混合动力汽车永磁同步电机电流滑模控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电机驱动系统是混合动力汽车的关键部件。混合动力汽车永磁同步电机驱动系统应满足转矩输出能力强、调速范围宽、全速运行范围内效率高、可靠性好等特定要求。永磁同步电机是多变量、非线性、强耦合的系统,对参数和干扰极为敏感,因此传统的线性控制方法无法准确描述系统的稳动态过程,难以保证电机在宽转速范围内的运行品质。滑模变结构控制是一种特殊的非线性控制,它具有响应快速、鲁棒性强、实现简单等优点,然而这种控制方法不可避免存在系统抖振,因而如何消除抖振成为将滑模控制理论应用于实际电机驱动系统的关键问题。因此,为了提高混合动力汽车永磁同步电机驱动系统对参数变化和外部扰动的鲁棒性,本文围绕电流滑模控制在永磁同步电机最大转矩电流比控制系统中的应用展开研究工作,重点研究如何通过改进趋近律、负载滑模观测器和增益调度滑模控制等方法削弱系统抖振及改善系统抵抗负载扰动特性。
     采用趋近律方法可以改善滑模运动的动态品质。本文分析比较了若干典型趋近律对于系统特性的影响,针对一般趋近律在接近滑模区域时抖振较大、不能收敛于原点的问题,本文提出了一种具有时变切换增益的指数趋近律方法。该方法在切换增益中引入时变修正因子,使得切换增益在接近滑模面邻域时始终保持为较小值,且在滑模运动阶段能够随着系统状态而趋近至零。所设计趋近律方法改善了系统动态性能,有效削弱了系统抖振。
     在滑模控制系统中,切换增益系数的最小值只有随着负载扰动幅度的增大而增大,才能满足滑动模态存在性和可达性条件,以达到抵抗扰动的目的。然而,增大切换增益将导致系统抖振加剧。针对以上问题,本文采用滑模观测器对负载扰动进行前馈补偿。该负载扰动观测器选取关于转速观测误差的滑模面,并根据负载扰动观测误差自适应调整观测器切换增益,不仅保证了观测器的鲁棒性,而且削弱了负载观测抖振。同时将负载扰动观测值前馈补偿至电流滑模控制器输出端,使用较小切换增益即可满足抵抗负载扰动的要求,从而改善了负载扰动时电流跟踪响应特性,显著减小了系统抖振。
     在实际系统中,控制器的结构和参数要求能够随着外界环境、运行条件的变化而变化,以保证系统在全局运行范围内具有满意的控制性能。增益调度控制是一种解决非线性系统控制问题的有效方法。本文采用自适应和增益调度相结合的方法对电流滑模控制器的参数进行整定。该方法通过自适应律在线调整切换增益系数的边界范围,同时以关于直轴、交轴电流的积分滑模面函数作为调度变量,对切换增益系数、滑模面系数及边界层厚度进行增益调度。所设计方法克服了常规增益调度方法需要确定工作点及对大量参数寻优的缺点,不但保证了系统鲁棒性,而且提高了系统性能和效率。
     本文针对永磁同步电机电流滑模控制系统进行了仿真和实验研究。仿真和实验结果表明该系统对负载扰动鲁棒性强,具有良好的稳态特性和动态跟踪性能。所设计方法及其控制器结构简单,工程实用性强,因而适用于混合动力汽车电机驱动系统。
The motor drive system is one of the most critical components for hybridelectric vehicles (HEV). The permanent magnet synchronous motor (PMSM)drive system for HEV should meet the specific requirements such as high torqueoutput, wide speed range, high efficiency and good reliability in the whole speedrange. PMSM is a multivariable, nonlinear and strong-coupled system which isextremely sensitive to parameters and disturbances, so traditional linear controlmethods can not accurately describe its static and dynamic processes andguarantee its high operation performances in a wide speed range. Sliding modevariable structure control (SMVSC) is a special non-linear control method withadvantages such as fast response, strong robustness and simple realization.However, the sliding mode control will bring in inevitable system chattering,which makes the present-day research on the sliding mode control applied to theactual motor drive system focused on how to alleviate the chattering. In order toimprove the system robustness of PMSM driver for HEV against parametervariations and external disturbances, this dissertation researches on theapplication of current sliding mode control to PMSM maximum torque perampere (MTPA) control system, and lays emphasis on how to alleviate thesystem chattering and improve the system characteritics of anti-disturbance byimproved reaching law, sliding mode load observer and gain-scheduled basedsliding mode control.
