power level limited by IGBTs.
     The process of dynamic topology switching is an important issue and a great challenge for control. Traditional PI control methods are not satisfactory when applied to flexible topology converter, because the current overshoot during topology switching can not be compensated. Quick current tracking responses, robust operations under polluted voltage, especially the elimination of current overshoot are achieved when a novel peak current predictive controller is applied to the novel flexible thyristor rectifier.
     The AC voltage integration on inductor is periodical according to the novel peak current predictive control. Therefore, the maximum peak current on inductor can be predicted according to the trend of voltage integration in last cycle when triggering. As a result, prediction model is established only on the relationship of voltage integration and current of the inductor. It simplifies the calculation process greatly, because it has nothing to do with the load, thus avoiding solving transcendental functions based on load model. Triggering of thyristor is no longer depending on the voltage phase information, and the robustness of performance is improved. The novel control method is verified by both simulation and experiment. Two predictive controllers calculate the parallel and the series mode separately, achieving a smooth transition during topology switching. Reasonable control strategy can eliminates the adverse effects brought by topology switching. The theory of flexible topology converter is further verified in the AC-DC power conversion.
     The generator cannot operate in unity power factor using the flexible topology thyristor rectifier. But, the 6-phase double-Y PM machine has the advantage of low 5th and 7th harmonics in space flux when connected with rectification load. When it is adopted with the new flexible thyristor rectifier, the degraded usage of generator is alleviated greatly compared with 3-phase PM machines.
     The heavy nacelle half sky is supported by a slim tower. The system is an under damped system, and it oscillating for a long run under the push of wind. The disturbance accommodating controller derives disturbances of wind speed from state space variables, and then compensates it by adjusting pitch. Results show that the damping ratio is improved greatly, and the mechanical fatigue drops accordingly.
引文
[1]. Global Wind Energy Council. GLOBAL WIND REPORT:Annual market update 2010[R]. 2011. Available:www.gwec.net
    [2]. Global Wind Energy Council. GLOBAL Wind Energy Outlook 2010[R].2010. Available:www.gwec.net
    [3]. European Wind Energy Association.2010 Wind Energy Factsheets[R].2011. Available:www.ewea.org
    [4].中国可再生能源学会风能专业委员会.2010年中国风电装机统计[R].2011. Available: www. cwea.org.cn.
    [5]. Li Junfeng, Shi Pengfei, Gao Hu. CHINA WIND POWER OUTLOOK 2010[R].2010. Available:www.gwec.net
    [6]. European Wind Energy Association. UpWind:Design limits and solutions for very large wind turbines-A 20 MW turbine is feasible[R].2011. Available:www.ewea.org
    [7].施跃文,高辉,陈钟.国外特大型风力发电机组技术综述[J].电网技术.2008,32(18):87-91
    [8].申宽育.中国的风能资源与风力发电[J].西北水电.2010,17(1):76-81
    [9].我国风能开发潜力逾25×108kW[N].人民日报,2010-01-05(10).
    [10].朱成章.关于中国风能资源储量的质疑[J].中外能源.2010,(15)4:34-38
    [11].T Burton, D Sharpe, N Jenkins, et al. Wind Energy Handbook[M].USA.ISBN:0-471-48997-2
    [12].耿华,杨耕,马小亮.并网型风力发电机组的控制技术综述[J].电力电子技术.2006,40(6):33-36
    [13].H.Li, Z.Chen. Overview of Different Wind Generator Systems and Their Comparisons[C]. IET Renewable Power Generation.2008,2(2):123-138
    [14].李辉,何蓓.双馈风力发电系统的最大风能控制策略[J].太阳能学报.2008,29(7):797-80
    [15].张学广.变速恒频双馈风电机组并网控制策略研究[D].哈尔滨工业大学博士学位论文.2010.
