风力发电机组动力模型及循环变桨控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变桨距风力发电机组具备装机容量大、风电转换效率高、控制灵活等优点,现在已成为风力发电的主要发展方向。然而,风场内风速的强度和方向变化的不可预知性,给风力发电系统变桨控制带来了很大的困难。目前,国内外对风力发电系统变桨控制策略的研究多以系统转速的稳定为控制目标,研究主要集中在高风速区。由于风力发电机组单机装机容量越来越大,对机组变桨距控制的效果也提出了更高的要求:需要考虑大型叶片多种气动效应因素对风力发电系统转速的影响;变桨距控制器既要能够抑制系统扰动,还能够降低桨距角调节系统的疲劳程度等。针对这些大型风力发电机组变桨控制研究的热点问题,本文进行如下研究工作:
     对变桨距风力发电机组气动特性数值模拟与分析方法进行研究。采用直接耦合解法克服了风轮气动载荷分析时,流体力学建模设计中迭代法在求解高维问题时计算量大、收敛速度慢的缺陷。应用Visual Fortran软件编制了相应的计算机程序,对实际算例进行仿真计算。数值模拟结果表明直接耦合解法比传统迭代方法的计算时间减少一半以上,验证了此数值计算方法在风力发电机组气动特性数值模拟中的有效性及可行性。
     研究了风力发电系统结构特征和建模方法。为了准确描述系统传动链的动态过程,采用分析建模和实验验证相结合的方法,建立了大型风力发电系统的非线性数学模型。模型中所使用的风能利用系数利用最小二乘法对风力发电机组实验采样数据进行曲面拟合,并对拟合曲面进行线性化求解,提出一种辨识风力发电系统风能利用系数的方法。理论分析和实际算例验证表明该方法拟合的风能利用系数曲线具有较好的准确性,适合应用在不同风速条件下的风力发电系统建模和控制方法设计中。
     研究了风力发电系统数学模型和变桨控制方法。针对控制过程中存在的系统部分参数不确定和随机风速扰动问题,设计了一种用于风力发电系统转速控制的桨距角鲁棒控制器。该桨距角鲁棒控制器设计基于定量反馈理论,与传统PID控制器相比,该方法工程实现非常简单,可以保证较大风速变化范围内风力发电机组的稳定性和输出功率控制所要求的动态性能,并且对风力发电系统中不确定参数的摄动影响具有较好的鲁棒性。
     研究了风速变化与多种气动效应对风力发电机组的影响,提出了一种以实现风力发电系统转速稳定控制的循环变桨距控制策略。该策略结合了定量反馈鲁棒控制方法和重复控制方法,在实现系统转速稳定控制的同时,针对风力发电机组风轮与气流的气固耦合模型中部分气动效应对风力发电系统的影响,采用重复控制抑制风速扰动带来的周期性转速脉动。
Variable speed variable pitch wind turbine has now become the main developmentstream of the wind power due to its advantages of large capacity, efficient wind powerconversion, flexible control and so on. However, it is of great difficulty for variable pitchcontrol of wind turbine because of the unpredictable strength and direction of wind speed.At present, the studies of variable pitch control strategy on the wind turbine at home andabroad are prone to the stability control of wind wheel speed, especially focusing on highwind speed areas. With the increasing unit capacity of wind turbine, new requirements tothe variable pitch control of wind turbine are proposed, such as considering the effect ofthe multiaerodynamic effects of large blade on the wind turbine speed, the capability ofvariable pitch controller on inhabiting system disturbances as well as reducing the fatiguedegree of pitch angle adjustment system, and so on. These have become the hot issues forthe variable pitch control of large wind turbine. The details of this dissertation are asfollows:
     Through surveying the numerical simulation and analytical methods on theaerodynamic characteristics of variable pitch wind turbine, the direct coupling solution isadopted, which can overcome the defects of large computation and slow convergencewhen using iterative method to solve high dimensional problem during fluid dynamicsmodelling. Practical examples are simulated and calculated by Visual Fortran program.Numerical simulation results show that the computing time using direct coupling solutionis half of that using conventional iterative method, which demonstrates the feasibility andeffectiveness of this method in the aerodynamic characteristics numerical simulation ofwind turbine.