     The reaching law method can improve the dynamic quality of sliding motion.This dissertation analyzes and compares the influence of several typical reachinglaws on system characteristics. In view of disadvantages of the regular reaching laws such as higher chattering near the sliding band and non-convergence to theorigin, an improved exponent reaching law method with time-varying switchinggain is proposed. In this method, a time-varying factor is introduced to theswitching gain which is modified to remain smaller near the sliding band and toapproach zero with the system state in the stage of sliding motion, meanwhile,the integral sliding surface with integral separation is adopted and the boundarylayer method is applied. Thus, the designed reaching law method can improve thesystem dynamic performances and effectively alleviate the system chattering.
     In the sliding mode control system, the minimum switching gains onlyincreases with the amplitude of load disturbances can it meet the sliding modeexistence and accessibility condition and thus effectively resist the disturbances.However, the increasing of switching gain will intensify the system chattering.To solve the problem above, this dissertation proposes a load observation andcompensation method with sliding mode observer. In the load disturbanceobserver, the integral sliding surface with respect to the speed observation erroris selected, and the observer switching gain is adaptively adjusted according tothe load disturbance observation error, which not only ensures the observerrobustness, but also weakens the load observation chattering. Meanwhile, theload disturbance observed value is applied as feed-forward compensation to theoutput terminals of the current sliding mode controller, so much smallerswitching gain is used to meet the demand of anti-disturbance. Thus, this methodimproves the current tracking responses under load disturbances and significantlyweakens the system chattering.
     In the real system, the structure and parameters of controller are required tochange with the operating conditions and external environment in order to obtainsatisfactory control performances in the total operating range. Gain-scheduledcontrol is an effective method to solve the control problems for nonlinearsystems. This dissertation presents an adaptive and gain-scheduled hybridmethod to set the parameters of the current sliding mode controller. In thismethod, the boundaries of the switching gain are adjusted with the adaptivemethod, and taking the integral sliding surfaces with regard to d-axis current andq-axis current as scheduling variables, the controller coefficients of the switchinggains, the sliding surfaces and the boundary layers are set with gain-scheduled method. Thus, this method can overcome the disadvantages of regular gain-scheduled controller which requires the determination of typical operation pointsand the optimization of a large number of parameters, which not only ensures thesystem robustness, but also improves the system control performances andefficiency.
     In this dissertation, simulation and experimental studies on PMSM currentsliding mode control system have been carried out. Simulation and experimentalresults show that the system has strong robustness against load disturbances, andobtains good steady characteristics and dynamic tracking performances. Thedesigned methods and controllers are simple in structure and practical inengineering, so they are applicable for motor drive system for HEV.
引文
[1] Chan C C.The State of the Art of Electric, Hybrid and Fuel Cell Vehicles[J].Proceedings of the IEEE,2007,95(4):704~718.
    [2]欧阳明高.我国节能与新能源汽车发展战略与对策[J].汽车工程,2006,28(4):317-321.
    [3]欧阳明高.汽车新型能源动力系统技术战略与研发进展[J].内燃机学报,2008,26(增刊):107-114.
    [4]李克强.汽车技术的发展动向及我国的对策[J].汽车工程,2009,31(11):1005-1016.
    [5]于秀敏,曹珊,李君,等.混合动力汽车控制策略的研究现状及其发展趋势[J].机械工程学报,2006,42(11):10-16.
    [6]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京理工大学出版社,2004.
    [7] Cai W.Starting Engines and Powering Electric Loads with One Machine[J].IEEE Industry Applications Magazine,2006,12(6):29-38.
    [8] Zhu Z Q,Howe D.Electrical Machines and Drives for Electric, Hybrid, andFuel Cell Vehicles [J].Proceedings of the IEEE,2007,95(4):746-765.
    [9]李长红,陈明俊,吴小役.PMSM调速系统中最大转矩电流比控制方法的研究[J].中国电机工程学报,2005,25(21):169-174.
