大型风力发电机组独立变桨距控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界风力发电技术的迅速发展,风电机组单机容量不断增大,风机变速变桨控制已经成为世界风电发展的主流。尤其是通过独立变桨控制来稳定发电机功率输出和减小机组动态载荷的控制策略更成为当前大型风电机组研发的关键。本文以国家科技部重大支撑专项“适应海、陆环境的双馈式变速恒频风电机组的研制”课题为依托,以3MW双馈变速恒频风力发电机组独立变桨距控制系统为研究对象,对独立变桨控制策略进行深入研究,进一步减小大型风电机组运行中的不平衡载荷,稳定发电机的功率输出。主要研究内容如下:
     首先,基于风机变桨控制理论和独立变桨控制模型,研究了基于叶根载荷坐标变换桨距角反馈线性化的独立变桨控制策略。在变速变桨距风机空气动力学和独立变桨运行原理基础上,深入分析了独立变桨控制的机构设置、风机风速特性和风机运行的动态载荷等问题,推导出独立变桨反馈线性化控制模型,设计出基于叶根载荷变换桨距角反馈线性化的独立变桨控制策略。该控制策略通过实时检测每个叶片的叶根载荷,以此来反映叶片和机组因风速变化引起的不平衡载荷,利用Coleman坐标变换理论将叶根载荷变换为桨距角反馈调节量,对风机桨叶进行单独控制。控制的主要目标是实时跟踪响应风速的变化,通过桨距角反馈调节,提高大型风电机组独立变桨系统的稳定性和快速性,减小由风切变、塔影效应和随机湍流等对机组造成的不平衡载荷。通过计算机仿真,结果表明:基于叶根载荷变换桨距角反馈线性化的独立变桨控制策略,能够快速响应风速的变化,实时调节风机桨叶,系统具有较强的稳定性和快速性,对减小风电机组的不平衡载荷效果明显。
     其次,研究设计了基于3MW风电机组线性参数变化(LPV)模型参考自适应的独立变桨系统整机控制策略。针对大型风电机组多输入、多输出的非线性耦合和独立变桨引起的附加控制载荷影响,应用线性参数变化LPV理论对风电机组风能转换系统多变量控制进行线性化,建立了风电机组独立变桨控制系统线性参数变化LPV模型。该模型以可测参数的缓慢变化来实时反应机组风能转换过程中的非线性,可以有效模拟风电机组的实际运行状况。以此,采用模型参考自适应控制理论设计出基于风电机组LPV模型参考自适应的独立变桨整机控制策略。通过对LPV模型参考自适应独立变桨控制和PI独立变桨控制计算机仿真比较,结果表明,采取LPV模型参考自适应控制的独立变桨系统输出转矩脉动相对平缓,幅值变化小,发电机输出功率稳定,传动系统的震动较小,输出效率较大,相对PI控制更具有优越性。
     最后,为了验证上述独立变桨控制的策略和仿真结果,设计了3MW双馈变速恒频风力发电机组独立变桨距半实物实验测试平台。通过对风电场和风机风况的实际模拟对独立变桨控制策略进行了试验研究。半实物实验平台中风电机组运行控制系统、电动变桨距执行机构、传感系统都是实物,而其它如风轮、塔架、发电机等都用GH公司的Bladed仿真软件来模拟,整个半实物实验台相当于一台独立变桨距风机。实验结果进一步验证了本文所研究的大型风电机组独立变桨控制策略的可行性和有效性。
With the rapid development of wind power generation technology, the wind generator single capacity are continually increased, variable speed and pitch control technology has become the main trend in today’s wind power development. Especially, the control strategy of using individual pitch to stabilize the output power of generator and reduce load disturbance of wind turbine is the hot spot of large wind turbines research. Depend on National Key Technology R&D Program major project“Research and development of land and sea environment doubly fed variable speed constant frequency wind turbines”, this thesis studied the independent variable pitch control strategy on 3MW doubly fed variable speed constant frequency wind turbine independent variable pitch control system. The purpose is using independent variable pitch control to reduce the unbalanced load of wind turbine, stabilize the output power of generator. The major research works are summarized in the following:
     Firstly, according to wind turbine variable pitch control theory and independent variable pitch control wind turbine control model; independent variable pitch control theory based on blade root loading coordinate transformation pitch angle feedback linearization is studied. Based on the summary of variable speed and variable pitch wind turbine aerodynamics and operation principle, the thesis analyzed the problems such as structural establishment of independent variable pitch, wind turbine characteristics and dynamic loading of independent blade operating, derived independent variable pitch feedback linearization control model, designed independent variable pitch control strategy based on blade root loading variable pitch angle feedback linearization. By detected the blade root loading of each blade and using Coleman coordinate transformation theory to change blade root loading into pitch angle feedback adjustment, the strategy realized the independent control of wind turbine, the main purpose is to reduce the unbalanced loading to the wind turbine caused by wind shear, tower shadow and random turbulent. Compared with PI unified variable pitch control simulation exercises, the results illustrate, independent variable pitch control strategy based on blade root loading variable pitch angle feedback linearization can realized independent pitch control and has significant effect on reducing dynamic loading of wind turbine, pitch control system has better stability and faster response time.