    [16].黄守道,王耀南,王毅.无刷双馈电机有功和无功功率控制的研究[J].中国电机工程学报.2005,25(4):87-93
    [17].林成武,王晓东,姚兴佳.双馈风力发电机功率特性的理论分析及实验研究[J].太阳能学报.2008,29(3):328-331
    [18].郎永强.交流励磁双馈风力发电系统控制系统研究[D].哈尔滨工业大学博士学位论文.2006
    [19]. Vepa, R. Nonlinear Optimal Control of a Wind Turbine Generator[J]. Energy Conversion, IEEE Transactions on.2011,vol.26(2):468-478
    [20].Muller S, Deicke M, De DonckerW. Doubly fed induction generator systems for wind turbines[J]. Industry Applications Magazine, IEEE.2002,8(3):26-33
    [21]. Yazhou Lei, Mullane A, Lightbody G, et al. Modeling of the wind turbine with a doubly fed induction generator for grid integration studies[J]. Energy Conversion, IEEE Transactions on. 2006,21(1):257-264
    [22].高峰.风力发电机组建模与变桨距控制研究[D].华北电力大学(北京)博士学位论文.2009
    [23]. Hughes F M, Anaya-Lara O, N. Jenkins, et al. Control of DFIG-based wind generation for power network support[J]. IEEE Trans. Power Syst.2005,20(4):1958-1966
    [24].杨淑英.双馈型风力发电变流器及其控制[D].合肥工业大学博士学位论文.2007:
    [25].刘其辉.变速恒频风力发电系统运行与控制研究[D].浙江大学博士学位论文.2005:
    [26].Lie Xu, Cartwright P. Direct active and reactive power control of DFIG for wind energy generation[C], Energy Conversion, IEEE Transactions on.2006,vol.21(3):750-758
    [27].Goel P K; Singh B, Murthy S S et al. Parallel Operation of DFIGs in Three-Phase Four-Wire Autonomous Wind Energy Conversion System[J]. Industry Applications, IEEE Transactions on,2011,vol.47(4):1872-1883
    [28].Soliman M, Malik P, Westwick T. Multiple Model Predictive Control for Wind Turbines With Doubly Fed Induction Generators[J]. Sustainable Energy, IEEE Transactions on. 2011,vol.2(3):215-225
    [29]. Bonnet F, Vidal P E, Pietrzak-David M. Dual Direct Torque Control of Doubly Fed Induction Machine[J]. Industrial Electronics, IEEE Transactions on,2007,vol.54, (5):2482-2490
    [30].严干贵,王茂春,穆钢.双馈异步风力发电机组联网运行建模及其无功静态调节能力研究[J].电工技术学报.2008,23(7):98-104
    [31]. Chinchilla M, Arnaltes S, Burgos J C. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[C]. Energy Conversion, IEEE Transactions on,2006,vol.21(1):130-135
    [32].李瑞,徐壮,徐殿国.并联型永磁直驱风电系统的环流分析及其控制[J].中国电机工程学报,2011,(6):38-45
    [33].耿华,许德伟,吴斌等.永磁直驱变速风电系统的控制及稳定性分析[J].中国电机工程学报,2009,(33):68-75
    [34].胡书举,李建林,许洪华.永磁直驱风电系统变流器拓扑分析[J].电力自动化设备,2008,(4):77-81
    [35].肖飞,王颢雄,陈明亮等.兆瓦级永磁直驱式风力发电系统中背靠背变流器系统的设计[J].船电技术,2010,(1):1-6
    [36].陈瑶.直驱型风力发电系统全功率并网变流技术的研究[D].北京交通大学博士学位论文,2008.
    [37].姚骏,廖勇,庄凯.永磁直驱风电机组的双PWM变换器协调控制策略[J].电力系统自 动化,2008,(20):88-92
    [38].赵仁德,王永军,张加胜.直驱式永磁同步风力发电系统最大功率追踪控制[J].中国电机工程学报,2009,(27):106-111
    [39].胡雪松.直驱永磁同步风力发电系统功率平滑策略的研究与控制系统设计[D].重庆大学博士论文,2010.
    [40].韩坤.多模块并联的双PWM永磁直驱风力发电实验平台若干关键技术研究[D].浙江大学硕士论文,2010.