    [10] Consoli A, Scarcella G, Scelba G, et al. Steady-State and TransientOperation of IPMSMs Under Maximum-Torque-per-Ampere Control[J].IEEE Transactions on Industrial Applications,2010,46(1):121-129.
    [11]孙承波,宋丹,陈国呈,等.基于锁相环的空调直流压缩机矢量控制系统[J].电工技术学报,2009,24(4):78-84.
    [12]孙丹,贺益康.基于恒定开关频率空间矢量调制的永磁同步电机直接转矩控制[J].中国电机工程学报,2005,25(12):112-116.
    [13]刘军,刘丁,吴浦升,等.基于模糊控制调节电压矢量作用时间策略的永磁同步电机直接转矩控制仿真研究[J].中国电机工程学报,2004,24(10):148-152.
    [14] Zhong L,Rahman M F,Hu W Y,et al.A Direct Torque Controller forPermanent Magnet Synchronous Motor Drives [J].IEEE Transactions onEnergy Conversion,1999,14(3):637-642.
    [15]于海生,赵克友,郭雷.基于端口受控哈密顿方法的PMSM最大转矩/电流控制[J].中国电机工程学报,2006,26(8):82-87.
    [16] Mohamed Y A-R I,Lee T K.Adaptive Self-Tuning MTPA Vector Controllerfor IPMSM Drive System [J].IEEE Transactions on Energy Conversion,2006,21(3):636-644.
    [17] Niazi P,Toliyat H A,Goodarzi A.Robust Maximum Torque per Ampere(MTPA) Control of PM-Assisted SynRMcfor Traction Applications [J].IEEETransactions on Vehicular Technology,2007,56(4):1538-1545.
    [18] Bolognani S,Petrella R,Prearo A.Automatic Tracking of MTPA Trajectoryin IPM Motor Drives Based on AC Current Injection [J].IEEE Transactionson Industrial Applications,2011,47(1):105-114.
    [19] Bolognani S,Petrella R,Prearo A,et al.On-Line Tracking of the MTPATrajectory in IPM Motors Via Active Power Measurement[C].2010XIXInternational Conference on Electrical Machines,Rome,Italy,Sep.6-8,2010:1-7.
    [20] Kim S,Yoon Y D,Sul S K,et al.Parameter Independent MaximumTorque per Ampere (MTPA) Control of IPM Machine Based on SignalInjection[C].201025thAnnual IEEE Applied Power Electronics Conferenceand Exposition,Palm Springs,CA,Feb.21-25,2010:103–108.
    [21] Uddin M N,Abido M A,Rahman M A.Development and Implementationof a Hybrid Intelligent Controller for Interior Permanent Magnet SynchronousMotor Drives [J]. IEEE Transaction on Industry Applications,2003,40(1):68-76.
    [22] Lin F J,Lin C H A.Permanent-Magnet Synchronous Motor Servo DriveUsing Self-Constructing Fuzzy Neural Network Controller [J]. IEEETransaction on Energy Conversion,2004,19(1):66-72.
    [23] Utkin V I.Sliding Modes in Control and Optimization Utkin [M].Berlin:Springer,1992.
    [24]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社社,1996.
    [25]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [26]张昌凡,王耀南,何静.永磁同步伺服电机的变结构智能控制[J].中国电机工程学报,2002,22(7):13-17.
    [27]张涛,蒋静坪,张国宏.交流永磁同步电机伺服系统的线性化控制[J].中国电机工程学报,2001,21(6):40-43.
    [28]孟昭军,孙昌志,安跃军.基于时间延迟状态反馈精确线性化的PMSM混沌反控制[J].电工技术学报,2007,22(3):27-31.
    [29]林立,黄苏融.基于精确线性化解耦的内置式永磁同步电机牵引系统[J].系统仿真学报,2009,21(20):6529-6533.
    [30]王家军,赵光宙,齐冬莲.反推式控制在永磁同步电动机速度跟踪控制中的应用[J].中国电机工程学报,2004,24(8):95-98.
    [31] Rahman M A,Gamuwa M V,Uddin M N,et al.Nonlinear Control ofInterior Permanent-Magnet Synchronous Motor [J].IEEE Transactions onIndustry Applications,2003,39(2):408-416.