     Then, the research designed independent variable pitch control strategy based on 3MV wind turbine LPV (linear parameter variable) model reference self-adaption. According to the non-linear couple of large wind turbine multi-input and multi-output and the extra control loading impact of independent variable pitch, the thesis used LPV theory to linearize the variable control of wind power transformation system in wind turbine, established the LPV model of wind turbine independent variable pitch control system. This model can be used to test the slowly change of parameters and realized the non-linearization in wind power transformation processes of wind turbine, can effectively simulated the operation situation of wind turbine. In addition, an independent variable pitch whole turbine control strategy based on wind turbine LPV model reference self-adaption is designed using model reference self-adaption control theory. Compared with the independent variable pitch system computer simulation between LPV model reference self-adaption control and PI control, the results illustrate, the independent variable pitch system using LPV model reference self-adaption control has more gentle torque pulsation output, with small amplitude change, generator output power is around rated power, transmission system has small shock and high output efficiency, and has better advantages than PI control.
     Finally, a 3MW wind turbine independent variable pitch semi-physical experiment platform is established to confirm the above independent variable pitch control strategy and simulation results. By simulated the typical wind field situation, independent variable pitch control strategy is tested. There are some entities in the semi- physical simulation experiment platform, such as wind turbines operating control system, electronic drive mechanism of variable pitch system and sensor system. Others such as wind wheel, tower and generators are using Bladed simulation software powered by GH Company to simulate; the whole semi-physical simulation platform can be regard as a real variable speed variable pitch turbine. The test data shows that the individual variable pitch control strategy of large-scale wind turbine is feasible and effective.
引文
[1]易跃春.风力发电现状、发展前景及市场分析.国际电力, 2004, 8(5):18-22.
    [2]世界风电装机容量. http:// www.in-en.com/newenergy/html/newenergy-1354135466487395.html.
    [3] 2009-2010年中国风电设备行业分析及市场研究报告2009.
    [4]秦海岩. 2009中国风电发展. http://wenku.baidu.com/view/9e4f5d563c1ec5da50e27040.html
    [5] Iqbal M. T., Coonick A.,Ereris L. L.Dynamic control options for variable speed wind turbines.Wind Engineering [J]. 1994,18 (1):1-12
    [6]刘玥.大型风力发电机组独立变桨距控制研究:(硕士学位论文).沈阳:沈阳工业大学,2010.
    [7]罗克韦尔SLC500系列PLC及其在风力发电变桨距系统中的应用.中国自动化网,2009,11
    [8]风电设备制造产业及公司分析.http://finance.sina.com.cn/stock/hyyj/20070202. shtml.
    [9]陈雷,邢作霞,潘建等.大型风力发电机组技术发展趋势.可再生能源, 2003,(1): 27-30.
    [10] 2009年我国风电产业盘点.http: //finance.sina.com.cn/chanjing/b/20100329/18213267669.shtml.
    [11]国家发展与改革委员会.能源发展“十一五”规划,2007.
    [12]我国政策推动风电设备自主创新.中国投资咨询网,2008,5.
    [13]风力发电装备制造业前景光明. http: //www.in-en.com/newenergy/html/newenergy- 94944.html.
    [14]张洋,李强,张晓东.风力发电机组控制技术综述.水利电力机械, 2007, (7):53 - 55.
    [15]邓英,梁晶晶,王湘明等.减缓风力发电机组驱动链载荷的控制器.太阳能学报,2009, 30(10):1420-1423.