    [41].陈益广,王志强,沈勇环.直驱式方波永磁同步风力发电机控制系统仿真[J].系统仿真学报,2009,(18):5849-5853
    [42].刘亮.兆瓦级直驱式永磁风力发电机关键技术研究[D].山东大学硕士论文.2008
    [43].李杰.直驱式风力发电变流系统拓扑及控制策略研究[D].上海大学博士论文.2009
    [44].Polinder H, van der Pijl, de Vilder J, et al.Comparison of direct-drive and geared generator concepts for wind turbines[C]. Energy Conversion, IEEE Transactions on,2006, vol.21 (3): 725-733
    [45].Enercon wind turbine products.http://www.enercon.de/en-en/51.htm
    [46].Clipper Technical Specs:Liberty(?)2.5 MW Series[EB/OL].http://www.clipperwind.com
    [47].刘细平,于仲安,梁建伟.风力发电技术研究及发展[J].微电机,2007,(4):76-79
    [48].张立勇,王长路,刘法根.风力发电及风电齿轮箱概述[J].机械传动,2008,(6):1-4
    [49].秦大同,邢子坤,王建宏等.基于动力学的风力发电齿轮传动系统可靠性评估[J].重庆大学学报(自然科学版),2007,(12):1-6
    [50].朱才朝,黄泽好,唐倩等.风力发电齿轮箱系统耦合非线性动态特性的研究[J].机械工程学报,2005,(8):203-207
    [51].李杰,王乐勤.1.5MW风力发电齿轮箱箱体的有限元分析[J].太阳能学报,2008,(11):1438-1443
    [52].Sang-Yong Jung, Hochang Jung, Sung-Chin Hahn, et al. Optimal Design of Direct-Driven PM Wind Generator for Maximum Annual Energy Production[J]. Magnetics, IEEE Transactions on.2008, vol.44(6):1062-1065
    [53]. McDonald S, Mueller A, Polinder H. Structural mass in direct-drive permanent magnet electrical generators[J]. Renewable Power Generation, IET,2008,vol.2(1):3-15
    [54].Shrestha G, Polinder H, Bang J, Ferreira J A, et al. A new concept for weight reduction of large direct drive machines[C].18th International Conference on, ICEM 2008.
    [55].Xikai S, Ming C, Wei H, et al. Optimal Design of Double-Layer Permanent Magnet Dual Mechanical Port Machine for Wind Power Application[C]. Magnetics, IEEE Transactions on, 2009,45(10):4613-4616
    [56].Niu Shuangxia. Design, control and application of double-stator permanent magnet brushless machines[D]. Ph.D. thesis of The University of Hong Kong,2009
    [57].Jiangui Li, K T Chau, J Z Jiang, et al. A New Efficient Permanent-Magnet Vernier Machine for Wind Power Generation[J]. IEEE TRANSACTIONS ON MAGNETICS,2010, VOL.46(6):1475-1478
    [58]. Dong Zhang, Shangyu Cai, Yu Gong. Design and Numerical Analysis of a Wind Power Generator with Double Stators[C]. Power Electronics and Motion Control Conference,2009.
    [59]. H. Li, Z. Chen. Overview of different wind generator systems and their comparisons[J]. IET Renewable Power Generation,2008, Vol.2(2):123-138
    [60].Hui Li, Zhe Chen. Design Optimization and Evaluation of Different Wind Generator Systems[C]. Proceedings of the 11th International Conference of Electrical Machines and Systems (ICEMS 2008), IEEE, pp.2396-2401.
    [61]. B Wu. High-Power Converters and AC Drives[M]. New Jersey:Wiley-IEEE Press,2006
    [62].英飞凌电力半导体器件参数http://www.infineon.com/cms/en/product/index.html
    [63].马伟明,肖飞.风力发电变流器发展现状与展望[J].中国工程科学,2011,13(1):11-20
    [64].丘东元,何文志,张波等.基于Flotherm软件的电力电子装置热分析[J].电气电子教学学报.2011,33(2):50-54
    [65]. Lee S. Optimum design and selection of heat sinks.IEEE Transactions on Components[J], Packaging, and Manufacturing Technology:Part A.1995,184,18(4):812-817.
    [66].余小玲.电力电子集成模块及新型翅柱复合型散热器的传热性能研究[D].西安交通大学博士学位论文.2005
    [67].Nallavan G, Dhanasekaran R, Vasudevan M. Power electronics in wind energy conversion systems-A survey across the globe[C]. Electronics Computer Technology (ICECT),2011 3rd International Conference on, pp.416-419
    [68].徐壮,李广军,徐殿国.永磁直驱风电系统发电机侧变流器的并联控制[J].高电压技术,2010,(2):474-480
    [69].曾翔君,张宏韬,李迎等.大功率直驱风电系统高效率变流器设计[J].中国电机工程学报,2010,(30):15-21
    [70].景巍,谭国俊,叶宗彬.永磁直驱风力发电系统中两电平与三电平变流器比较[J].电力系统自动化,2011,(6):92-97
    [71].邢作霞.大型变速变距风力发电机组的柔性协调控制技术研究[D].北京交通大学博士学位论文.2008
    [72].Brughuis F J. Advanced tower solutions for large wind turbines and extreme tower heights[EB/OL]. http://www.mecal.nl,2008.
