卷须链霉菌D-10木聚糖酶酶解玉米芯汽爆液制备低聚木糖的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕低聚木糖生产的主要工艺,对汽爆法提取玉米芯木聚糖的条件、卷须链霉菌(Streptomyces cirratus)D-10木聚糖酶合适的酶解条件以及酵母精制低聚木糖酶解液进行了研究。主要内容和结论如下:
     1.关于汽爆法提取玉米芯木聚糖,在时间和固液比固定的条件下,压力与木聚糖提取率和木质素的溶出率都呈正相关,而D.P.值随着压力的增加先达到一个最高值后下降;在压力和固液比固定的条件下,反应时间越长,木聚糖提取率和木质素的溶出越高,而D.P.值随反应时间的增加不断下降,当反应时间达到一定程度,D.P.值低于2,表明维压时间过长,木聚糖过度降解,反而不利于木聚糖的提取;在压力和反应时间固定下,随固液比的增加,木质素的溶出也不断增加,而木聚糖提取率和D.P.值都是先上升后下降,综合得出1:20的固液比是较合适的固液比。
     2.关于卷须链霉菌(Streptomyces cirratus)D-10木聚糖酶酶解,研究玉米芯汽爆液,碱提玉米芯木聚糖酶解的合适条件。得出80U/100mL,酶解6h和60U/g,酶解8h是卷须链霉菌D-10木聚糖酶酶解玉米芯汽爆液和碱提玉米芯木聚糖的合适条件。研究表明汽爆法提取的玉米芯木聚糖比碱提玉米芯木聚糖的水解率高,酶用量相对少,因此汽爆法相对于碱提法是较优的方法。
     3.关于酵母精制低聚木糖的研究,针对微生物发酵法精制低聚木糖的特点,筛出一株具有消耗木单糖、阿拉伯糖而不消耗木二糖特性的酵母,并利用该酵母精制汽爆法提取的玉米芯木聚糖酶解液,研究该酵母精制低聚木糖液合适的精制条件,结果表明10%的接菌量,培养48 h是合适的精制条件。精制结束时,经TLC分析,酶解液中的木糖、阿拉伯糖几乎全部被去除,木二糖和木三糖没有明显变化,最终得到以木二糖和木三糖为主要成分的低聚木糖液。
This study covers the researches on the extraction of corncob xylan by steam-explosion, the optimal condition of Streptomyces cirratus D-10 xylanase hydrolyzing steam-exploded corncob and purifing the hydrolyzed steam-exploded corncob by yeast, The conclusions are as follows:
    1.The effects of explosion pressure, reaction time and ratio of corncob with water on the extraction rate of xylan, the soluble value of lignin and the degree of polymerization of xylan were investigated. It is found that explosion pressure and extraction rate of xylan are positive correlation, while with the pressure increasing, the D.P. increases firstly and then decreases; The longer the reaction time is, the more the extraction rate of xylan and lignin; The D.P. will decrease with the increasing reaction time, however, excess reaction time will lead to the excess degration of xylan. With the increase of ratio of corncob with water, the amount of lignin increases, while the amount of xylan and the D.P. increases firstly and then decreases. It is concluded that optimal ratio of corncob with water is 1 : 20.
    2.The optimal conditions of Streptomyces cirratus D-10 xylanase hydrolyzing steam-exploded corncob and alkali-extracted corncob xylan were studied. It is obtained that 80 U/ 100 mL of the enzyme concentration hydrolyzing for 6 h and 60 U/g of the enzyme concentration hydrolyzing for 8 h are the optimal conditions of the Streptomyces cirratus D-10 hydrolying the steam-exploed corncob and alkali-extracted corncob xylan, respectively. It is shown that the xylanase is more effective on the steam-exploed corncob than on the alkali-extracted corncob xylan, and steam-exploed corncob is a more suitable substrate for Streptomyces cirratus D-10 xylanases to prepare xylooligosaccharides.
    3.In this study, we also selected an yeast, which can metabolize selectively xylose and arabinose, but can not degrade xylobiose. Xylose and arabinose in the hydrolysate of the steam-exploded corncob are fully consumed with 10 % inoculation at 48 h, while the mount of the xylooligosaccharides don't change notably. After purification by the yeast, the main compontents of the hydrolysate of the steam-exploded corncob are xylobiose and xylotriose.