     The structure features and modelling method of wind turbine are studied. Thenonlinear mathematical model of large wind power system is built by the methodcombining analytical modelling and experimental validation to accurately describe thedynamic process of system drive chain. The wind energy utilization coefficient inmathematic model is obtained by the surface fitting of the experimental sampled data of the wind turbine based on the least square method. A method of identifying and analyzingwind energy utilization coefficient of wind turbine is developed by linearizing the fittingsurface. Theoretical analysis and practical example verification show that the fitted windenergy utilization factor curve is accurate and suitable for modelling and controller designof wind power system under different wind speed conditions.
     The mathematical modelling and variable pitch control method of wind power systemare studied. Considering the system parameter uncertainties and stochastic winddisturbances, a pitch angle robust controller is designed to achieve speed stable control ofwind power system. The pitch angle robust controller is designed based on the quantitativefeedback theory. Comparing with the conventional PID controller, this method can berealized simply and guarantee the stability and required output power dynamicperformance of wind turbine within the larger wind speed range. Meanwhile, it has goodrobustness to the perturbation of the uncertain parameters in the wind power system.
     The influence of variable wind speed and multi-aerodynamics on wind turbine isstudied. A loop variable pitch control strategy is proposed to implement speed stablecontrol of wind power system. This control strategy combines quantitative feedback robustcontrol and repetitive control to gain the system speed stable control. The repetitive controlis used to attenuate the periodic speed ripple caused by disturbance, which considers thepartial aerodynamic effects of air-solid coupling model between the wind wheel of windturbine and airflow.
引文
[1]张明锋,邓凯,陈波等.中国风电产业现状与发展.机电工程,2010,27(1):1~14.
    [2]刘细平,林鹤云.风力发电机及风力发电控制技术综述.大电机技术,2007,3:17~20.
    [3]尹明,王成山,葛旭波等.中德风电发展的比较与分析.电工技术学报,2010,25(9):157~182.
    [4]刘颖明.永磁式直驱风电机组控制技术研究:(博士学位论文).沈阳:沈阳工业大学,2010.
    [5]王天施,苑舜.风力发电对电网的影响及对策.高压电器,2010,46(8):89~92.
    [6]李建林,许洪华.风力发电系统低电压运行技术.北京:机械工业出版社,2009.
    [7] Cardenas R, Pena R. Sensorless vector control of induction machines for variable-speed wind energyapplications. IEEE Transactions on Energy Conversion, 2004, 19(1): 196~205.
    [8]陈杰,陈冉,陈志辉等.定桨距风力发电机组的主动失速控制.电力系统自动化,2010,34(2):98~103.
    [9]林勇刚,李伟,陈晓波等.大型风力发电机组独立桨叶控制系统.太阳能学报,2005,25(5):780~786.
    [10]范晓旭,白焰,吕跃刚等.变桨距风力机多风况模拟系统研究.华东电力,2010,38(1):123~128.
    [11] Bianchi F, De Battista H, Mantz R J. Wind Turbine Control Systems-Principles. Modelling andGain Scheduling Design, London: Springer, 2006.
    [12]祝贺,徐建源,张明理等.风力发电技术发展现状及关键问题.华东电力,2009,37(2):314~316.
    [13] Munteanu I, Cutultlis N A, Bratcu A I, et al. Optimization of variable speed wind power systemsbased on a LQG approach . Control Engineering Practice, 2005, 13(7): 903 -912.
    [14]张雷,李海东,李建林等.基于LQR方法的风电机组变桨距控制的动态建模与仿真分析.太阳能学报,2008,29(7):781~785.
    [15] Leithead W E, Connor B. Control of variable speed wind turbines:dynamic models. InternationalJournal of Control, 2000, 73(13):1173-1188.
    [16] Dadone Andrea, Dambrosio L. Estimator based adaptive fuzzy logic control technique for a windturbine-generator system. Energy Conversion & Management ,2003,(44):135-153.
    [17] Muljadi E, Butterfield C P. Pitch-controlled variable-speed wind turbine generation.IEEETransactions on Industry Applications,2001,37(1):240-246.