    [73].NREL. Modern control design for flexible wind turbines[R].2004 Available:www.nrel.org
    [74]. M P Kazmierkowski, R Krishnan, F Blaabjerg. Control in Power Electronics[M]. New York, 2002.
    [75].N Mohan, T M Undeland, W P Robbins. Power Electronics[M].高等教育出版社,2004
    [76]. K Y Lian, Liou J J, Chien-Yu Huang. LMI-based Integral fuzzy control of DC-DC converters[C]. Fuzzy Systems, IEEE Transactions on,2006, vol.14(1):71-80
    [77].瞿博,洪小圆,吕征宇.模糊控制在三相PWM整流器无差拍控制中的应用[J].中国电机工程学报,2009,29(15):50-54
    [78]. Perry A G, Guang Feng, Yan-Fei Liu, et al. A Design Method for PI-like Fuzzy Logic Controllers for DC-DC Converter[J]. Industrial Electronics, IEEE Transactions on,2007 vol.54(5):2688-2696
    [79].Kuo-Hsiang Cheng, Hsu C F, Chih-Min Lin et al. Fuzzy-Neural Sliding-Mode Control for DC-DC Converters Using Asymmetric Gaussian Membership Functions[J]. Industrial Electronics, IEEE Transactions on,2007,vol.54(3):1528-1536
    [80].Siew-Chong Tan, Lai Y M, Tse C K, Cheung H. Adaptive feedforward and feedback control schemes for sliding mode controlled power converters[J]. Power Electronics,2006, IEEE Transactions on, vol.21 (1):182-192
    [81].Cortes P, Kazmierkowski M P, Kennel R M, et al. Predictive Control in Power Electronics and Drives[J]. Industrial Electronics, IEEE Transactions on,2008,vol.55(12):4312-4324
    [82].Schroder D. Predictive control strategies for converter and inverter[C].Industrial Technology, 2009. ICIT 2009. IEEE International Conference on,2009
    [83]. Y Mohamed, E F El-Saadany. An improved deadbeat current control scheme with a novel adaptive self-tuning load model for a three-phase PWM voltage-source inverter[J]. IEEE Trans. Ind. Electron.2007,vol.54(2):747-759
    [84].盛彩飞,高吉磊,林飞等.单相4象限变流器的预测电流控制算法研究[J].电气传动,2009,(12):34-36
    [85].李玉玲,鲍建宇,张仲超.电流型变流器的改进模型预测控制[J].控制理论与应用,2005,(6):978-982
    [86].刘春海,梁晖.风力发电并网逆变器预测电流控制方法研究[J].电力电子技术,2010,(10):6-8
    [87].陈力新,王新英.基于DSP的全数字化预测电流控制系统[J].长沙电力学院学报(自然科学版),2001,(1):56-60
    [88].何鑫,宋平岗,陈彬.基于改进型预测电流控制方法的研究[J].华东交通大学学报,2007,(2):66-69
    [89].刘祖润,卢红.基于空间矢量的全数字化预测电流控制SPWM逆变器[J].湘潭大学自然科学学报,1998,(2):116-121
    [90].李玉玲,鲍建宇,张仲超.基于模型预测控制的单位功率因数电流型PWM整流器[J].中国电机工程学报,2006,(19):60-64
    [91].王晓刚,谢运祥,帅定新等.基于模型预测控制的三相四桥臂有源电力滤波器[J].华南理工大学学报(自然科学版),2009,(11):56-63
    [92].刘亮,邓名高,欧阳红林等.基于预测电流控制的PWM逆变器死区补偿方法研究[J].电工技术学报,2005,(8):78-83
    [93].杨晓萍,马少军.基于预测电流控制的配电网无功补偿器[J].电力建设,2006,(2):32-34
    [94].张愉.基于预测电流控制的配电网无功补偿器研究[J].电力电子技术,2009,(2):6-7
    [95].宋文胜,葛兴来,冯晓云.基于预测电流控制的三电平4象限变流器研究[J].电气传动,2008,(4):55-58
    [96].方宇,裘迅,邢岩等.基于预测电流控制的三相高功率因数PWM整流器研究[J].中国电机工程学报,2006,(20):69-73