引文
[1]丁长河.链霉菌高产木聚糖酶及其酶学性质的研究:博士学位论文.北京:中国农业大学,2003
    [2]陈国符.植物纤维化学.北京:轻工业出版社,1980:204-209
    [3]黄干强,胡健.杨木爆破浆作新闻纸配浆的初步研究.中国造纸,1996,5:28-32
    [4]洪枫,赵林果,余世袁.聚丙烯酰胺凝胶柱分离提纯木低聚糖的研究.纤维素科学与技术,1999,7(1):33-40
    [5]陆晓峰,陈仕意,刘光全,等.超滤膜的吸附污染研究.膜科学与技术,1997,17(1):37
    [6]罗敏,王占生,侯立安.纳滤膜污染的分析与机理研究.水处理技术,1998,24(6):319
    [7]入江 立夫,田子山 宝典.木二糖的制造方法.公开特许公报,昭62-155095
    [8]桑原正章.木材爆碎处理酵素糖化.发酵工学,1985,63(5):433-438
    [9]邵佩兰,徐明,朱晓红.影响玉米芯木聚糖提取因素的探讨宁夏农学院学报,2002,23(2):56-59
    [10]石波.玉米芯酶法制备低聚木糖的研究:博士学位论文.北京:中国农业大学,2001
    [11]石波,李里特.功能性添加剂木寡糖的制备研究.国外畜牧科技,2000,12:14-17
    [12]曲音波,高培基,赵昕,等.纤维素科学与技术,1997,5(2):1-9
    [13]徐勇,陈牧,余世袁,等.木聚糖酶水解制取低聚木糖的研究.林产化学与工业,2002,22(2):57-60
    [14]薛业敏,毛忠贵,邵蔚蓝.利用玉米芯木聚糖酶法制备低聚木糖的研究.食品与发酵工业,2003,6:7-9
    [15]扬本宏,刘斌,吴克,等.酶法制备低聚木糖中木二糖的提纯与色谱鉴定.工业微生物,2000,30(4):11-14
    [16]杨瑞金,许时婴,王璋.中国食品添加剂.北京:中国轻工业出版社,2000:89-93
    [17]杨瑞金,许时婴,王璋.用于低聚木糖生产的玉米芯木聚糖的蒸煮法提取.无锡轻工业大学学报,1998 a, 17(4):50-53
    [18]杨瑞金.酶法生产低聚木糖的研究:博士论文.无锡:无锡轻工业大学,1998 b
    [19]杨瑞金,许时婴,王璋.碱法提取木聚糖的酶法水解.食品工业科技,2001,22(1):15-18
    [20]余三佳,陈小良,潘小明,等.多糖纳滤浓缩初步研究.水处理技术,2001,27(1):9-11.
    [21]袁其朋,张怀.絮凝脱色在低聚木糖分离纯化中的应用.食品与发酵工业,2002,28(2):58-61
    [22]中华人民共和国国家标准,食品中水分的测定方法,GB/T1469-93,19932
    [23]中山大学生物系微生物学教研室编.生物技术导论.北京:人民教育出版社,1981,9
    [24]赵林果,余世袁,丁艳.分离制备高纯度中性木低聚糖的研究.林产化学与工业,2000,20(4):50-54
    [25]周德庆编著.微生物学实验手册.上海:上海科技出版社,1980
    [26]诸葛健,王正祥编著.工业微生物技术手册.北京:中国轻工业出版社,1994,220-223
    [27]Beg Q K, Bhushan B, Kapoor M, et al. Enhenced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb Technol, 2000, 27:459-466
    [28]Bender F, Heaney D P, Bowden A. The potential of steamed wood as a feed for ruminants. Forest Prod, 1970, 20(4):36-41
    [29]Bertrand J L, Morosoli R, Shareck F, et al. Expression of the xylanase gene of Steptomyces lividans and production
    
    of the enzyme on natural substrates. Biotechnol Bioeng, 1989, 33:791-794
    [30]Bhatt S. Separation of fructose from carbohydrate mixtures part Ⅰ-non-chromatographic methods. Indian Sugar, 1993a, 7:463-468
    [31]Bhatt S. Separation of fructose from carbohydrate mixtures part Ⅰ-non-chromatographic methods. Indian Sugar, 1993b, 8:615-620
    [32]Bhatt S.Ion-exchange process of commercial separation of fructose. Indian Sugar, 1994, 8:627-637
    [33]B.Nidetzky, W.Steiner, M.Hayn, et al. Enzymatic hydrolysis of wheat straw after steam pretreatment: Experimental data and Kinetic modeling. Bioresource Technology. 1993,44:25-32
    [34]BY W. R. FERNELL, H. K. KING.. The Simultaneous Determination of Pentose and Hexose in Mixtures of Sugars. Analyst, 1953, 78:80-83
    [35]Crittenden, R.G., Playne, et al. Production, properties and applications of food-grade oligosaccharides.Trends Food Sci.Technol, 1996,7:353-361
    [36]D Souza S F, Nadkarni G B. Continuous conversion of sucrose to frustose and glueonic acid by immobilized yeast cell multienzyme complex. Biotechnology and Bioengineering, 1980, 22:2179-2189
    [37]Hacliccek. J. Carbohyd.Res, 1972, 22:307
    [38]Harder A, Noordam B, Brekelmane A M. Kinetics of isomaltose formation by a myloglueosidase and purification of the disaccharide by fermentation of undesired by products. Ann N Y Acad Sci, 1983, 413:351-430