    [16]刘颖明.永磁直驱风电机组控制技术研究:(博士学位论文).沈阳:沈阳工业大学,2010.
    [17]高指林.风力发电机组变桨距控制系统及其执行机构的研究:(硕士学位论文).武汉:武汉理工大学, 2007.
    [18]刑作霞.大型变速变距风力发电机组的柔性协调控制技术研究:(博士学位论文).北京:北京交通大学, 2008.
    [19]刘忠明,段守敏,王长路.风力发电齿轮箱设计制造技术的发展与展望.机械传动,2006,30(6):1-6.
    [20] E.Muljadi, C.P. Butterfield. Pitch- controlled variable-speed wind turbine generation. IEEE Transactions on Industrial Applications, 2001, 37 (1): 240-246.
    [21] N.Horiuchi, T. Kawahito. Torque and power limitations of variable speed wind turbines using pitch control and generator power control. IEEE Power Engineering Society Summer Meeting,2001,1: 638 - 643.
    [22] W. L. Chen, Y. Y. Hsu. Unified voltage and pitch angle controller for wind-driven induction generator system. IEEE Transactions on Aerospace and Electronic Systems. 2008, 44(3): 913-926.
    [23]高文元,祝振敏,井明波等.风电机组变桨距系统神经网络模糊自适应控制.武汉理工大学学报, 2008,30(4):533-536.
    [24]王哲.大型风电机组变桨距控制策略研究:(博士学位论文).沈阳:沈阳工业大学,2010.
    [25]风电设备制造产业及公司分析. http://finance.sina.com.cn/stock/hyyj/20070202/14083307932. shtml.
    [26]吴治坚.新能源和可再生能源的利用.北京:机械工业出版社,2006.
    [27]姚兴佳,宋俊等.风力发电机组原理与应用.北京:机械工业出版社,2009.
    [28]叶杭冶.风电机组的控制技术.北京:机械工业出版社,2002.
    [29]姚兴佳,刘国喜,朱家玲等.可再生能源及其发电技术.北京:科学出版社,2010.
    [30]熊礼俭.风力发电新技术与发电工程设计、运行、维护及标准规范实用手册.北京:中国科学文化出版社,2005.
    [31] Burton Tony, Sharpe David, Jenkins Niek. Wind Energy Handbook. New York: John Wiley & Sons, Ltd, 2001.
    [32] M. Rossetti, E.A. Bossanyi. Damping of Tower Motions Via Pitch Control– Theory and Practice. Proceedings of European Wind Energy Conference, 2004.
    [33] Kausihan Selvam. Individual Pitch Control for Large Scale Wind Turbines. Energy Research Center of the Netherlands, 2007.
    [34]叶杭冶,潘东浩.风电机组变速与变距控制过程中的动力学问题研究.太阳能学报, 2007,28(12):1321-1328.
    [35] Dengying, Yu Shiming, Wang Xiangming. Researches of a Controller for Reducing Load of Driving Chain in Wind Turbine based on H? Control. The IEEE International Conference on Automation and Logistics. Jinan, 2007.
    [36]邓英,梁晶晶,王湘明等.减缓风力发电机组驱动链载荷的控制器.太阳能学报,2009, 30(10):1420-1423.
    [37] E Bossanyi. Developments in Individual Blade Pitch Control. The Science of Making Torque from Wind. Delft University of Technology, The Netherlands, April 19-21 2004.
    [38] E. A. Bossanyi. Individual Blade Pitch Control for Load Reduction. Wind Energy, 2003, 6:119–128.
    [39] Eric van der Hooft, P.Schaak. Wind Turbine Control Algorithms. Energy Research Center of the Netherlands, 2003.
    [40] Ruben P, Daniel S. Integer Variable Structure Controllers for Small Wind Energy Systems. Proc of the IEEE Canadian Conf on Elec and Computer Engineering.1999:1067-1072.
    [41] Battista H D, Mantz R J. Sliding Mode Control of Torque Ripple in Wind Energy Conversion Systems with Slip Power Recovery. Proc of the 24th Annual Conf of IEEE,1998: 651-656.
    [42] Battista, R.J. Mantz, C.F. Christiansen . Dynamical Sliding Mode Power Control of Wind Driven Induction Generators. IEEE Transactions on Energy Conversion, 2000, 15(4) :451-457.