    [97].余发山,孙标广,郭建锋.基于预测电流控制的有源电力滤波器研究[J].河南理工大学学报(自然科学版),2011,(1):80-84
    [98].庄淑瑾,孙玉坤,任明炜等.静止无功发生器的预测电流控制方法[J].电力自动化设备,2008,(11):53-56
    [99].孙向东,任碧莹,钟彦儒等.滤波电感在线估计方法在预测电流控制中的应用[J].电工技术学报,2009,(7):150-156
    [100].张旭,杨学友,刘常杰.模型预测控制在统一电能质量调节器中的应用.[J]电网技术,2010,(5):35-40
    [101].杨勇,阮毅,叶斌英等.三相并网逆变器无差拍电流预测控制方法[J].中国电机工程学报,2009,(33):40-46
    [102]. Se-Jong Jeong, Byoung-Wook Kim, Seung-Ho Song et al. Improvement of predictive current control performance using on-line parameter estimation in phase controlled rectifier[C]. Industry Applications Conference,2003. pp.1772-1777
    [103]. Linder A, Kennel R, Direct model predictive control-a new direct predictive control strategy for electrical drives[C]. Power Electronics and Applications,2005 European Conference on.
    [104]. Chattopadhyay S, Ramanarayanan V, Jayashankar V. A predictive switching modulator for current mode control of high power factor boost rectifier[J]. Power Electronics, IEEE Transactions on,2003,vol.18(1):114-123
    [105]. E F Camacho and C Bordons. Model Predictive Control[M]. New York:Springer-Verlag, 1999.
    [106].李敬兆.采用神经网络预测和变结构模糊控制的铅酸蓄电池最优充电技术研究[D].合肥工业大学博士学位论文,2003
    [107]. 吕征宇,钱照明,T C Green并联有源电力滤波器的神经网络预测控制[J].中国电机工程学报,1999,(12):23-27
    [108]. 顾亦磊,陈威,吕征宇.柔性变流器及其应用[J].浙江大学学报(工学版),2010,(3):521-527
    [109]. 陈威,吕征宇.第四类LLC谐振变流器模块功能准同构拓扑探求及变形研究[J].中国 电机工程学报,2009 Vol.29(9),pp.35-42.
    [110]. Wei Chen, Ping Rong, Zhengyu Lu, et al. A Novel 200-800Vdc Ultra-wide Range Input Dc-Dc Converter with Optimum Intelligent Polymorphic Topologies[C]. Applied Power Electronics Conference and Exposition,2009. APEC 2009.
    [111]. Wei Chen, Ping Rong, Zhengyu Lu, Shaoshi Ye. A Novel Hybrid Operational Mode Wide Range Input ZVS Front-end DC-DC Converter Aiming at Optimized Overall Performance[C]. Applied Power Electronics Conference and Exposition (APEC),2009.
    [112]. Panov, Y.; Jovanovic, M.M. Design and performance evaluation of low-voltage high-current DC/DC on-board modules. Applied Power Electronics Conference and Exposition,1999:545-552
    [113]. Chen W, Rong P, Lu Z. Snubberless Bidirectional DC-DC Converter With New CLLC Resonant Tank Featuring Minimized Switching Loss[J]. IEEE Transactions on Industrial Electronics,2010,57(9):3075-3086
    [114]. 戎萍,陈威,邓哲等.适用于宽输入电压范围的变拓扑变流器[J].浙江大学学报(工学版),2011,(3):472-479
    [115]. 顾亦磊.集成模块电源拓扑标准化的研究[D].浙江大学博士学位论文,2008
    [116]. Yilei Gu, Lijun Hang, Zhengyu Lu. A Flexible Converter With Two Selectable Topologies[J]. IEEE Transactions on Industrial Electronics.2009,56(12):4854-4861
    [117]. 陈威DC-DC变流器的柔性变拓扑研究[D].浙江大学博士学位论文,2009
    [118]. 许实章.交流电机的绕组理论[M].1981.北京:机械工业出版社.