    [18] Muhando Be, Senjyu T, Uraski N, et al. Gain scheduling control of variable speed WTG underwidely varying turbulence loading. Renewable Energy, 2007, 32(14): 2407–2423.
    [19] Lescher F, Zh JingYun, Borne P. Robust gain scheduling controller for pitch regulated variablespeed wind turbine. Studies in Informatics and Control, 2005, 14(12): 299~315.
    [20]叶远茂,吴捷,张先亮等.变桨距风力机分区段模拟方法及其控制策略.电网技术,2010,34(1):159~163.
    [21]张庆麟.风力机叶片三维气动性能的数值研究.清华大学学报,2007,29(9):1172~1174.
    [22] Fernando Valenciaga, Puleston Paul F. Variable structure control of a wind energy conversionsystem based on a brushless doubly fed reluctance generator. Energy Conversion, IEEE Transactionon, 2007, 22(2): 499~506.
    [23] Balas M J, Wright A, Hand M, et al. Dynamics and control of horizontal axis wind turbines. TheAmerican Control Conference, Denver: Colorado, 2003.
    [24]任海军,何玉林.2种风力机变桨系统单神经元比例-积分-微分控制策略的比较与分析.电网技术,2010,34(12):154-157.
    [25] Tapia A, Tapia G, Ostolaza Jx, et al. Modeling and control of a wind turbine driven doubly fedinduction generator. IEEE Transactions on Energy Conversion, 2003, 18(2): 194–204.
    [26]郭鹏.模糊前馈与模糊PID结合的风力发电机组变桨距控制.中国电机工程学报,2010,30(8):123~128.
    [27]张先勇,吴捷,杨金明等.额定风速以上风力发电机组的恒功率H∞鲁棒控制.控制理论与应用,2008,25(2):321~328.
    [28] Rocha R, Filho L S M. A multivariable H∞control for wind energy conversion system. IEEEConference on Control Applications, Istanbul, Turkey, 2003.
    [29]王东风,贾增周,孙剑等.变桨距风力发电系统的滑模变结构控制.华北电力大学学报,2008,1:1-4.
    [30]应有,许国东.基于载荷优化的风力机组变桨控制技术研究.机械工程学报,2011,47(18):106~119.
    [31]任丽娜,焦晓红,邵立平.风力发电机速度跟踪自适应控制研究.太阳能学报,2008,29(8):1021~1027.
    [32] Muhando E B, Senjyu T, Kinjo H, et al. Augmented LQG controller for enhancement of onlinedynamic performance for WTG system. Renewable Energy, 2008, 33(8): 1942~1952.
    [33] Boukhezzar B, Lupu L, Siguerdidjane H, et al. Multivariable control strategy for variable speed.variable pitch wind turbines, Renewable Energy, 2007, 32(8): 1273~1287.
    [34] Stol K, Balas M. Periodic disturbance accommodating control for blade load mitigation in windturbines. Journal of Solar Energy Engineering, 2003, 125(4):379-385.
    [35]许凌峰,徐大平,高峰等.基于神经网络的风力发电机组变桨距复合控制.华北电力大学学报,2009,36(1):28~34.
    [36]高文元,孙涛,王加伟.MW级风力机变桨距机构的虚拟设计与仿真.机械与电子,2010,11:39~41.
    [37]贾增周.大型风力发电机组的智能滑模变结构控制研究:(博士毕业论文).北京:华北电力大学,2008.
    [38] Hansen Anca D, Poul Sorensen, et al. Control of variable speed wind turbines with doubly-fedinduction generators.,Wind Engineering, 2004, 28(4): 411~432.
    [39]王松岭.流体力学.北京:中国电力出版社,2004.
    [40]钱翼稷.空气动力学.北京:北京航空航天大学出版社,2005.
    [41]包常利.多重网格方法在风轮机流场数值模拟中的应用及研究:(硕士学位论文).沈阳:沈阳工业大学,2011.
    [42]吕华庆.流体力学基础.北京:高等教育出版社,2006.
    [43] Denmark Martin O. L. Hansen. Xiao Jin-song. Aerodynamics of Wind Turbines. China's powerpress, 2009.
    [44] L. H. Feng. A finite volume element scheme for solving second elliptic partitial differentialequations. Journal of Engineernig Mathematics, 2002, 19(4): 63~67.