    [43]贾增周.大型风力发电机组的智能滑模变结构控制研究:(博士学位论文).保定:华北电力大学, 2008.
    [44]通用电气公司.基于轴径向位移的进行风力涡轮机转子载荷控制的方法和设备.中国,CN1823223A.2006.
    [45]通用电气公司.风轮机泄放负载系统及方法.中国,CN101009475A.2007.
    [46] Stol K., Fingersh L.Wind Turbine Field Testing of State-Space Control Designs. http://www.osti.gov/bridge.
    [47] Wright A., Stol K., Fingersh L.. Progress in Implementing and Testing State-Space Controls for the Controls Advanced Research Turbine. The 24th ASME Wind Energy Conference, Reno, 2005.
    [48]武钢.主动失速型风力发电机功率优化和载荷控制策略研究:(硕士学位论文).大连:大连理工大学,2003.
    [49] Van Der Hooft E, Van Engelen T, Schaak P. Development of Wind Turbine Control Algorithm for Industrial Use. Proceedings of the European Wind Energy Conference, Copenhagen, Denmark, 2001:324-328.
    [50] Prats, M.M., Carrasco, J.M., Galván, E., et al. A new fuzzy Logic Controller to Improve the Captured Wind Energy in a Real 800kW Variable Speed- Variable Pitch Wind Turbine. IEEE 33rd Annual Power Electronics Specialists Conf. 2002: 101-105.
    [51] Chedid R B, Karaki S H, EI-Chamali C. Adaptive Fuzzy Control for Wind-Diesel Weak Power System. IEEE Transactions on Energy Convers, 2000, 15 (1):71-78.
    [52] Daodne Andrea, Dambrosio L. Estimator Based Adaptive Fuzzy Logic Control Technique for a Wind Turbine-Generator System. Energy Conversion & Management, 2003,4 (4):135-153.
    [53] Perales M, Perez J.Barrero. Fuzzy Logic Control of a Variable Speed, Variable Pitch Wind Turbine. IEEE Canadian Conf on Elec and Computer Engineering. 1999 : 614-618.
    [54] Simoes M. G., Bose B. K., Spiegel R. J. Fuzzy Logic-based Intelligent Control of a Variable Speed Cage Machine Wind Generation System. IEEE Transactions on Power Electron, 1997, 12(1): 87-95.
    [55] Kyoungsoo Ro,Han-hoChoi. Application of Neural Network Controller for Maximum Power Extraction of a Grid-Connected Wind Turbine System. Electrical Engineering, 2005, 88(12):45-53.
    [56] S. Li, D. C. Wunsch, E. A. O'Hair, et al. Using neural networks to estimate wind turbine powergeneration. IEEE Transactions on Energy Convers, 2001, 16 (3):276-282.
    [57] Giraud F, Salameh Z M. Neural Network Modeling of the Gust Effect on a Grid-Interactive WindEnergy Conversion System with Battery Storage. Electric Power System Research, 1999: 155-161.
    [58]姚兴佳,王凤翔,邓英等.并网型风电机组智能控制技术.沈阳工业大学学报,1998, 20(3): 22 -26.
    [59] Kanellos F D, Hatziargyriou N D. A New Control Scheme for Variable Speed Wind Turbines Using Neural Networks. IEEE PES Winter Meeting.2002:360-365.
    [60] Eskander Mona N. Neural Network Controller for a Permanent Magnet Generator Applied in aWind Energy Conversion System. Renewable Energy, 2002,26 : 463- 477.
    [61]付邦胜,毋炳鑫,王晓雷.基于神经网络的风力机变桨距控制系统设计.中原工学院学报,2009,20(4):56-59.
    [62]江颖,王静,许伟明等.基于RBF的改进单神经元PID控制.仪器仪表学报. 2005, 26(8):345-346.
    [63]宋新甫,刘军,黄戈.基于RBF神经网络整定PID的风力发电变桨距控制.电网与清洁能源,2009,25(4):49-53.
    [64] Dambrosio L .Fortunato B. One Step ahead Adaptive Control of a Wind-Driven, SynchronousGenerator System. Energy, 1999, 24:9-20.
    [65]闫耀民,范瑜,汪至中.永磁同步电机风力发电系统的自寻优控制.电工技术学报,2002, 17(6):82- 86.