    [119]. 黄进.n相对称系统变换理论在分析6相双Y无换向器电机中的应用[J].电工技术学报,1995,(2):8-12
    [120]. 郑德腾,卢贤良.带整流负载6相双Y移30°绕组同步发电机换相过程理论分析及计算机仿真[J].电工技术学报,1995,(3):15-22
    [121]. 张晓锋,张盖凡,郑逢时.带整流负载的同步发电机的电路模型[J].清华大学学报(自然科学版),1997,(4):99-102
    [122]. 卢贤良.带整流负载六相双Y移30°绕组同步发电机整流特性的分析[J].电工技术杂志,1994,(2):20-22
    [123]. 廖民.带整流负载时六相双丫移30°绕组同步发电机电枢磁势和转子表面附加损耗的分析[J].大电机技术,1990,(4):1-8
    [124]. 李兴源,黄耀群,谢应璞等.带整流负载时双Y同步发电机特性的分析[J].中国电机工程学报,1988,(2):35-47
    [125]. 张春莉,王锐,王旭等.六相电流型交直交变频同步电动机电枢磁势及转子表面附加损耗的分析[J].大电机技术,2003,(2):31-34
    [126]. 汤广福,刘正之,许家治.双Y同步发电机经逆向三绕组变压器带整流负载的特性 分析[J].电工技术学报,1997,(1):29-34
    [127]. 吴新振,王祥珩,罗成.多相异步电机谐波电流与谐波磁势的对应关系[J].清华大学学报(自然科学版),2005,(7):865-868
    [1]. W E LEITHEAD, B CONNOR. Control of variable speed wind turbines:design task[J]. INT. J. CONTROL,2000, VOL.73(13):1189-1212
    [2]. Johnson K E, Pao L Y, Balas M J, et al. Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture[J]. Control Systems, IEEE,2006, vol.26(3):pp.70-81
    [3].J H Laks, Lucy Y Pao, A D Wright. Control of Wind Turbines:Past, Present, and Future[C]. Proc. American Control Conference. Missouri, USA.2009
    [4]. A.D. Wright. Designing and Testing Controls to Mitigate Dynamic Loads in the Controls Advanced Research Turbine[R]. NREL/CP-500-42490,2008
    [5]. A D.Wright. Modem control design for flexible wind turbines[D]. Boulder:University of Colorado,2004
    [6].刘军,何玉林,李俊等.变速变桨距风力发电机组控制策略改进与仿真[J].电力系统自动化,2011,(5):82-86
    [7].宋卓彦,王锡凡,滕予非等.变速恒频风力发电机组控制技术综述[J].电力系统自动化,2010,(10):8-17
    [8].刘雪菁,王伟,曾继伦.永磁同步风力发电机组控制策略的仿真研究[J].计算机仿真,2009,(3):264-267
    [9].郭金东,赵栋利,林资旭等.兆瓦级变速恒频风力发电机组控制系统[J].中国电机工程学报,2007,(6):l-6
    [10].邵桂萍,李建林,赵斌,等.兆瓦级变速恒频风电机组变速控制策略的研究[J].太阳能学报,2008,Vol.29(7):1168-1171
    [11].Burton T, Sharpe D, Jenkins N. Wind Energy Handbook[M]. John Wiley & Sons,2001
    [12]. E. A. Bossanyi. The design of closed loop controllers for wind turbines[J]. WIND ENERGY 2000; (3):149-163
    [13]. W E LEITHEAD, B CONNOR. Control of variable speed wind turbines:dynamic models[J]. INT. J. CONTROL,2000, VOL.73(13):1173-1188
    [14].黄守道,卢季宁,黄科元等.优化爬山算法在直驱永磁风力发电系统中的应用[J].控制理论与应用,2010,(9):1221-1226
    []5].黄守道,卢季宁,黄科元.新型爬山算法在大惯性风电系统中的应用[J].控制工程.2010,(2):228-231
    [16].L Y Pao K E Johnson. A Tutorial on the Dynamics and Control of Wind Turbines and Wind Farms.[C] Proc. Amer. Ctrl. Conf.,2009.
    [17].张雷,李海东,李建林,等.基于LQR方法的风电机组变桨距控制的动态建模与仿真分析[J].太阳能学报,2008,Vol.29(7):781-785
    [18].Kumar and K. Stol. Simulating MIMO Feedback Linearization Control of Wind Turbines Using FAST[C]. Proc. AIAA/ASME Wind Energy Symp,2008.