    [45] Luo Zhendong, Ou Qiulan, Xie Zhenghui. A Reduced Finite Difference Scheme and ErrorEstimates Based on POD Method for the Non-Stationary Stokes Equation. Applied Mathematicsand Mechanics, 2011, 32(7): 795~806.
    [46] Turkel E. Preeonditioned method for solving hteineompressible and low speed compressibleequations. Jounral of Computational Physies, 1987, 72(4): 277~298.
    [47] Versteeg H K, Malalasekera W. An introduction to Computational Fluid Dynamics. The FiniteVolume Method, Longman Prentice Hall Press, 1995.
    [48]贺广零.风力发电机组风场模拟.中国电机工程学报,2009,29(29):108~112.
    [49]张涵信,沈孟育.计算流体力学-差分方法的原理和应用.北京:国防工业出版社,2003.
    [50]胡益.基于新分解拟牛顿方程的一类求解非线性最小二乘问题的算法:(硕士论文).南京航空航天大学,2006.
    [51]李晓梅,莫则尧.多重网格算法综述.中国科学基金,1996.
    [52]李东东,陈陈.风力发电机组动态模型研究.中国电机工程学报,2005,25(3):115~119.
    [53]林志明,潘东浩,王贵子等.双馈式变速变桨风力发电机组的转矩控制.中国电机工程学报,2009,29(32):118~124.
    [54]金鑫.风力发电机组系统建模与仿真研究. (博士学位论文).重庆:重庆大学,2007.
    [55]李兴国,何玉林,金鑫.风力发电机组系统建模与仿真.重庆大学学报,2008,31(11):1126-1130.
    [56] Senjyu T, Sakamoto R, Urasaki N, et al. Output power leveling of wind turbine generator for alloperating regions by pitch angle control.IEEE Transactions on Energy Conversion,2006,21(2):467-475.
    [57]王东风,张有玥,韩璞等.风电场风速时间序列的复杂动力学特性分析.同济大学学报,2010,38(12):1828~1831.
    [58]李杰.Navier-stokes方程数值模拟及湍流模型研究:(硕士学位论文).西安:西北工业大学,2006.
    [59]贺德馨.风工程与工业空气动力学.北京:国防工业出社,2006.
    [60]耿华.风力发电系统能量优化问题的研究:(博士学位论文) .北京:清华大学,2008.
    [61]张昭遂,孙元章,李国杰.超速与变桨协调的双馈风电机组频率控制.电力系统自动化,2011,35(17):20~25.
    [62]戴巨川,胡燕平,刘德顺等.MW级变桨距风电机组叶片转矩计算与特性分析.太阳能学报,2010,31(8):1030~1036.
    [63]刘军,何玉林,李俊.变速变桨距风力发电机组控制策略改进与仿真.电力系统自动化,2011,35(5):82~86.
    [64] Slootweg J G, Polinder H.Representing wind turbine electrical generating systems in fundamentalfrequency simulations. IEEE Transactions on Energy Conversion, 2003, 18(4): 516~524.
    [65] Chinchillam, Amaltes S, Carlos J B. Control of permanent-magnet generators applied to variablespeed wind energy systems connected to the grid. IEEE Transactions on Energy Conversion, 2006,21(1):130~135.
    [66]米增强,苏勋文,余洋等.双馈机组风电场动态等效模型研究.电力系统自动化,2010,34(17):72~77.
    [67]杨耕,罗应立.电机与运动控制系统.北京:清华大学出版社,2006.
    [68] Tomonobu Senjyu, Ryosei Sakamoto, Naomitsu Urasaki, et al. Output Power Leveling of WindFarm Using Pitch Angle Control with Fuzzy Neural Network. IEEE, 2006.
    [69] Geng H, Yang G. A Novel Control Strategy of MPPT Taking Dynamics of Wind Turbine intoAccount. Proceedings of the 37th IEEE Power Electronics Specialists Conference, Jeju, Korea,2006.
    [70] Lin W M, Hong C M. Intelligent approach to maximum power point tracking control strategy forvariable speed wind turbine generation system. Energy, 2010, 35 ( 6 ) :2440-2447.