    [66] Al-Duwaish, H., Al-Hamouz, Z., Badran, S. Adaptive Output Feedback Controller for WindTurbine Generators Using Neural Networks. Electric Machines and Power Systems,1999,27(5):465-479.
    [67] Chedid R B, Karaki S H, EI-Chamali C. Adaptive Fuzzy Control for Wind-Diesel Weak PowerSystem. IEEE Transactions on Energy Convers, 2000, 15 (1):71-78.
    [68] Mayosky M A, Cancelo GIE. Direct Adaptive Control of Wind Energy Conversion System UsingGaussian Networks. IEEE Transactions on Neural Network, 1999,10(4):898-906.
    [69] Jurado Francisco, Saenz Jose R. An Adaptive Control Scheme for Biomass-Based Diesel-WindSystem. Renewable Energy, 2003, 28:45-57.
    [70]林勇刚.大型风电机组变桨距控制技术研究:(博士学位论文).浙江:浙江大学,2005.
    [71] Bo Junl Pedersen. Method and Control System for Reduction of a Wind Turbine Subjected toAsymmetrical Loading of the Rotor Plane. USA, US2009/0021015A1. 2009.
    [72] Song Y D, et al, Variable Speed Control of Wind Turbines Using Nonlinear and AdaptiveAlgorithms. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 85: 293-308.
    [73] D. Song, B.Dhinakaran.Control of Wind Turbines Using Nonlinear Algorithms. American ControlConferences, 2000:1551-1555.
    [74]吴万荣,陈青等.风力机独立液压变桨距系统建模与仿真分析.现代制造工程,2010,9:69-71
    [75]范晓旭,白焰,吕越刚等.复杂风况下变桨距风力机模拟实验系统实验研究.2009年全国博生学术会议,电站自动化信息,80-83.
    [76]洪飞.风力发电机变桨距控制与研究.(硕士学位论文).合肥:合肥工业大学.2008.
    [77] T.G. Van Engelen. Design Model and Load Reduction Assessment for Multi-Rotational ModeIndividual Pitch Control. Netherland, ECN, 2006.
    [78]郭威.大型风电机组变桨距系统设计及其智能控制方法研究:(硕士学位论文).天津:天工业大学, 2007.
    [79] Endusa Billy Muhando. Augmented LQG Controller for Enhancement of Online DynamicPerformance for WTG system. Renewable Energy, 2008,(33): 1942-1952.
    [80]林勇刚,李伟,陈晓波等.大型风电机组独立桨叶控制系统.太阳能学报,2005,26(6)780-786.
    [81] Lescher F, Zhao J, Borne P. Robust Gain Scheduling Controller for Pitch Regulated VariableSpeed Wind Turbine.Studies in Informatics and Control 2005; 14(4):299-315.
    [82] Bossanyi E. The Design of Closed Loop Controllers for Wind Turbines. Wind Energy 2000; (3):149-163.
    [83] Burton T, Sharpe D, Jenkins N, et al. Handbook of Wind Energy. Wiley: New York, 2001.
    [84] Van Engelen T, Markou H, Buhl T, et al. Morphological Study for Aeroelastic Control Conceptsfor Wind Turbines. Technical Report ECN-E-06-056, ECN Wind Energy, 2007.
    [85] Geyler M, Caselitz P. Individual Blade Pitch Control Design for Load Reduction on Large WindTurbines. Proceedings of the European Wind Energy Conference, Milan, Italy, 2007: 82–86.
    [86] Stol, K. Disturbance Tracking and Blade Load Reduction of Wind Turbines in Variable SpeedOperations. NREL, 2003.
    [87]孟勐.风电机组载荷控制的研究.(硕士学位论文).新疆:新疆农业大学,2006.
    [88] E.Muljadi,C.P.Butterfield. Pitch Controlled Variable Speed Wind Turbine Generation. IEEE Trans.On IA,2001,1(37):240-246.
    [89] Iebst B S. A Pitch Control Systemfor the KaMeWa Wind Turbine. Dynamic Systems,Measurement and Control, 1985:47-52.
    [90]张雅楠.变桨距与智能控制在风电机组中的应用.(硕士学位论文).沈阳:沈阳工业大学,2010.
    [91]霍福鹏,刘红.兆瓦级变速恒频风电机组变速变桨距控制技术研究.电气传动,2010, 40(4):7-10,27.