    [19]. W.E. Leithead, S Dominguez. Controller Design for the Cancellation of the Tower Fore-aft Mode in a Wind Turbine[C]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference.2005
    [20].邢作霞,刘颖明,郑琼林,等.基于阻尼滤波的大型风电机组柔性振动控制技术[J].太阳能学报,2008,Vol.29(7):1425-1431
    [21].GH.Bladed. A Design Tool for Wind Turbine Performance and Loading http://www.garradhassan.com/bladed[EB/OL]
    [22].J M Jonkman. FAST User's Guide[R].NREL/TP-500-38230. http://wind.nrel.gov/designcodes/simulators/fast/FAST.pdf
    [1]Hui Li, Zhe Chen. Design Optimization and Evaluation of Different Wind Generator Systems[C]. Proceedings of the 11th International Conference of Electrical Machines and Systems (ICEMS 2008), IEEE, pp.2396-2401.
    [2]李松田.1.65MW半直驱永磁同步风力发电机研制[J].东方电机,2010,(5):43-47
    [3]韩力,薛玉石,李辉等.不同结构风力永磁同步发电机系统的优化设计与对比[J].太阳能学报,2010,(5):636-642
    [4]Polinder H, van der Pij1 A, de Vilder GJ, Tavner P J. Comparison of direct-drive and geared generator concepts for wind turbines[J]. Energy Conversion, IEEE Transactions on, 2006,vol.21 (3), pp.725-733
    [5]王俊成.1.5 MW半直驱永磁同步风力发电机设计及关键技术研究[D].山东大学硕士学位论文,2010
    [6]S Siegfriedsen, G BoEhmeke. Multibrid Technology-A Significant Step to Multi-megawatt Wind Turbines[J]. WIND ENERGY,1998,(1):89-100
    [7]Hui L, Zhe C, Polinder H. Optimization of Multibrid Permanent-Magnet Wind Generator Systems[J]. Energy Conversion, IEEE Transactions on,2009,24(1):82-92
    [8]Wenming T, Shengnan W, Zhongliang A, et al. Cooling System Design and Thermal Analysis of Multibrid Permanent Magnet Wind Generator[C]. In Electrical and Control Engineering (ICECE),2010 International Conference on,2010, pp 3499-3502
    [9]Liu G, Wang S, Guo J. Unified control for grid-side converter of multibrid wind power generation system. In Power System Technology[C],2010 International Conference on,2010; pp 1-6
    [10]J. Cotrell. A Preliminary Evaluation of a Multiple-Generator DrivetrainConfiguration for Wind Turbines[R]. NREL/CP-500-31178,2002. Available electronically at http://www.osti.gov/bridge
    [11]胡维昊,王跃,姚为正等.直驱型变速恒频风力发电系统中零序环流的研究[J].中国电机工程学报.2009,(27):99-105
    [12]吕征宇,王仕韬,潘式正,姚文熙,郑家龙.一种多发电机机组多脉整流方法[P].中国专利.CN201010218400.1
    [13]周维来,孙敬华,张哲等.一种全功率风力发电变流器关键技术研究[C].中国电器工业协会电力电子分会成立20周年庆典大会暨高峰论坛论文集,西安,10月,2009
    [14]Burton T, Sharpe D, Jenkins N. Wind Energy Handbook[M]. John Wiley & Sons,2001
    [15]Khan M, Saleh S A, Rahman M A. Generation and harmonics in interior permanent magnet wind generator[C]. Electric Machines and Drives Conference, Miami, FL, USA,2009.
    [16]李建林,高志刚,赵斌,等.直驱型风电系统大容量Boost PFC拓扑及控制方法[J].电 工技术学报,2008,23(1):104-109.
    [17]李兴源,黄耀群,谢应璞等.带整流负载时双Y同步发电机特性的分析[J].中国电机工程学报,1988,8(2):35-47
    [18]廖民.带整流负载时六相双丫移30°绕组同步发电机电枢磁势和转子表面附加损耗的分析[J].大电机技术,1990,(4):1-8
    [19]林渭勋.现代电力电子电路[M].浙江大学出版社.2002
    [20]Kolar J W, Ertl H, Zach F C. A comprehensive design approach for a three-phase high-frequency single-switch discontinuous-mode boost power factor corrector based on analytically derived normalized converter component ratings[J]. Industry Applications, IEEE Transactions on,1995,31(3):569-582
    [21]Ando S, Ueda A, Torii A. Characteristics of three-phase boost type rectifier with LC filter in AC side[C]. Proceedings of the Power Conversion Conference. Osaka, Japan,2002.