    [71]张文苑,郑恩让,朱玉国等.兆瓦级同步风力发电机变桨距控制策略研究.计算机测量与控制,2009,17(11):2203~2204.
    [72]沈艳霞,朱芸,纪志成等.LPV动态补偿的风能转换系统变桨距控制.控制理论与应用,2009,26(11):1282~1288.
    [73] Bianchi F D, Mantz R J, Christiansen CF. Gain scheduling control of variable speed wind energyconversion systems using quasi-LPV models. Control Engineering Practice, 2005, 13(2): 247~255.
    [74]耿华,周伟松,杨耕等.变桨距风电系统功率控制的逆系统鲁棒方法.清华大学学报,50(5):718~723.
    [75] Cutululis N, Ceanga E, Hansen A, et al. Robust multimodel control of an autonomous wind powersystem. Wind Energy, 2006, 9(5):399-419.
    [76]夏长亮,宋战锋.变速恒频风力发电系统变桨距自抗扰控制.中国电机工程学报,2007,27(14):91~95.
    [77]王增会,陈增强,孙青林等.定量反馈理论发展综述.控制理论与应用,2006,23(3):403~410.
    [78]刘博,方舟,李平等.定量反馈理论在鲁棒飞行控制律设计中的应用.2011,33(11):2458 ~2462.
    [79]孙护国,于海滨.QFT在航空发动机MIMO鲁棒控制中的应用.青岛大学学报,2008,23(2):13~17.
    [80]吴博.基于定量反馈理论的飞行模拟器运动平台控制系统研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2007.
    [81]谢晓竹,刘藻珍,刘敏.定量反馈理论和神经网络的融合控制与仿真.系统仿真学报,2009,21(1):312~315.
    [82]刘小明.基于定量反馈理论的天线稳定平台跟踪控制系统设计.电光与控制,2009,16(10):83~86.
    [83]姚兴佳,温和煦,邓英.变速恒频风力发电系统变桨距智能控制.沈阳工业大学学报,2008,30(2):159~162.
    [84]耿华,杨耕.变速变桨距风电系统的功率水平控制.中国电机工程学报,2008,28(25):130~137.
    [85]李文江,王平来.风电机组中变桨距控制技术的应用研究.电力电子技术,2011,45(10):125~127.
    [86]郗向儒,黄朝阳,蔺海鸥.风力机变桨距传动装置的虚拟设计.机械设计,2008,25(2):45~47.
    [87]陈毅东,杨育林,王立乔.风力发电最大功率点跟踪技术及仿真分析.高电压技术,2010,36(5):1322~1326.
    [88] Y. Yamamoto. Learning control and related problems in infinite-dimensional system. Proc. of theEuropean Control Conference, 1993: 191~222.
    [89] Feliu V, Munoz I, Lopfz J J. Repetitive control for single link flexible manipulators. Proceedings of2005 IEEE Internation Conference on Robotics and Automation, Barcelona, 2005: 4303~4309.
    [90]杨松,曾鸣,苏宝库.重复控制算法在转台伺服系统中的应用.电机与控制学报,2007,11(5):508~511.
    [91] K.Jeong-seong, S. Doki and M.Ishida. Suppression of harmonic current in vector control for ipmsmby utilizing repetitive control. IEEE International Conference on Industrial Technology, 2002, 1:264~267.
    [92]崔红,郭庆鼎.重复控制系统的稳定性分析.沈阳工业大学学报,2005,27(1):48~51.
    [93]兰永红,吴敏,佘锦华.基于二维混合模型的重复控制系统稳定性分析与控制器设计.自动化学报,2009,35(8):1121~1128.
    [94]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社,2003.
    [95]李翠艳.重复控制的一些问题研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2005.
    [96] Hyo-Sung Ahn, Yang Quan Chen, Huifang Dou. State-periodic adaptive compensation of coggingand coulomb friction in permanent magnet linear motors. IEEE Transactions on Magnetics, 2005,41(1):90-97.
    [97]吴敏,兰永红,佘锦华.线性不确定系统的H∞状态反馈鲁棒重复控制.控理论与应用,2008,25(3):427~433.
    [98]王哲.大型风电机组变桨距控制策略研究:(博士学位论文).沈阳:沈阳工业大学,2010.