    [32]林立,黄苏融.内置式永磁同步电机牵引系统宽调速非线性控制器[J].电力自动化设备,2010,30(3):44-49.
    [33]王江,李韬,曾启明,等.基于观测器的永磁同步电动机微分代数非线性控制[J].中国电机工程学报,2005,25(2):87-92.
    [34]王江,王静,费向阳.永磁同步电动机的非线性PI速度控制[J].中国电机工程学报,2005,25(7):125-130.
    [35]林立,黄苏融.永磁同步电机系统线性化H∞鲁棒控制[J].电机与控制学报,2009,13(4):541-548.
    [36] Utkin V,Lee H.Chattering Problem in Sliding Mode Control Systems
    [C].2006International Workshop on Variable Structure Systems.Italy,2006:346-350.
    [37]方斯琛,周波,黄佳佳.滑模控制永磁同步电动机调速系统[J].电工技术学报,2008,23(8):29-35.
    [38]汪海波,周波,方斯琛.永磁同步电机调速系统的滑模控制[J].电工技术学报,2009,24(9):71-77.
    [39]贾洪平,孙丹,贺益康.基于滑模变结构的永磁同步电机直接转矩控制[J].中国电机工程学报,2006,26(20):134-138.
    [40]童克文,张兴,张昱.基于新型趋近律的永磁同步电动机滑模变结构控制[J].中国电机工程学报,2008,28(21):102-106.
    [41]许家群.电动汽车用永磁同步电动机传动控制系统的研究[D].沈阳工业大学博士学位论文,2003.
    [42]李珂.电动汽车高效快响应电驱动系统控制策略研究[D].山东大学博士学位论文,2007.
    [43]邹积勇.电动汽车控制策略研究[D].天津大学博士学位论文,2007.
    [44]姜卫东.混合动力电动汽车用无刷直流电机动态性能及控制策略的研究
    [D].合肥工业大学博士学位论文,2004.
    [45]王双红.混合动力电动车用开关磁阻电机控制系统研究[D].华中科技大学博士学位论文,2005.
    [46]刘艳.混合动力汽车感应电机转矩控制系统研究[D].大连理工大学博士学位论文,2006.
    [47]曹先庆.混合动力电动汽车用永磁同步电动机驱动系统的研究[D].沈阳工业大学博士学位论文,2008.
    [48] Zhao Z M,Meng S,Chan C C,et al.A Novel Induction Machine DesignSuitable for Inverter-Driven Variable Speed System [J].IEEE Transctions onEnergy Conversion,2000,15(4):413–420.
    [49] Wang T,Zheng P, Cheng S.Design Characteristics of the Induction MotorUsed for Hybrid Electric Vehicle [J].IEEE Transctions on Magnetics,2005,41(1):505–508.
    [50] Fahimi B,Emadi A,Sepe R B.A Switched Reluctance Machine-BasedStarter/Alternator for More-Electric Cars [J].IEEE Transctions on EnergyConversion,2004,19(1):116–124.
    [51] Krishnamurthy M,Edrington C S, Emadi A,et al.Making the Case forApplications of Switched Reluctance Motor Technology in AutomotiveProducts [J].IEEE Transactions on Power Electronics,2006,21(3):659–675.
    [52] Edrington C S,Krishnamurthy M,Fahimi B.Bipolar Switched ReluctanceMachines: A Novel Solution for Automotive Applications [J]. IEEETransactions on Vehicular Technology,2005,54(3):795–808.
    [53] Ishak D,Zhu Z Q,Howe D.Rotor Eddy Current Loss in PM Machines withFractional Slot Number per Pole [J].IEEE Transctions on Magnetics,2005,41(9):2462–2469.
    [54] Ishak D,Zhu Z Q,Howe D.Comparison of PM brushless motors, witheither All or Alternative Wound Teeth [J].IEEE Transactions on EnergyConversion,2006,21(1):95–103.
    [55] Ishak D,Zhu Z Q,Howe D.Permanent Magnet Brushless Machines withUnequal Tooth Widths and Similar Slot and Pole Numbers [J]. IEEETransactions on Industrial Applications,2005,41(2):584–590.