    [39]Heyon-Jin Sun, Shigeki Yoshida, Nyun-Ho Park, et al. Preparation of (1-4)-β-D-xylooligosaccharides from an acid hydrolysate of cotton-seed xylan: suitability of cotton-seed xylan as a starting material for the preparation of (1-4)-β-D-xylooligosaccharides. Carbohydrate Research, 2002, 332:657-661
    [40]Isao Kusukabe, Shin Ohgushi, Tsuneo Yasui, et al. Structure of the Arabinoxylooligosaecharides from Streptomyces. Agri. Biol. Chem, 1983, 47(12): 2713-2723
    [41]Isao Kusukabe,Tsuneo Yasui,Tatsuyoshi Kobayashi. A new method for preparation of xylobiiose, Eliminating xylose from enzymatic xylan hydrolyzate by yeast. Agri. Biol. Chem, 1975,39(7): 1355-1362
    [42]Jiang zhengqiang, Atsushi Kobayashi, Mohammad Mainul Ahsan. Characterization of a Thermostable Family 10 Endo-Xylanas (XynB) from Thermotoga maritime That Cleaves p-Nitropheny-β-D-Xyloside. Journal of Bioscience and Bioengineering, 2001, 2(5): 423-428
    [43]J.Femandez-Bolanos, B.Felizon, A.Heredia, et al. Steam-explosion of olive stones:hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresource Technology, 2001, 79:53-61
    [44]Koren D W, Duvnjak Z. Pure fructose syrup and ethanol production from high fructose corn syrup supplemented with Jerosalem arthichoke juice. J Chem Tech Biotechnol, 1999, 47:117-125
    [45]L Hocine L,江波,王璋.双酶法生产高纯度低聚果糖的研究.食品科学,1997,18:24-27
    [46]Mason W H. US Patent, 1928:618-655
    [47]Michael J.Bailey, Peter Biely, Kaisa Poutanen. Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology,1992,23:257-270
    
    
    [48]Michalowicz G, Toussaint B, Vignon M R. Holzforschung, 1991, 45(3): 175-179
    [49]Mohammed Moniruzzaman. Saccharification and alcohol fermentation of steam-explosion rice straw. Bioresource Technology, 1996, 55:111-117
    [50]Nidetzky B, Furlinger M, Gollhofer D, et al. Improved seperational stability of cell-free glucose-fructose oxidoreductas from Zymomonas mobilis for the efficient synthesis of sorbitol and gluconic acid in a continuous ultrafiltration membranere actor. Biotechnology and Bioengineering, 1997, 53(6): 623-629
    [51]Noriki Matsuo, Shigeki Yoshida, Isao Kusukabe, et al. Chemical Structure of Xylan in Cotton-seed Cake. Agri.Biol.Chem, 1991, 55(11): 2905-2907
    [52]Okazaki M, Fujikawa S, Matsumoto N. Bifidobact. Mocrofloro, 1990, 9:77-86
    [53]Patrice Pellerin, Michele Gosselin, Jean-Paul Lepoutre, et al. Enzymic production of oligosaccharides from corncob xylan. Enzyme Microb. Technol, 1991, 13(8): 617-621
    [54]Patel S, Ray R, Madamwr D. Continuous production of gluconic acid by pached-bed immobilized enzyme reactor. Ind Biotechnol, 1992:511-518
    [55]Ruiz-Arribas A., Fernandez-Abalos J M, Sanehez P, et al. Overproduction, purification, and biochemical characterization of a xylanase(Xysl) from Streptomyces halstedii JM8. Appl Environ Microbiol, 1995, 61:2414-2419
    [56]Sasaka,E. Ozer. Aqueous Extraction of sugarcane bagasse hemicellulose and production of xylose syrup. Biotechnology and Bioengineering, 1995, 45:517-523
    [57]Saska M. Member based separation and counter current multicolumn systems for decolorizarion, ion exchange and ion exclusion: emerging technologies for the sugar industry. Indian Sugar, 1997, 3:169-183
    [58]Somogyi M. A new reagent for the determination of sugars. Biol.Chem, 1945, 160:61~68
    [59]Whistler, Roy J. Amer.chem..Soc., 1952, 74:3609-3612