    [1].B Wu. High-Power Converters and AC Drives[M]. New Jersey:Wiley-IEEE Press,2006
    [2].Rodriguez J R, Pontt J, Silva C, et al. Large current rectifiers:State of the art and future trends[J]. Industrial Electronics, IEEE Transactions on,2005,52(3):738-746
    [3].Wiechmann E P, Burgos R P, Holtz J. Sequential connection and phase control of a high-current rectifier optimized for copper electrowinning applications[J] Industrial Electronics, IEEE Transactions on,2000 47(4):734-743
    [4].Maestri S, Uicich G, Benedetti M, Petrocelli R. Method for Discontinuous Current Mode Compensation of Line-Commutated Converters[J]. Power Electronics, IEEE Transactions on, 2009,24(3):869-872
    [5].Cortes P, Kazmierkowski M P, Kennel R M, et al. Predictive Control in Power Electronics and Drives[J]. Industrial Electronics, IEEE Transactions on,2008,vol.55(12):4312-4324
    [6]. Schroder D. Predictive control strategies for converter and inverter[C]. Industrial Technology, 2009. ICIT 2009. IEEE International Conference on,2009
    [7].Nedeljkovic M, Stojiljkovic Z. Fast current control for thyristor rectifiers[J] Electric Power Applications, IEE Proceedings,2003:150(6):636-638
    [8].R C Dorf, R H Bishop. Modern Control Systems[M]. Prentice Hall,2008
    [9].Smedley K M. Cuk S. One-cycle control of switching converters[C]. Power Electronics Specialists Conference,1991. PESC'91 Record.,22nd Annual IEEE, vol., no., pp.888-896, 24-27 Jun 1991
    [10].Hoevenaars A H, Evans I C, Desai B. Preventing AC drive failures due to commutation notches on a drilling rig[C]. Petroleum and Chemical Industry Conference, [s.n.] 2009:1-6
    [11].Salamah A M, Finney S J, Williams B W. Three-phase phase-lock loop for distorted utilities [J]. Electric Power Applications, IET,2007, 1(6):937-945
    [12]. Uicich G, Benedetti M, Rovira J F, A novel synchronism method for thyristor power converters using the space vector approach[J]. Nuclear Science, IEEE Transactions on, 2006,53(3):1522-1529
    [1].顾亦磊,陈威,吕征宇.柔性变流器及其应用[J].浙江大学学报(工学版),2010,44(3):521-527
    [2].戎萍,陈威,邓哲等.适用于宽输入电压范围的变拓扑变流器[J].浙江大学学报(工学版),2011,45(3):472-479
    [3].顾亦磊.集成模块电源拓扑标准化的研究[D].浙江大学博士学位论文,2008
    [4].陈威DC-DC变流器的柔性变拓扑研究[D].浙江大学博士学位论文,2009
    [5]. Zargari N R, Yuan Xiao, Bin Wu, A multi-level thyristor rectifier with improved power factor[J]. IEEE Transactions on Industrial Applications,1997,33(5):1208-1213
    [6]. Peterson M, Singh B N, Multipulse controlled ac-dc converters for harmonic mitigation and reactive power management[J]. Power Electronics, IET,2009:2(4):443-455
    [7]. Shoji Nishikata, Fujio Tatsuta. A New Interconnecting Method for Wind Turbine/Generators in a Wind Farm and Basic Performances of the Integrated System[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2010, VOL.57(2):468-475
    [8].吕征宇,姚文熙,王仕韬等,一种分布式发电的多输入整流电路[P].中国专利,CN201010180690.5:2010.05.21
    [9].李兴源,黄耀群,谢应璞等.带整流负载时双Y同步发电机特性的分析[J].中国电机工程学报,1988,8(2):35-47
    [10].廖民.带整流负载时六相双丫移30°绕组同步发电机电枢磁势和转子表面附加损耗的分析[J].大电机技术,1990,(4):1-8
    [11].郑德腾,卢贤良.带整流负载6相双Y移30°绕组同步发电机换相过程理论分析及计算机仿真[J].电工技术学报,1995,10(3):15-22
    [12].汤广福,刘正之,许家治.双Y同步发电机经逆向三绕组变压器带整流负载的特性分析[J].电工技术学报,1997,12(1):29-34