    [56]费德成.HEV用永磁同步电机优化设计与系统性能分析[D].江苏大学博士学位论文,2008.
    [57]刘冉冉.混合动力车用径向—径向磁通复合结构永磁同步电机的研究
    [D].哈尔滨大学博士学位论文,2009.
    [58]王艾萌.内置式永磁同步电动机的优化设计及弱磁控制研究[D].华北电力大学博士学位论文,2010.
    [59]赵静.混合动力车用轴向—轴向磁通复合结构永磁同步电机的研究
    [D].哈尔滨工业大学博士学位论文,2010.
    [60]王伟.车用永磁同步电机的参数匹配、协调控制与性能评价研究[D].吉林大学博士学位论文,2010.
    [61] Slotine J J,Satry S S.Traking Control of Nonlinear Systems Using SlidingSurfaces with Application to Robot Manipulator [J].International Journal ofControl,1983,38(2):456-492.
    [62] Chung S C Y,Lin C L.A Transformed Lure Problem for Slinding ModeControl and Chattering Reduction [J]. IEEE Transactions on AutomaticControl,1999,44(3):563–568.
    [63] Xu J X,Lee T H,Pan Y J.On the Sliding Mode Control for DC ServoMechanisms in the Presence of Unmodeled Dynamics [J].Mechatronics,2003,13(7):755–770.
    [64] Erbatur K,Kawamura A.Chattering Elimination via Fuzzy Boundary LayerTuning [C].2002IEEE28thAnnual Conferernce of the IndustrialElectronics Society,2002,3:2131–3136.
    [65] Chen M S,Hwang Y R,Tomizuka M.A State-Dependent Boundary LayerDesign for Sliding Mode Control [J]. IEEE Transactions on AutomaticControl,2002,47(10):1677-1681.
    [66] Vicent P V,Gerd H.Chattering-Free Sliding Mode Control for a Class ofNonlinear Mechanical Systems [J]. International Journal of Robust andNonlinear Control,2001,11(12):1161-1178.
    [67] Seshagiri S,Khalil H K.On Introducing Integral Action in Sliding ModeControl [C].Proceedings of the41stIEEE Conference on Decision andControl,2002,2:1473-1478.
    [68]宋立忠,温虹,姚琼翠.离散变结构控制系统的变速趋近律.海军工程学院学报,1999,3:16-21.
    [69]翟长连,吴智铭.一种离散时间系统的变结构控制方法[J].上海交通大学学报,2000,34(5):719-722.
    [70]于双和,强文义,傅佩琛.无抖振离散滑模系统[J].控制与决策,2001,16(3):380-382.
    [71] Jiang K,Zhang J G,Chen Z M.A New Approach for the Sliding ModeControl Based on Fuzzy Reaching Law [J].Proceedings of the4thWorldCongress on Intelligent Control and Automation,2002,1:656-660.
    [72] Chern T L,Wu Y C.Design of Integral Variable Structure Controller andApplication to Electrohydraulic Velocity Servosystems [J].IEE Proceedings-D,1991,138(5):439-444.
    [73] Chern T L,Wu Y C.Integral Variable Structure Control Approach for RobotManiplators [J].IEE Proceedings-D,1992,139(2):161-166.
    [74] Chern T L,Wu Y C.An Optimal Variable Structure Control with IntegralCompensation for Electrohydraulic Position Servo Control Systems [J].IEEETransctions on Industrial Electronics,1992,39(5):460-463.
    [75] Chern T L,Wong J S.Design of Brushless DC Position Servo Systems UsingIntegral Variable Structure Approach [J]. IEE Proceedings-B,1993,140(1):37-34.
    [76] Chern T L,Wong J S.DSP based Integral Variable Structure Control forMotor Servo Drives [J].IEE Proceedings-Control Theory Applications,1995,14(2):444-450.
    [77] Seshagiri S,Khalil H K.Robust Output Feedback Regulation of Minimum-Phase Nonlinear Systems Using Conditional Integrators [J].Automatica,2005,41(1):43-54.
    [78] Seshagiri S, Khalil H K.On Introducing Integral Action in Sliding ModeControl [C]. Proceedings of the41st IEEE Conference on Decision andControl,Las Vegas,USA,2002:1473-1478.