    [92]王江.风力发电变桨距控制技术研究.(硕士学位论文).合肥:合肥工业大学,2009.
    [93]朱洁琼,段斌,敬章龙等.兆瓦级风电机组变桨距控制系统设计.湘潭大学自然科学学报,2009, 31(2):148-154.
    [94]魏本建,李志梅.风电机组电动变桨距控制系统设计.机电工程技术, 2010,39(01):19-20.
    [95]刘光德,邢作霞,李科等.风力发电机组电动变桨距系统的研究.控制与应用技术,31-34.
    [96]李志梅,魏本建,赵东标.风电机组电动变桨距传动机构设计与仿真.机械传动. 2009, 33(6):53-56.
    [97]惠晶,顾鑫,杨元侃兆瓦级风力发电机组电动变桨距系统.电机与控制应用, 2007, 34(11):51-54.
    [98]李强.大型风力发电机组变桨距控制研究.(硕士学位论文).沈阳:沈阳工业大学,2007.
    [99]张中丛.大型风力发电机组独立变桨距控制系统(.硕士学位论文).沈阳:沈阳工业大学,2009.
    [100]郭洪澈.大型风力发电机组变桨控制策略研究(.博士学位论文).沈阳:沈阳工业大学,2006.
    [101]周祥云.高精度位置伺服控制风力机变桨距研究.(硕士学位论文).无锡:江南大学,2008.
    [102]顾鑫.兆瓦级锋利发电机组液压变桨距系统研究.(硕士学位论文).无锡:江南大学,2008.
    [103]刘湘琪.风力发电机组电液比例变桨控制系统研究.(硕士学位论文).杭州:浙江大学,2004.
    [104]叶杭冶,李伟,林勇刚等.基于半物理仿真的变速恒频独立变桨距控制.机床与液压, 2009, 37(1): 90-93.
    [105]王晓东.大型双馈风电机组动态载荷控制研究.(博士学位论文).沈阳:沈阳工业大学,2011.
    [106] (法)D.勒古里雷斯著.风力机的理论与设计.施鹏飞译.北京:机械工业出版社,1985.
    [107]贺德馨.风工程与工业空气动力学.北京:国防工业出版社,2006.
    [108] R. Hoffmann, P. Mustschler. The Influence of Control Strategies on the Energy Capture of Wind Turbines. IEEE Industry Applications Conference, 2000: 886-893.
    [109]倪受元.风轮机的工作原理和气动力特性.太阳能学报,2000,(3):12-16.
    [110]陈严,欧阳高飞,叶枝全.大型水平轴风力机传动系统的动力学研究.太阳能学报,2003, 24(5): 729-734.
    [111]桓毅,汪至中.风力发电机及其控制系统的对比分析.中小型电机,2002, 29(4):41-45.
    [112]许洪华,倪受元.独立运行风电机组的最佳叶尖速比控制.太阳能学报,1998, 19(1):30-35.
    [113]姚兴佳,李媛,郭庆鼎等.基于坐标变换的独立变桨距控制技术研究.可再生能源,2010,28(5):19-22.
    [114]胡寿松.自动控制原理.北京:清华大学出版社.1998.
    [115]衣传宝.双馈型风力发电机组变桨距控制系统研究.(硕士学位论文).沈阳:沈阳工业大学,2009.
    [116] Fernando D.Bianchi, Hernan De Battista.(阿根廷).风力机控制系统原理、建模及增益调度设计.刘光德(译).北京:机械工业出版社,2009.
    [117] Bianchi F, Mantz R, Christiansen C. Gain Scheduling Control of Variable-Speed Wind Energy Conversion Systems Using Quasi-LPV Models.Control Engineering Practice, 2005,(13): 247-255.
    [118]周洁.LPV变速变桨距风力发电机组线性变参数增益调度控制.(硕士学位论文).沈阳:沈阳工业大学,2009.
    [119]王林.基于模型参考自适应算法的张力控制系统研究(.硕士学位论文).长沙:中南大学,2008.
    [120]刘豹,唐万生主编.现代控制理论(第3版).北京:机械工业出版社,2011.
    [121]谢新民.自适应控制系统.北京:清华大学出版社,2002.
    [122]董宁.自适应控制.北京:北京理工大学出版社,2009.
    [123] Paul S. Veers. Three - Dimensional Wind Simulation. Sandia National Laboratories, 1988.