    [79] Seshagiri S,Khalil H K.Position Control of a PMSM Using ConditionalIntegrators [C].2005American Control Conference,Portland,USA,June8-10,2005:4367-4372.
    [80] Singh A,Khalil H K.State Feedback Regulation of Nonlinear Systems usingConditional Integrators [C].43rd IEEE Conference on Decision and Control,Atlantis,Bahamas,December14-17,2004:4560-4564.
    [81] Seshagiri S, Promtun E. Sliding Mode Control of F-16LongitudinalDynamics [C].2008American Control Conference,Seattle,USA,June11-13,2008:1770-1775.
    [82]刘颖,周波,方斯琛.基于新型扰动观测器的永磁同步电机滑模控制[J].中国电机工程学报,2010,30(9):80-85.
    [83] Leu V Q,Choi H H,Jung J W.Fuzzy Sliding Mode Speed Controller forPM Synchronous Motors With a Load Torque Observer [J]. IEEETransactions on Power Electronics,2012,27(3):1530-1539.
    [84]鲁文其,胡育文,梁骄雁,等.永磁同步电机伺服系统抗扰动自适应控制[J].中国电机工程学报,2011,31(3):75-81.
    [85]郑泽东,李永东,肖曦,等.永磁同步电机负载转矩观测器[J].电工技术学报,2010,(2):30-36.
    [86]张晓光,孙力,赵克.基于负载转矩滑模观测的永磁同步电机滑模控制[J].中国电机工程学报,2012,32(3):111-116.
    [87]王志宇,王长松,齐昕,等.永磁同步电机自适应滑模负载观测器研究[J].电机与控制学报,2012,16(1):45-49.
    [88] Foo G,Rahman M F.Sensorless Sliding-Mode MTPA Control of an IPMSynchronous Motor Drive Using a Sliding-Mode Observer and HF SignalInjection[J].IEEE Transactions on Industrial Electronics,2010,57(4):1270-1278.
    [89] Jung J W, Kim T H,Choi H H.Speed Control of a Permanent MagnetSynchronous Motor with a Torque Observer a Fuzzy Approach [J].IETControl Theory Applicaitons,2010,4(12):2971-2981.
    [90]陈荣,邓智泉,严仰光.基于负载观测的伺服系统抗扰研究[J].中国电机工程学报,2004,24(8):103-108.
    [91] Guzinski J,Abu-Rub H,Diguet M,et al.Speed and Load Torque ObserverApplication in High-Speed Train Electric Drive [J].IEEE Transactions onIndustrial Electronics,2010,57(2):565-574.
    [92] Chang S H,Chen P Y,Ting Y H,et al.Robust Current Control-BasedSliding Mode Control with Simple Uncertainties Estimation in PermanentMagnet Synchronous Motor Drive Systems [J]. IET Electric PowerApplications,2010,4(6):441-450.
    [93] Ghafari-Kashani A R,Faiz J,Yazdanpanah M J.Integration of Non-linearH∞and Sliding Mode Control Techniques for Motion Control of a PermanentMagnet Synchronous Motor [J].IET Electric Power Applications,2010,4(4):267-280.
    [94] Baik I C,Kim K H,Youn M J.Robust Nonlinear Speed Control of PMSynchronous Mmotor using Boundary Layer Integral Sliding Mode ControlTechnique [J].IEEE Transactions on Control Systems Technology,2000,8(1):47-54.
    [95] Lin F J,Huang W J,Wai R J.A Supervisory Fuzzy Neural Network ControlSystem for Tracking Periodic Inputs [J]. IEEE Transactions on FuzzySystem,1999,7(1):41–52.
    [96] Wai R J.Total Sliding-Mode Controller for PM Synchronous Servo MotorDrive Using Recurrent Fuzzy Neural Network [J].IEEE Transactions onIndustrial Electronics,2001,48(5):926-944.
    [97] El-Sousy F F M. Robust Wavelet-Neural-Network Sliding-Mode ControlSystem for Permanent Magnet Synchronous Motor Drive [J].IET ElectricPower Applications,2011,5(1):113-132.
    [98]胡剑波,庄开宇.高级变结构控制理论与应用[M].西安:西北工业大学出版社,2008.
    [99]史莹晶.直接力/气动力复合控制巡航导弹滑模变结构控制研究[D].哈尔滨工业大学博士学位论文,2008.
    [100]朱隆魁.防空导弹直接力和气动力复合控制技术研究[D].国防科学技术大学博士学位论文,2008.
    [101] Huang Z Y,Li D H,Jiang X Z,et al.Gain Scheduled Servo System forBoiler-Turbine Uint [J].Proceedings of the CSEE,2003,23(10):191-198.
    [102]林金星,沈炯,李益国.基于免疫优化的机炉协调系统模糊增益调度H_∞鲁棒控制[J].中国电机工程学报,2008,28(17):92-98.
    [103]张铁军,吕剑虹,华志刚.机炉协调系统的模糊增益调度预测控制[J].中国电机工程学报,2005,25(4):158-165.
    [104]范晓旭,白焰,吕跃刚,等.大型风力发电机组线性二次型高斯最优控制策略[J].中国电机工程学报,2010,30(20):100-105.
    [105]裘君.基于耗散哈密顿系统的永磁同步电机控制研究[D].浙江大学博士学位论文,2009.
    [106]胡剑波,辛海良.新型增益调度变结构控制器的性能比较研究[J].控制与决策,2009,24(5):769-772.
    [107]辛海良,胡剑波,高鹏.一类非线性系统的新型增益调度变结构跟踪控制[J].系统工程与电子技术,2011,33(6):1362-1366.
    [108]胡剑波,辛海良.含有不灵敏区非线性系统的增益调度自适应变结构控制[J].控制理论与应用,2010,(6).
    [109]辛海良,胡剑波.一种新型滑模变结构增益调度控制器设计方法[J].控制与决策,2011,26(12):1824-1828+1834.
    [110] Hu J B,Su H Y,Chu J.A New Gain-Scheduling Controller Based onAVSC and FLCN [J].Control Theory and Applications,2000,17(3):465-468.
    [111] Hu J B,Su H Y,Chu J.A Robust Gain-Scheduling Controller Based onAVSC and Fuzzy Local Contrller Network [J].Journal of Zhejiang University(Science),2000,1(3):249-253.
    [112]申宇,仇原鹰,马伯渊.增益调度积分型切换项滑模控制器设计[J].系统工程与电子技术,2011,33(9):2079-2084.
    [113]赵希梅,郭庆鼎.基于扰动观测器和重复控制器的永磁直线同步电动机鲁棒控制[J].中国电机工程学报,2010,30(15):64-69.
    [114]马运东,胡祖荣,王芳,等.应用扰动观测器的定桨距风力机转速控制[J].中国电机工程学报,2011,31(6):79-84.
    [115]程丽敏,李兴源.基于扰动观测器的电压源型逆变器控制[J].电工技术学报,2011,(8):113-118.
    [116]陈霞,邹继斌.基于干扰观测器的反作用力矩测试系统鲁棒性设计[J].电工技术学报,2010,(7):56-60.
    [117]郭庆鼎,赵希梅,翁秀华.基于干扰观测器的龙门移动式镗铣加工中心同步控制[J].电工技术学报,2005,(9):88-91.
    [118]高扬,杨明,于泳,等.基于扰动观测器的PMSM交流伺服系统低速控制[J].中国电机工程学报,2005,25(22):125-129.
    [119] Su W T,Liaw C M.Adaptive Positioning Control for a LPMSM DriveBased on Adapted Inverse Model and Robust Disturbance Observer [J].IEEETransactions on Power Electronics,2006,21(2):505-517.
    [120] Lee K B,Blaabjerg F.Improved Sensorless Vector Control for InductionMotor Drives Fed by a Matrix Converter Using Nonlinear Modeling andDisturbance Observer [J].IEEE Transactions on Energy Conversion,2006,21(1):52-59.
    [121] Choi S H,Ko J S,Kim I D,et al.Precise Position Control Using a PMSMwith a Disturbance Observer Containing a System Parameter Compensator[J].IEE Proceedings-Electric Power Applications,2005,152(6):1573-1577.
    [122]周雅夫,连静,沈晓勇,等.基于MAP图的电动汽车用驱动电机前馈矢量控制方法[P].国家发明专利:CN101841299A,2010年09月22日.